Reformat some comments.
So they are less than 100 chars.
This commit is contained in:
parent
5fd16dffdc
commit
1f359405cb
@ -403,8 +403,9 @@ pub(crate) fn llfn_attrs_from_instance<'ll, 'tcx>(
|
||||
if codegen_fn_attrs.flags.contains(CodegenFnAttrFlags::NAKED) {
|
||||
to_add.push(AttributeKind::Naked.create_attr(cx.llcx));
|
||||
// HACK(jubilee): "indirect branch tracking" works by attaching prologues to functions.
|
||||
// And it is a module-level attribute, so the alternative is pulling naked functions into new LLVM modules.
|
||||
// Otherwise LLVM's "naked" functions come with endbr prefixes per https://github.com/rust-lang/rust/issues/98768
|
||||
// And it is a module-level attribute, so the alternative is pulling naked functions into
|
||||
// new LLVM modules. Otherwise LLVM's "naked" functions come with endbr prefixes per
|
||||
// https://github.com/rust-lang/rust/issues/98768
|
||||
to_add.push(AttributeKind::NoCfCheck.create_attr(cx.llcx));
|
||||
if llvm_util::get_version() < (19, 0, 0) {
|
||||
// Prior to LLVM 19, branch-target-enforcement was disabled by setting the attribute to
|
||||
@ -454,7 +455,8 @@ pub(crate) fn llfn_attrs_from_instance<'ll, 'tcx>(
|
||||
flags |= AllocKindFlags::Zeroed;
|
||||
}
|
||||
to_add.push(llvm::CreateAllocKindAttr(cx.llcx, flags));
|
||||
// apply to return place instead of function (unlike all other attributes applied in this function)
|
||||
// apply to return place instead of function (unlike all other attributes applied in this
|
||||
// function)
|
||||
let no_alias = AttributeKind::NoAlias.create_attr(cx.llcx);
|
||||
attributes::apply_to_llfn(llfn, AttributePlace::ReturnValue, &[no_alias]);
|
||||
}
|
||||
|
@ -156,15 +156,15 @@ fn get_bitcode_slice_from_object_data<'a>(
|
||||
obj: &'a [u8],
|
||||
cgcx: &CodegenContext<LlvmCodegenBackend>,
|
||||
) -> Result<&'a [u8], LtoBitcodeFromRlib> {
|
||||
// We're about to assume the data here is an object file with sections, but if it's raw LLVM IR that
|
||||
// won't work. Fortunately, if that's what we have we can just return the object directly, so we sniff
|
||||
// the relevant magic strings here and return.
|
||||
// We're about to assume the data here is an object file with sections, but if it's raw LLVM IR
|
||||
// that won't work. Fortunately, if that's what we have we can just return the object directly,
|
||||
// so we sniff the relevant magic strings here and return.
|
||||
if obj.starts_with(b"\xDE\xC0\x17\x0B") || obj.starts_with(b"BC\xC0\xDE") {
|
||||
return Ok(obj);
|
||||
}
|
||||
// We drop the "__LLVM," prefix here because on Apple platforms there's a notion of "segment name"
|
||||
// which in the public API for sections gets treated as part of the section name, but internally
|
||||
// in MachOObjectFile.cpp gets treated separately.
|
||||
// We drop the "__LLVM," prefix here because on Apple platforms there's a notion of "segment
|
||||
// name" which in the public API for sections gets treated as part of the section name, but
|
||||
// internally in MachOObjectFile.cpp gets treated separately.
|
||||
let section_name = bitcode_section_name(cgcx).trim_start_matches("__LLVM,");
|
||||
let mut len = 0;
|
||||
let data = unsafe {
|
||||
|
@ -86,15 +86,17 @@ impl Deref for OwnedTargetMachine {
|
||||
type Target = llvm::TargetMachine;
|
||||
|
||||
fn deref(&self) -> &Self::Target {
|
||||
// SAFETY: constructing ensures we have a valid pointer created by llvm::LLVMRustCreateTargetMachine
|
||||
// SAFETY: constructing ensures we have a valid pointer created by
|
||||
// llvm::LLVMRustCreateTargetMachine.
