Auto merge of #53877 - withoutboats:compositional-pin, r=aturon

Update to a new pinning API.

~~Blocked on #53843 because of method resolution problems with new pin type.~~

@r? @cramertj

cc @RalfJung @pythonesque anyone interested in #49150
This commit is contained in:
bors 2018-09-19 06:56:19 +00:00
commit 1e21c9a297
18 changed files with 396 additions and 484 deletions

View File

@ -65,13 +65,12 @@
use core::iter::FusedIterator;
use core::marker::{Unpin, Unsize};
use core::mem;
use core::pin::PinMut;
use core::pin::Pin;
use core::ops::{CoerceUnsized, Deref, DerefMut, Generator, GeneratorState};
use core::ptr::{self, NonNull, Unique};
use core::task::{Context, Poll, Spawn, SpawnErrorKind, SpawnObjError};
use raw_vec::RawVec;
use pin::PinBox;
use str::from_boxed_utf8_unchecked;
/// A pointer type for heap allocation.
@ -97,6 +96,12 @@ impl<T> Box<T> {
pub fn new(x: T) -> Box<T> {
box x
}
#[unstable(feature = "pin", issue = "49150")]
#[inline(always)]
pub fn pinned(x: T) -> Pin<Box<T>> {
(box x).into()
}
}
impl<T: ?Sized> Box<T> {
@ -427,6 +432,16 @@ fn from(t: T) -> Self {
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T> From<Box<T>> for Pin<Box<T>> {
fn from(boxed: Box<T>) -> Self {
// It's not possible to move or replace the insides of a `Pin<Box<T>>`
// when `T: !Unpin`, so it's safe to pin it directly without any
// additional requirements.
unsafe { Pin::new_unchecked(boxed) }
}
}
#[stable(feature = "box_from_slice", since = "1.17.0")]
impl<'a, T: Copy> From<&'a [T]> for Box<[T]> {
fn from(slice: &'a [T]) -> Box<[T]> {
@ -789,8 +804,8 @@ unsafe fn resume(&mut self) -> GeneratorState<Self::Yield, Self::Return> {
impl<F: ?Sized + Future + Unpin> Future for Box<F> {
type Output = F::Output;
fn poll(mut self: PinMut<Self>, cx: &mut Context) -> Poll<Self::Output> {
PinMut::new(&mut **self).poll(cx)
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
F::poll(Pin::new(&mut *self), cx)
}
}
@ -804,8 +819,8 @@ fn into_raw(self) -> *mut () {
unsafe fn poll(ptr: *mut (), cx: &mut Context) -> Poll<T> {
let ptr = ptr as *mut F;
let pin: PinMut<F> = PinMut::new_unchecked(&mut *ptr);
pin.poll(cx)
let pin: Pin<&mut F> = Pin::new_unchecked(&mut *ptr);
F::poll(pin, cx)
}
unsafe fn drop(ptr: *mut ()) {
@ -843,9 +858,16 @@ fn from(boxed: Box<F>) -> Self {
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: Unpin + ?Sized> From<PinBox<T>> for Box<T> {
fn from(pinned: PinBox<T>) -> Box<T> {
unsafe { PinBox::unpin(pinned) }
#[unstable(feature = "futures_api", issue = "50547")]
impl<'a, F: Future<Output = ()> + Send + 'a> From<Pin<Box<F>>> for FutureObj<'a, ()> {
fn from(boxed: Pin<Box<F>>) -> Self {
FutureObj::new(boxed)
}
}
#[unstable(feature = "futures_api", issue = "50547")]
impl<'a, F: Future<Output = ()> + 'a> From<Pin<Box<F>>> for LocalFutureObj<'a, ()> {
fn from(boxed: Pin<Box<F>>) -> Self {
LocalFutureObj::new(boxed)
}
}

View File

@ -160,7 +160,6 @@ mod boxed {
pub mod sync;
pub mod rc;
pub mod raw_vec;
pub mod pin;
pub mod prelude;
pub mod borrow;
pub mod fmt;

