Correct and clarify integer division rounding docs

This commit is contained in:
William Throwe 2015-07-11 20:30:50 -04:00
parent 1b28ffa521
commit 218eb1277d
2 changed files with 10 additions and 4 deletions

View File

@ -459,7 +459,7 @@ macro_rules! int_impl {
}
}
/// Wrapping (modular) division. Computes `floor(self / other)`,
/// Wrapping (modular) division. Computes `self / other`,
/// wrapping around at the boundary of the type.
///
/// The only case where such wrapping can occur is when one
@ -467,7 +467,7 @@ macro_rules! int_impl {
/// negative minimal value for the type); this is equivalent
/// to `-MIN`, a positive value that is too large to represent
/// in the type. In such a case, this function returns `MIN`
/// itself..
/// itself.
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[inline(always)]
pub fn wrapping_div(self, rhs: Self) -> Self {
@ -1031,7 +1031,7 @@ macro_rules! uint_impl {
}
}
/// Wrapping (modular) division. Computes `floor(self / other)`,
/// Wrapping (modular) division. Computes `self / other`,
/// wrapping around at the boundary of the type.
///
/// The only case where such wrapping can occur is when one
@ -1039,7 +1039,7 @@ macro_rules! uint_impl {
/// negative minimal value for the type); this is equivalent
/// to `-MIN`, a positive value that is too large to represent
/// in the type. In such a case, this function returns `MIN`
/// itself..
/// itself.
#[stable(feature = "num_wrapping", since = "1.2.0")]
#[inline(always)]
pub fn wrapping_div(self, rhs: Self) -> Self {

View File

@ -315,6 +315,9 @@ mul_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
/// The `Div` trait is used to specify the functionality of `/`.
///
/// For primitive integral types, this operation rounds towards zero,
/// truncating any fractional part of the exact result.
///
/// # Examples
///
/// A trivial implementation of `Div`. When `Foo / Foo` happens, it ends up
@ -369,6 +372,9 @@ div_impl! { usize u8 u16 u32 u64 isize i8 i16 i32 i64 f32 f64 }
/// The `Rem` trait is used to specify the functionality of `%`.
///
/// For primitive integral types, this operation satisfies `n % d == n
/// - (n / d) * d`. The result has the same sign as the left operand.
///
/// # Examples
///
/// A trivial implementation of `Rem`. When `Foo % Foo` happens, it ends up