|
||||
unsafe { self.tm_unique.as_ref() }
|
||||
}
|
||||
}
|
||||
|
||||
impl Drop for OwnedTargetMachine {
|
||||
fn drop(&mut self) {
|
||||
// SAFETY: constructing ensures we have a valid pointer created by llvm::LLVMRustCreateTargetMachine
|
||||
// OwnedTargetMachine is not copyable so there is no double free or use after free
|
||||
// SAFETY: constructing ensures we have a valid pointer created by
|
||||
// llvm::LLVMRustCreateTargetMachine OwnedTargetMachine is not copyable so there is no
|
||||
// double free or use after free.
|
||||
unsafe {
|
||||
llvm::LLVMRustDisposeTargetMachine(self.tm_unique.as_mut());
|
||||
}
|
||||
|
@ -157,7 +157,8 @@ fn to_pass_builder_opt_level(cfg: config::OptLevel) -> llvm::PassBuilderOptLevel
|
||||
fn to_llvm_relocation_model(relocation_model: RelocModel) -> llvm::RelocModel {
|
||||
match relocation_model {
|
||||
RelocModel::Static => llvm::RelocModel::Static,
|
||||
// LLVM doesn't have a PIE relocation model, it represents PIE as PIC with an extra attribute.
|
||||
// LLVM doesn't have a PIE relocation model, it represents PIE as PIC with an extra
|
||||
// attribute.
|
||||
RelocModel::Pic | RelocModel::Pie => llvm::RelocModel::PIC,
|
||||
RelocModel::DynamicNoPic => llvm::RelocModel::DynamicNoPic,
|
||||
RelocModel::Ropi => llvm::RelocModel::ROPI,
|
||||
@ -188,8 +189,8 @@ pub(crate) fn target_machine_factory(
|
||||
let use_softfp = if sess.target.arch == "arm" && sess.target.abi == "eabihf" {
|
||||
sess.opts.cg.soft_float
|
||||
} else {
|
||||
// `validate_commandline_args_with_session_available` has already warned about this being ignored.
|
||||
// Let's make sure LLVM doesn't suddenly start using this flag on more targets.
|
||||
// `validate_commandline_args_with_session_available` has already warned about this being
|
||||
// ignored. Let's make sure LLVM doesn't suddenly start using this flag on more targets.
|
||||
false
|
||||
};
|
||||
|
||||
|
@ -673,11 +673,11 @@ fn store_with_flags(
|
||||
// for performance. LLVM doesn't seem to care about this, and will happily treat
|
||||
// `!nontemporal` stores as-if they were normal stores (for reordering optimizations
|
||||
// etc) even on x86, despite later lowering them to MOVNT which do *not* behave like
|
||||
// regular stores but require special fences.
|
||||
// So we keep a list of architectures where `!nontemporal` is known to be truly just
|
||||
// a hint, and use regular stores everywhere else.
|
||||
// (In the future, we could alternatively ensure that an sfence gets emitted after a sequence of movnt
|
||||
// before any kind of synchronizing operation. But it's not clear how to do that with LLVM.)
|
||||
// regular stores but require special fences. So we keep a list of architectures
|
||||
// where `!nontemporal` is known to be truly just a hint, and use regular stores
|
||||
// everywhere else. (In the future, we could alternatively ensure that an sfence
|
||||
// gets emitted after a sequence of movnt before any kind of synchronizing
|
||||
// operation. But it's not clear how to do that with LLVM.)
|
||||
// For more context, see <https://github.com/rust-lang/rust/issues/114582> and
|
||||
// <https://github.com/llvm/llvm-project/issues/64521>.
|
||||
const WELL_BEHAVED_NONTEMPORAL_ARCHS: &[&str] =
|
||||
|
@ -73,8 +73,8 @@ fn append_chunks_of_init_and_uninit_bytes<'ll, 'a, 'b>(
|
||||
|
||||
// Generating partially-uninit consts is limited to small numbers of chunks,
|
||||
// to avoid the cost of generating large complex const expressions.