View File

@ -1,302 +0,0 @@
//! Types which pin data to its location in memory
//!
//! It is sometimes useful to have objects that are guaranteed to not move,
//! in the sense that their placement in memory does not change, and can thus be relied upon.
//!
//! A prime example of such a scenario would be building self-referencial structs,
//! since moving an object with pointers to itself will invalidate them,
//! which could cause undefined behavior.
//!
//! In order to prevent objects from moving, they must be *pinned*,
//! by wrapping the data in pinning pointer types, such as [`PinMut`] and [`PinBox`],
//! which are otherwise equivalent to `& mut` and [`Box`], respectively.
//!
//! First of all, these are pointer types because pinned data mustn't be passed around by value
//! (that would change its location in memory).
//! Secondly, since data can be moved out of `&mut` and [`Box`] with functions such as [`swap`],
//! which causes their contents to swap places in memory,
//! we need dedicated types that prohibit such operations.
//!
//! However, these restrictions are usually not necessary,
//! so most types implement the [`Unpin`] auto-trait,
//! which indicates that the type can be moved out safely.
//! Doing so removes the limitations of pinning types,
//! making them the same as their non-pinning counterparts.
//!
//! [`PinMut`]: struct.PinMut.html
//! [`PinBox`]: struct.PinBox.html
//! [`Unpin`]: trait.Unpin.html
//! [`swap`]: ../../std/mem/fn.swap.html
//! [`Box`]: ../boxed/struct.Box.html
//!
//! # Examples
//!
//! ```rust
//! #![feature(pin)]
//!
//! use std::pin::PinBox;
//! use std::marker::Pinned;
//! use std::ptr::NonNull;
//!
//! // This is a self referencial struct since the slice field points to the data field.
//! // We cannot inform the compiler about that with a normal reference,
//! // since this pattern cannot be described with the usual borrowing rules.
//! // Instead we use a raw pointer, though one which is known to not be null,
//! // since we know it's pointing at the string.
//! struct Unmovable {
//! data: String,
//! slice: NonNull<String>,
//! _pin: Pinned,
//! }
//!
//! impl Unmovable {
//! // To ensure the data doesn't move when the function returns,
//! // we place it in the heap where it will stay for the lifetime of the object,
//! // and the only way to access it would be through a pointer to it.
//! fn new(data: String) -> PinBox<Self> {
//! let res = Unmovable {
//! data,
//! // we only create the pointer once the data is in place
//! // otherwise it will have already moved before we even started
//! slice: NonNull::dangling(),
//! _pin: Pinned,
//! };
//! let mut boxed = PinBox::new(res);
//!
//! let slice = NonNull::from(&boxed.data);
//! // we know this is safe because modifying a field doesn't move the whole struct
//! unsafe { PinBox::get_mut(&mut boxed).slice = slice };
//! boxed
//! }
//! }
//!
//! let unmoved = Unmovable::new("hello".to_string());
//! // The pointer should point to the correct location,
//! // so long as the struct hasn't moved.
//! // Meanwhile, we are free to move the pointer around.
//! # #[allow(unused_mut)]
//! let mut still_unmoved = unmoved;
//! assert_eq!(still_unmoved.slice, NonNull::from(&still_unmoved.data));
//!
//! // Since our type doesn't implement Unpin, this will fail to compile:
//! // let new_unmoved = Unmovable::new("world".to_string());
//! // std::mem::swap(&mut *still_unmoved, &mut *new_unmoved);
//! ```
#![unstable(feature = "pin", issue = "49150")]
pub use core::pin::*;
pub use core::marker::Unpin;
use core::convert::From;
use core::fmt;
use core::future::{Future, FutureObj, LocalFutureObj, UnsafeFutureObj};
use core::marker::Unsize;
use core::ops::{CoerceUnsized, Deref, DerefMut};
use core::task::{Context, Poll};
use boxed::Box;
/// A pinned, heap allocated reference.
///
/// This type is similar to [`Box`], except that it pins its value,
/// which prevents it from moving out of the reference, unless it implements [`Unpin`].
///
/// See the [module documentation] for furthur explaination on pinning.
///
/// [`Box`]: ../boxed/struct.Box.html
/// [`Unpin`]: ../../std/marker/trait.Unpin.html
/// [module documentation]: index.html
#[unstable(feature = "pin", issue = "49150")]
#[fundamental]
#[repr(transparent)]
pub struct PinBox<T: ?Sized> {
inner: Box<T>,
}
#[unstable(feature = "pin", issue = "49150")]
impl<T> PinBox<T> {
/// Allocate memory on the heap, move the data into it and pin it.
#[unstable(feature = "pin", issue = "49150")]
pub fn new(data: T) -> PinBox<T> {
PinBox { inner: Box::new(data) }
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> PinBox<T> {
/// Get a pinned reference to the data in this PinBox.
#[inline]
pub fn as_pin_mut<'a>(&'a mut self) -> PinMut<'a, T> {