|
||||
// For example, `[(u32, u8); 1024 * 1024]` contains uninit padding in each element,
|
||||
// and would result in `{ [5 x i8] zeroinitializer, [3 x i8] undef, ...repeat 1M times... }`.
|
||||
// For example, `[(u32, u8); 1024 * 1024]` contains uninit padding in each element, and
|
||||
// would result in `{ [5 x i8] zeroinitializer, [3 x i8] undef, ...repeat 1M times... }`.
|
||||
let max = cx.sess().opts.unstable_opts.uninit_const_chunk_threshold;
|
||||
let allow_uninit_chunks = chunks.clone().take(max.saturating_add(1)).count() <= max;
|
||||
|
||||
@ -249,8 +249,8 @@ pub(crate) fn get_static(&self, def_id: DefId) -> &'ll Value {
|
||||
trace!(?instance);
|
||||
|
||||
let DefKind::Static { nested, .. } = self.tcx.def_kind(def_id) else { bug!() };
|
||||
// Nested statics do not have a type, so pick a dummy type and let `codegen_static` figure out
|
||||
// the llvm type from the actual evaluated initializer.
|
||||
// Nested statics do not have a type, so pick a dummy type and let `codegen_static` figure
|
||||
// out the llvm type from the actual evaluated initializer.
|
||||
let llty = if nested {
|
||||
self.type_i8()
|
||||
} else {
|
||||
@ -320,15 +320,16 @@ fn get_static_inner(&self, def_id: DefId, llty: &'ll Type) -> &'ll Value {
|
||||
}
|
||||
|
||||
if !def_id.is_local() {
|
||||
let needs_dll_storage_attr = self.use_dll_storage_attrs && !self.tcx.is_foreign_item(def_id) &&
|
||||
let needs_dll_storage_attr = self.use_dll_storage_attrs
|
||||
&& !self.tcx.is_foreign_item(def_id)
|
||||
// Local definitions can never be imported, so we must not apply
|
||||
// the DLLImport annotation.
|
||||
!dso_local &&
|
||||
&& !dso_local
|
||||
// ThinLTO can't handle this workaround in all cases, so we don't
|
||||
// emit the attrs. Instead we make them unnecessary by disallowing
|
||||
// dynamic linking when linker plugin based LTO is enabled.
|
||||
!self.tcx.sess.opts.cg.linker_plugin_lto.enabled() &&
|
||||
self.tcx.sess.lto() != Lto::Thin;
|
||||
&& !self.tcx.sess.opts.cg.linker_plugin_lto.enabled()
|
||||
&& self.tcx.sess.lto() != Lto::Thin;
|
||||
|
||||
// If this assertion triggers, there's something wrong with commandline
|
||||
// argument validation.
|
||||
@ -551,8 +552,8 @@ fn codegen_static_item(&self, def_id: DefId) {
|
||||
// `#[used(compiler)]` is explicitly requested. This is to avoid similar breakage
|
||||
// on other targets, in particular MachO targets have *their* static constructor
|
||||
// lists broken if `llvm.compiler.used` is emitted rather than `llvm.used`. However,
|
||||
// that check happens when assigning the `CodegenFnAttrFlags` in `rustc_hir_analysis`,
|
||||
// so we don't need to take care of it here.
|
||||
// that check happens when assigning the `CodegenFnAttrFlags` in
|
||||
// `rustc_hir_analysis`, so we don't need to take care of it here.
|
||||
self.add_compiler_used_global(g);
|
||||
}
|
||||
if attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER) {
|
||||
|
@ -231,7 +231,8 @@ pub(crate) unsafe fn create_module<'ll>(
|
||||
}
|
||||
}
|
||||
|
||||
// Enable LTO unit splitting if specified or if CFI is enabled. (See https://reviews.llvm.org/D53891.)
|
||||
// Enable LTO unit splitting if specified or if CFI is enabled. (See
|
||||
// https://reviews.llvm.org/D53891.)
|
||||
if sess.is_split_lto_unit_enabled() || sess.is_sanitizer_cfi_enabled() {
|
||||
let enable_split_lto_unit = c"EnableSplitLTOUnit".as_ptr();
|
||||
unsafe {
|
||||
|
@ -121,7 +121,8 @@ pub(crate) struct DecisionParameters {
|
||||
num_conditions: u16,
|
||||
}
|
||||
|
||||
// ConditionId in llvm is `unsigned int` at 18 while `int16_t` at [19](https://github.com/llvm/llvm-project/pull/81257)
|
||||
// ConditionId in llvm is `unsigned int` at 18 while `int16_t` at
|
||||
// [19](https://github.com/llvm/llvm-project/pull/81257).
|
||||
type LLVMConditionId = i16;
|
||||
|
||||
/// Must match the layout of `LLVMRustMCDCBranchParameters`.
|
||||
|
@ -48,11 +48,10 @@ fn take_function_coverage_map(
|
||||
self.function_coverage_map.replace(FxIndexMap::default())
|
||||
}
|
||||
|
||||
/// LLVM use a temp value to record evaluated mcdc test vector of each decision, which is called condition bitmap.
|
||||
/// In order to handle nested decisions, several condition bitmaps can be
|
||||
/// allocated for a function body.
|
||||
/// These values are named `mcdc.addr.{i}` and are a 32-bit integers.
|
||||
/// They respectively hold the condition bitmaps for decisions with a depth of `i`.
|
||||
/// LLVM use a temp value to record evaluated mcdc test vector of each decision, which is
|
||||
/// called condition bitmap. In order to handle nested decisions, several condition bitmaps can
|
||||
/// be allocated for a function body. These values are named `mcdc.addr.{i}` and are a 32-bit
|
||||
/// integers. They respectively hold the condition bitmaps for decisions with a depth of `i`.
|
||||
fn try_get_mcdc_condition_bitmap(
|
||||
&self,
|
||||
instance: &Instance<'tcx>,
|
||||
@ -157,8 +156,8 @@ fn add_coverage(&mut self, instance: Instance<'tcx>, kind: &CoverageKind) {
|
||||
),
|
||||
CoverageKind::CounterIncrement { id } => {
|
||||
func_coverage.mark_counter_id_seen(id);
|
||||
// We need to explicitly drop the `RefMut` before calling into `instrprof_increment`,
|
||||
// as that needs an exclusive borrow.
|
||||
// We need to explicitly drop the `RefMut` before calling into
|
||||
// `instrprof_increment`, as that needs an exclusive borrow.
|
||||
drop(coverage_map);
|
||||
|
||||
// The number of counters passed to `llvm.instrprof.increment` might
|
||||
|
@ -44,7 +44,8 @@ pub(crate) fn get_or_insert_gdb_debug_scripts_section_global<'ll>(
|
||||
// Add the pretty printers for the standard library first.
|
||||
section_contents.extend_from_slice(b"\x01gdb_load_rust_pretty_printers.py\0");
|
||||
|
||||
// Next, add the pretty printers that were specified via the `#[debugger_visualizer]` attribute.
|
||||
// Next, add the pretty printers that were specified via the `#[debugger_visualizer]`
|
||||
// attribute.
|
||||
let visualizers = collect_debugger_visualizers_transitive(
|
||||
cx.tcx,
|
||||
DebuggerVisualizerType::GdbPrettyPrinter,
|
||||
|
@ -216,8 +216,9 @@ fn build_pointer_or_reference_di_node<'ll, 'tcx>(
|
||||
// need to make sure that we don't break existing debuginfo consumers
|
||||
// by doing that (at least not without a warning period).
|
||||
let layout_type = if ptr_type.is_box() {
|
||||
// The assertion at the start of this function ensures we have a ZST allocator.
|
||||
// We'll make debuginfo "skip" all ZST allocators, not just the default allocator.
|
||||
// The assertion at the start of this function ensures we have a ZST
|
||||
// allocator. We'll make debuginfo "skip" all ZST allocators, not just the
|
||||
// default allocator.