unsafe { PinMut::new_unchecked(&mut *self.inner) }
}
/// Constructs a `PinBox` from a raw pointer.
///
/// After calling this function, the raw pointer is owned by the
/// resulting `PinBox`. Specifically, the `PinBox` destructor will call
/// the destructor of `T` and free the allocated memory. Since the
/// way `PinBox` allocates and releases memory is unspecified, the
/// only valid pointer to pass to this function is the one taken
/// from another `PinBox` via the [`PinBox::into_raw`] function.
///
/// This function is unsafe because improper use may lead to
/// memory problems. For example, a double-free may occur if the
/// function is called twice on the same raw pointer.
///
/// [`PinBox::into_raw`]: struct.PinBox.html#method.into_raw
///
/// # Examples
///
/// ```
/// #![feature(pin)]
/// use std::pin::PinBox;
/// let x = PinBox::new(5);
/// let ptr = PinBox::into_raw(x);
/// let x = unsafe { PinBox::from_raw(ptr) };
/// ```
#[inline]
pub unsafe fn from_raw(raw: *mut T) -> Self {
PinBox { inner: Box::from_raw(raw) }
}
/// Consumes the `PinBox`, returning the wrapped raw pointer.
///
/// After calling this function, the caller is responsible for the
/// memory previously managed by the `PinBox`. In particular, the
/// caller should properly destroy `T` and release the memory. The
/// proper way to do so is to convert the raw pointer back into a
/// `PinBox` with the [`PinBox::from_raw`] function.
///
/// Note: this is an associated function, which means that you have
/// to call it as `PinBox::into_raw(b)` instead of `b.into_raw()`. This
/// is so that there is no conflict with a method on the inner type.
///
/// [`PinBox::from_raw`]: struct.PinBox.html#method.from_raw
///
/// # Examples
///
/// ```
/// #![feature(pin)]
/// use std::pin::PinBox;
/// let x = PinBox::new(5);
/// let ptr = PinBox::into_raw(x);
/// ```
#[inline]
pub fn into_raw(b: PinBox<T>) -> *mut T {
Box::into_raw(b.inner)
}
/// Get a mutable reference to the data inside this PinBox.
///
/// This function is unsafe. Users must guarantee that the data is never
/// moved out of this reference.
#[inline]
pub unsafe fn get_mut<'a>(this: &'a mut PinBox<T>) -> &'a mut T {
&mut *this.inner
}
/// Convert this PinBox into an unpinned Box.
///
/// This function is unsafe. Users must guarantee that the data is never
/// moved out of the box.
#[inline]
pub unsafe fn unpin(this: PinBox<T>) -> Box<T> {
this.inner
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> From<Box<T>> for PinBox<T> {
fn from(boxed: Box<T>) -> PinBox<T> {
PinBox { inner: boxed }
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> Deref for PinBox<T> {
type Target = T;
fn deref(&self) -> &T {
&*self.inner
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: Unpin + ?Sized> DerefMut for PinBox<T> {
fn deref_mut(&mut self) -> &mut T {
&mut *self.inner
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: fmt::Display + ?Sized> fmt::Display for PinBox<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&*self.inner, f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: fmt::Debug + ?Sized> fmt::Debug for PinBox<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&*self.inner, f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> fmt::Pointer for PinBox<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// It's not possible to extract the inner Uniq directly from the Box,
// instead we cast it to a *const which aliases the Unique
let ptr: *const T = &*self.inner;
fmt::Pointer::fmt(&ptr, f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<PinBox<U>> for PinBox<T> {}
#[unstable(feature = "pin", issue = "49150")]
impl<T: ?Sized> Unpin for PinBox<T> {}
#[unstable(feature = "futures_api", issue = "50547")]
impl<F: ?Sized + Future> Future for PinBox<F> {
type Output = F::Output;
fn poll(mut self: PinMut<Self>, cx: &mut Context) -> Poll<Self::Output> {
self.as_pin_mut().poll(cx)
}
}
#[unstable(feature = "futures_api", issue = "50547")]
unsafe impl<'a, T, F> UnsafeFutureObj<'a, T> for PinBox<F>
where F: Future<Output = T> + 'a
{
fn into_raw(self) -> *mut () {
PinBox::into_raw(self) as *mut ()
}
unsafe fn poll(ptr: *mut (), cx: &mut Context) -> Poll<T> {
let ptr = ptr as *mut F;
let pin: PinMut<F> = PinMut::new_unchecked(&mut *ptr);
pin.poll(cx)
}
unsafe fn drop(ptr: *mut ()) {
drop(PinBox::from_raw(ptr as *mut F))
}
}
#[unstable(feature = "futures_api", issue = "50547")]
impl<'a, F: Future<Output = ()> + Send + 'a> From<PinBox<F>> for FutureObj<'a, ()> {
fn from(boxed: PinBox<F>) -> Self {
FutureObj::new(boxed)
}
}
#[unstable(feature = "futures_api", issue = "50547")]
impl<'a, F: Future<Output = ()> + 'a> From<PinBox<F>> for LocalFutureObj<'a, ()> {
fn from(boxed: PinBox<F>) -> Self {
LocalFutureObj::new(boxed)
}
}