|
||||
Ty::new_mut_ptr(cx.tcx, pointee_type)
|
||||
} else {
|
||||
ptr_type
|
||||
@ -280,8 +281,7 @@ fn build_subroutine_type_di_node<'ll, 'tcx>(
|
||||
cx: &CodegenCx<'ll, 'tcx>,
|
||||
unique_type_id: UniqueTypeId<'tcx>,
|
||||
) -> DINodeCreationResult<'ll> {
|
||||
// It's possible to create a self-referential
|
||||
// type in Rust by using 'impl trait':
|
||||
// It's possible to create a self-referential type in Rust by using 'impl trait':
|
||||
//
|
||||
// fn foo() -> impl Copy { foo }
|
||||
//
|
||||
@ -573,14 +573,14 @@ fn alloc_new_file_metadata<'ll>(
|
||||
{
|
||||
// If the compiler's working directory (which also is the DW_AT_comp_dir of
|
||||
// the compilation unit) is a prefix of the path we are about to emit, then
|
||||
// only emit the part relative to the working directory.
|
||||
// Because of path remapping we sometimes see strange things here: `abs_path`
|
||||
// might actually look like a relative path
|
||||
// (e.g. `<crate-name-and-version>/src/lib.rs`), so if we emit it without
|
||||
// taking the working directory into account, downstream tooling will
|
||||
// interpret it as `<working-directory>/<crate-name-and-version>/src/lib.rs`,
|
||||
// which makes no sense. Usually in such cases the working directory will also
|
||||
// be remapped to `<crate-name-and-version>` or some other prefix of the path
|
||||
// only emit the part relative to the working directory. Because of path
|
||||
// remapping we sometimes see strange things here: `abs_path` might
|
||||
// actually look like a relative path (e.g.
|
||||
// `<crate-name-and-version>/src/lib.rs`), so if we emit it without taking
|
||||
// the working directory into account, downstream tooling will interpret it
|
||||
// as `<working-directory>/<crate-name-and-version>/src/lib.rs`, which
|
||||
// makes no sense. Usually in such cases the working directory will also be
|
||||
// remapped to `<crate-name-and-version>` or some other prefix of the path
|
||||
// we are remapping, so we end up with
|
||||
// `<crate-name-and-version>/<crate-name-and-version>/src/lib.rs`.
|
||||
// By moving the working directory portion into the `directory` part of the
|
||||
|
@ -404,7 +404,8 @@ fn codegen_intrinsic_call(
|
||||
let llvm_name =
|
||||
&format!("llvm.fsh{}.i{}", if is_left { 'l' } else { 'r' }, width);
|
||||
|
||||
// llvm expects shift to be the same type as the values, but rust always uses `u32`
|
||||
// llvm expects shift to be the same type as the values, but rust
|
||||
// always uses `u32`.
|
||||
let raw_shift = self.intcast(raw_shift, self.val_ty(val), false);
|
||||
|
||||
self.call_intrinsic(llvm_name, &[val, val, raw_shift])
|
||||
@ -573,8 +574,8 @@ fn codegen_intrinsic_call(
|
||||
span,
|
||||
) {
|
||||
Ok(llval) => llval,
|
||||
// If there was an error, just skip this invocation... we'll abort compilation anyway,
|
||||
// but we can keep codegen'ing to find more errors.
|
||||
// If there was an error, just skip this invocation... we'll abort compilation
|
||||
// anyway, but we can keep codegen'ing to find more errors.
|
||||
Err(()) => return Ok(()),
|
||||
}
|
||||
}
|
||||
@ -1847,7 +1848,8 @@ fn llvm_vector_ty<'ll>(cx: &CodegenCx<'ll, '_>, elem_ty: Ty<'_>, vec_len: u64) -
|
||||
require!(
|
||||
matches!(
|
||||
*pointer_ty.kind(),
|
||||
ty::RawPtr(p_ty, p_mutbl) if p_ty == values_elem && p_ty.kind() == values_elem.kind() && p_mutbl.is_mut()
|
||||
ty::RawPtr(p_ty, p_mutbl)
|
||||
if p_ty == values_elem && p_ty.kind() == values_elem.kind() && p_mutbl.is_mut()
|
||||
),
|
||||
InvalidMonomorphization::ExpectedElementType {
|
||||
span,
|
||||
|
@ -2150,7 +2150,8 @@ pub fn LLVMRustGetTargetFeature(
|
||||
|
||||
pub fn LLVMRustGetHostCPUName(len: *mut usize) -> *const c_char;
|
||||
|
||||
// This function makes copies of pointed to data, so the data's lifetime may end after this function returns
|
||||
// This function makes copies of pointed to data, so the data's lifetime may end after this
|
||||
// function returns.