View File

@ -256,6 +256,7 @@
use core::mem::{self, align_of_val, forget, size_of_val};
use core::ops::Deref;
use core::ops::CoerceUnsized;
use core::pin::Pin;
use core::ptr::{self, NonNull};
use core::convert::From;
use core::usize;
@ -321,6 +322,11 @@ pub fn new(value: T) -> Rc<T> {
}
}
#[unstable(feature = "pin", issue = "49150")]
pub fn pinned(value: T) -> Pin<Rc<T>> {
unsafe { Pin::new_unchecked(Rc::new(value)) }
}
/// Returns the contained value, if the `Rc` has exactly one strong reference.
///
/// Otherwise, an [`Err`][result] is returned with the same `Rc` that was

View File

@ -26,6 +26,7 @@
use core::mem::{self, align_of_val, size_of_val};
use core::ops::Deref;
use core::ops::CoerceUnsized;
use core::pin::Pin;
use core::ptr::{self, NonNull};
use core::marker::{Unpin, Unsize, PhantomData};
use core::hash::{Hash, Hasher};
@ -297,6 +298,11 @@ pub fn new(data: T) -> Arc<T> {
Arc { ptr: Box::into_raw_non_null(x), phantom: PhantomData }
}
#[unstable(feature = "pin", issue = "49150")]
pub fn pinned(data: T) -> Pin<Arc<T>> {
unsafe { Pin::new_unchecked(Arc::new(data)) }
}
/// Returns the contained value, if the `Arc` has exactly one strong reference.
///
/// Otherwise, an [`Err`][result] is returned with the same `Arc` that was