|
||||
pub fn LLVMRustCreateTargetMachine(
|
||||
Triple: *const c_char,
|
||||
CPU: *const c_char,
|
||||
|
@ -217,10 +217,10 @@ fn into_iter(self) -> Self::IntoIter {
|
||||
// where `{ARCH}` is the architecture name. Look for instances of `SubtargetFeature`.
|
||||
//
|
||||
// Check the current rustc fork of LLVM in the repo at https://github.com/rust-lang/llvm-project/.
|
||||
// The commit in use can be found via the `llvm-project` submodule in https://github.com/rust-lang/rust/tree/master/src
|
||||
// Though note that Rust can also be build with an external precompiled version of LLVM
|
||||
// which might lead to failures if the oldest tested / supported LLVM version
|
||||
// doesn't yet support the relevant intrinsics
|
||||
// The commit in use can be found via the `llvm-project` submodule in
|
||||
// https://github.com/rust-lang/rust/tree/master/src Though note that Rust can also be build with
|
||||
// an external precompiled version of LLVM which might lead to failures if the oldest tested /
|
||||
// supported LLVM version doesn't yet support the relevant intrinsics.
|
||||
pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option<LLVMFeature<'a>> {
|
||||
let arch = if sess.target.arch == "x86_64" {
|
||||
"x86"
|
||||
@ -259,8 +259,8 @@ pub(crate) fn to_llvm_features<'a>(sess: &Session, s: &'a str) -> Option<LLVMFea
|
||||
("aarch64", "fp16") => Some(LLVMFeature::new("fullfp16")),
|
||||
// Filter out features that are not supported by the current LLVM version
|
||||
("aarch64", "fpmr") if get_version().0 != 18 => None,
|
||||
// In LLVM 18, `unaligned-scalar-mem` was merged with `unaligned-vector-mem` into a single feature called
|
||||
// `fast-unaligned-access`. In LLVM 19, it was split back out.
|
||||
// In LLVM 18, `unaligned-scalar-mem` was merged with `unaligned-vector-mem` into a single
|
||||
// feature called `fast-unaligned-access`. In LLVM 19, it was split back out.
|
||||
("riscv32" | "riscv64", "unaligned-scalar-mem") if get_version().0 == 18 => {
|
||||
Some(LLVMFeature::new("fast-unaligned-access"))
|
||||
}
|
||||
@ -406,7 +406,8 @@ fn print_target_features(out: &mut String, sess: &Session, tm: &llvm::TargetMach
|
||||
.supported_target_features()
|
||||
.iter()
|
||||
.filter_map(|(feature, _gate, _implied)| {
|
||||
// LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these strings.
|
||||
// LLVM asserts that these are sorted. LLVM and Rust both use byte comparison for these
|
||||
// strings.
|
||||
let llvm_feature = to_llvm_features(sess, *feature)?.llvm_feature_name;
|
||||
let desc =
|
||||
match llvm_target_features.binary_search_by_key(&llvm_feature, |(f, _d)| f).ok() {
|
||||
|
@ -24,8 +24,8 @@ fn predefine_static(
|
||||
) {
|
||||
let instance = Instance::mono(self.tcx, def_id);
|
||||
let DefKind::Static { nested, .. } = self.tcx.def_kind(def_id) else { bug!() };
|
||||
// Nested statics do not have a type, so pick a dummy type and let `codegen_static` figure out
|
||||
// the llvm type from the actual evaluated initializer.
|
||||
// Nested statics do not have a type, so pick a dummy type and let `codegen_static` figure
|
||||
// out the llvm type from the actual evaluated initializer.
|
||||
let ty = if nested {
|
||||
self.tcx.types.unit
|
||||
} else {
|
||||
|
Loading…
Reference in New Issue
Block a user