View File

@ -12,8 +12,9 @@
reason = "futures in libcore are unstable",
issue = "50547")]
use pin::PinMut;
use marker::Unpin;
use ops;
use pin::Pin;
use task::{self, Poll};
/// A future represents an asychronous computation.
@ -92,21 +93,25 @@ pub trait Future {
/// [`Poll::Pending`]: ../task/enum.Poll.html#variant.Pending
/// [`Poll::Ready(val)`]: ../task/enum.Poll.html#variant.Ready
/// [`cx.waker()`]: ../task/struct.Context.html#method.waker
fn poll(self: PinMut<Self>, cx: &mut task::Context) -> Poll<Self::Output>;
fn poll(self: Pin<&mut Self>, cx: &mut task::Context) -> Poll<Self::Output>;
}
impl<'a, F: ?Sized + Future + Unpin> Future for &'a mut F {
type Output = F::Output;
fn poll(mut self: PinMut<Self>, cx: &mut task::Context) -> Poll<Self::Output> {
F::poll(PinMut::new(&mut **self), cx)
fn poll(mut self: Pin<&mut Self>, cx: &mut task::Context) -> Poll<Self::Output> {
F::poll(Pin::new(&mut **self), cx)
}
}
impl<'a, F: ?Sized + Future> Future for PinMut<'a, F> {
type Output = F::Output;
impl<P> Future for Pin<P>
where
P: ops::DerefMut,
P::Target: Future,
{
type Output = <<P as ops::Deref>::Target as Future>::Output;
fn poll(mut self: PinMut<Self>, cx: &mut task::Context) -> Poll<Self::Output> {
F::poll((*self).reborrow(), cx)
fn poll(self: Pin<&mut Self>, cx: &mut task::Context) -> Poll<Self::Output> {
Pin::get_mut(self).as_mut().poll(cx)
}
}

View File

@ -15,7 +15,8 @@
use fmt;
use future::Future;
use marker::{PhantomData, Unpin};
use pin::PinMut;
use ops;
use pin::Pin;
use task::{Context, Poll};
/// A custom trait object for polling futures, roughly akin to
@ -78,9 +79,9 @@ impl<'a, T> Future for LocalFutureObj<'a, T> {
type Output = T;
#[inline]
fn poll(self: PinMut<Self>, cx: &mut Context) -> Poll<T> {
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<T> {
unsafe {
(self.poll_fn)(self.ptr, cx)
((*self).poll_fn)((*self).ptr, cx)
}
}
}
@ -128,9 +129,11 @@ impl<'a, T> Future for FutureObj<'a, T> {
type Output = T;
#[inline]
fn poll(self: PinMut<Self>, cx: &mut Context) -> Poll<T> {
let pinned_field = unsafe { PinMut::map_unchecked(self, |x| &mut x.0) };
pinned_field.poll(cx)
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<T> {
let pinned_field: Pin<&mut LocalFutureObj<'a, T>> = unsafe {
Pin::map_unchecked_mut(self, |x| &mut x.0)
};
LocalFutureObj::poll(pinned_field, cx)
}
}
@ -175,7 +178,25 @@ fn into_raw(self) -> *mut () {
}
unsafe fn poll(ptr: *mut (), cx: &mut Context) -> Poll<T> {
PinMut::new_unchecked(&mut *(ptr as *mut F)).poll(cx)
let p: Pin<&mut F> = Pin::new_unchecked(&mut *(ptr as *mut F));
F::poll(p, cx)
}
unsafe fn drop(_ptr: *mut ()) {}
}
#[unstable(feature = "futures_api", issue = "50547")]
unsafe impl<'a, T, P, F> UnsafeFutureObj<'a, T> for Pin<P> where
P: ops::DerefMut<Target = F> + 'a,
F: Future<Output = T> + 'a,
{
fn into_raw(mut self) -> *mut () {
unsafe { Pin::get_mut_unchecked(Pin::as_mut(&mut self)) as *mut F as *mut () }
}
unsafe fn poll(ptr: *mut (), cx: &mut Context) -> Poll<T> {
let future: Pin<&mut F> = Pin::new_unchecked(&mut *(ptr as *mut F));
F::poll(future, cx)
}
unsafe fn drop(_ptr: *mut ()) {}

View File

@ -609,7 +609,7 @@ unsafe impl<'a, T: ?Sized> Freeze for &'a mut T {}
/// this trait cannot prevent types from moving by itself.
///
/// Instead it can be used to prevent moves through the type system,
/// by controlling the behavior of special pointer types like [`PinMut`],
/// by controlling the behavior of pointers wrapped in the [`Pin`] wrapper,
/// which "pin" the type in place by not allowing it to be moved out of them.
/// See the [`pin module`] documentation for more information on pinning.
///
@ -621,10 +621,10 @@ unsafe impl<'a, T: ?Sized> Freeze for &'a mut T {}
/// ```rust
/// #![feature(pin)]
/// use std::mem::replace;
/// use std::pin::PinMut;
/// use std::pin::Pin;
///
/// let mut string = "this".to_string();
/// let mut pinned_string = PinMut::new(&mut string);
/// let mut pinned_string = Pin::new(&mut string);
///
/// // dereferencing the pointer mutably is only possible because String implements Unpin
/// replace(&mut *pinned_string, "other".to_string());
@ -633,7 +633,7 @@ unsafe impl<'a, T: ?Sized> Freeze for &'a mut T {}
/// This trait is automatically implemented for almost every type.
///
/// [`replace`]: ../../std/mem/fn.replace.html
/// [`PinMut`]: ../pin/struct.PinMut.html
/// [`Pin`]: ../pin/struct.Pin.html
/// [`pin module`]: ../../std/pin/index.html
#[unstable(feature = "pin", issue = "49150")]
pub auto trait Unpin {}

View File

@ -147,7 +147,7 @@
use iter::{FromIterator, FusedIterator, TrustedLen};
use {hint, mem, ops::{self, Deref}};
use pin::PinMut;
use pin::Pin;
// Note that this is not a lang item per se, but it has a hidden dependency on
// `Iterator`, which is one. The compiler assumes that the `next` method of
@ -270,12 +270,22 @@ pub fn as_mut(&mut self) -> Option<&mut T> {
}
}
/// Converts from `Option<T>` to `Option<PinMut<'_, T>>`
/// Converts from `Pin<&Option<T>>` to `Option<Pin<&T>>`
#[inline]
#[unstable(feature = "pin", issue = "49150")]
pub fn as_pin_mut<'a>(self: PinMut<'a, Self>) -> Option<PinMut<'a, T>> {
pub fn as_pin_ref<'a>(self: Pin<&'a Option<T>>) -> Option<Pin<&'a T>> {
unsafe {
PinMut::get_mut_unchecked(self).as_mut().map(|x| PinMut::new_unchecked(x))
Pin::get_ref(self).as_ref().map(|x| Pin::new_unchecked(x))
}
}
/// Converts from `Pin<&mut Option<T>>` to `Option<Pin<&mut T>>`
#[inline]
#[unstable(feature = "pin", issue = "49150")]
pub fn as_pin_mut<'a>(self: Pin<&'a mut Option<T>>) -> Option<Pin<&'a mut T>> {
unsafe {
Pin::get_mut_unchecked(self).as_mut().map(|x| Pin::new_unchecked(x))
}
}

View File

@ -1,160 +1,328 @@
//! Types which pin data to its location in memory
//!
//! See the [standard library module] for more information.
//! It is sometimes useful to have objects that are guaranteed to not move,
//! in the sense that their placement in memory does not change, and can thus be relied upon.
//!
//! [standard library module]: ../../std/pin/index.html
//! A prime example of such a scenario would be building self-referencial structs,
//! since moving an object with pointers to itself will invalidate them,
//! which could cause undefined behavior.
//!
//! In order to prevent objects from moving, they must be pinned
//! by wrapping a pointer to the data in the [`Pin`] type. A pointer wrapped
//! in a `Pin` is otherwise equivalent to its normal version, e.g. `Pin<Box<T>>`
//! and `Box<T>` work the same way except that the first is pinning the value
//! of `T` in place.
//!
//! First of all, these are pointer types because pinned data mustn't be passed around by value
//! (that would change its location in memory).
//! Secondly, since data can be moved out of `&mut` and `Box` with functions such as [`swap`],
//! which causes their contents to swap places in memory,
//! we need dedicated types that prohibit such operations.
//!
//! However, these restrictions are usually not necessary,
//! so most types implement the [`Unpin`] auto-trait,
//! which indicates that the type can be moved out safely.
//! Doing so removes the limitations of pinning types,
//! making them the same as their non-pinning counterparts.
//!
//! [`Pin`]: struct.Pin.html
//! [`Unpin`]: trait.Unpin.html
//! [`swap`]: ../../std/mem/fn.swap.html
//! [`Box`]: ../../std/boxed/struct.Box.html
//!
//! # Examples
//!
//! ```rust
//! #![feature(pin)]
//!
//! use std::pin::Pin;
//! use std::marker::Pinned;
//! use std::ptr::NonNull;
//!
//! // This is a self referencial struct since the slice field points to the data field.
//! // We cannot inform the compiler about that with a normal reference,
//! // since this pattern cannot be described with the usual borrowing rules.
//! // Instead we use a raw pointer, though one which is known to not be null,
//! // since we know it's pointing at the string.
//! struct Unmovable {
//! data: String,
//! slice: NonNull<String>,
//! _pin: Pinned,
//! }
//!
//! impl Unmovable {
//! // To ensure the data doesn't move when the function returns,
//! // we place it in the heap where it will stay for the lifetime of the object,
//! // and the only way to access it would be through a pointer to it.
//! fn new(data: String) -> Pin<Box<Self>> {
//! let res = Unmovable {
//! data,
//! // we only create the pointer once the data is in place
//! // otherwise it will have already moved before we even started
//! slice: NonNull::dangling(),
//! _pin: Pinned,
//! };
//! let mut boxed = Box::pinned(res);
//!
//! let slice = NonNull::from(&boxed.data);
//! // we know this is safe because modifying a field doesn't move the whole struct
//! unsafe {
//! let mut_ref: Pin<&mut Self> = Pin::as_mut(&mut boxed);
//! Pin::get_mut_unchecked(mut_ref).slice = slice;
//! }
//! boxed
//! }
//! }
//!
//! let unmoved = Unmovable::new("hello".to_string());
//! // The pointer should point to the correct location,
//! // so long as the struct hasn't moved.
//! // Meanwhile, we are free to move the pointer around.
//! # #[allow(unused_mut)]
//! let mut still_unmoved = unmoved;
//! assert_eq!(still_unmoved.slice, NonNull::from(&still_unmoved.data));
//!
//! // Since our type doesn't implement Unpin, this will fail to compile:
//! // let new_unmoved = Unmovable::new("world".to_string());
//! // std::mem::swap(&mut *still_unmoved, &mut *new_unmoved);
//! ```
#![unstable(feature = "pin", issue = "49150")]
use fmt;
use future::{Future, UnsafeFutureObj};
use marker::{Sized, Unpin, Unsize};
use task::{Context, Poll};
use marker::Sized;
use ops::{Deref, DerefMut, CoerceUnsized};
/// A pinned reference.
#[doc(inline)]
pub use marker::Unpin;
/// A pinned pointer.
///
/// This type is similar to a mutable reference, except that it pins its value,
/// which prevents it from moving out of the reference, unless it implements [`Unpin`].
/// This is a wrapper around a kind of pointer which makes that pointer "pin" its
/// value in place, preventing the value referenced by that pointer from being moved
/// unless it implements [`Unpin`].
///
/// See the [`pin` module] documentation for furthur explanation on pinning.
///
/// [`Unpin`]: ../../std/marker/trait.Unpin.html
/// [`pin` module]: ../../std/pin/index.html
//
// Note: the derives below are allowed because they all only use `&P`, so they
// cannot move the value behind `pointer`.
#[unstable(feature = "pin", issue = "49150")]
#[fundamental]
pub struct PinMut<'a, T: ?Sized + 'a> {
inner: &'a mut T,
#[derive(Copy, Clone, Hash, Eq, PartialEq, Ord, PartialOrd)]
pub struct Pin<P> {
pointer: P,
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, T: ?Sized + Unpin> PinMut<'a, T> {
/// Construct a new `PinMut` around a reference to some data of a type that
impl<P: Deref> Pin<P>
where
P::Target: Unpin,
{
/// Construct a new `Pin` around a pointer to some data of a type that
/// implements `Unpin`.
#[unstable(feature = "pin", issue = "49150")]
pub fn new(reference: &'a mut T) -> PinMut<'a, T> {
PinMut { inner: reference }
}
/// Get a mutable reference to the data inside of this `PinMut`.
#[unstable(feature = "pin", issue = "49150")]
pub fn get_mut(this: PinMut<'a, T>) -> &'a mut T {
this.inner
#[inline(always)]
pub fn new(pointer: P) -> Pin<P> {
// Safety: the value pointed to is `Unpin`, and so has no requirements
// around pinning.
unsafe { Pin::new_unchecked(pointer) }
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, T: ?Sized> PinMut<'a, T> {
/// Construct a new `PinMut` around a reference to some data of a type that
impl<P: Deref> Pin<P> {
/// Construct a new `Pin` around a reference to some data of a type that
/// may or may not implement `Unpin`.
///
/// This constructor is unsafe because we do not know what will happen with
/// that data after the lifetime of the reference ends. If you cannot guarantee that the
/// data will never move again, calling this constructor is invalid.
#[unstable(feature = "pin", issue = "49150")]
pub unsafe fn new_unchecked(reference: &'a mut T) -> PinMut<'a, T> {
PinMut { inner: reference }
}
/// Reborrow a `PinMut` for a shorter lifetime.
/// # Safety
///
/// For example, `PinMut::get_mut(x.reborrow())` (unsafely) returns a
/// short-lived mutable reference reborrowing from `x`.
#[unstable(feature = "pin", issue = "49150")]
pub fn reborrow<'b>(&'b mut self) -> PinMut<'b, T> {
PinMut { inner: self.inner }
}
/// Get a mutable reference to the data inside of this `PinMut`.
/// This constructor is unsafe because we cannot guarantee that the data
/// pointed to by `pointer` is pinned. If the constructed `Pin<P>` does
/// not guarantee that the data `P` points to is pinned, constructing a
/// `Pin<P>` is undefined behavior.
///
/// This function is unsafe. You must guarantee that you will never move
/// the data out of the mutable reference you receive when you call this
/// function.
/// If `pointer` dereferences to an `Unpin` type, `Pin::new` should be used
/// instead.
#[unstable(feature = "pin", issue = "49150")]
pub unsafe fn get_mut_unchecked(this: PinMut<'a, T>) -> &'a mut T {
this.inner
#[inline(always)]
pub unsafe fn new_unchecked(pointer: P) -> Pin<P> {
Pin { pointer }
}
/// Get a pinned shared reference from this pinned pointer.
#[unstable(feature = "pin", issue = "49150")]
#[inline(always)]
pub fn as_ref(self: &Pin<P>) -> Pin<&P::Target> {
unsafe { Pin::new_unchecked(&*self.pointer) }
}
}
impl<P: DerefMut> Pin<P> {
/// Get a pinned mutable reference from this pinned pointer.
#[unstable(feature = "pin", issue = "49150")]
#[inline(always)]
pub fn as_mut(self: &mut Pin<P>) -> Pin<&mut P::Target> {
unsafe { Pin::new_unchecked(&mut *self.pointer) }
}
/// Assign a new value to the memory behind the pinned reference.
#[unstable(feature = "pin", issue = "49150")]
#[inline(always)]
pub fn set(mut self: Pin<P>, value: P::Target)
where
P::Target: Sized,
{
*self.pointer = value;
}
}
impl<'a, T: ?Sized> Pin<&'a T> {
/// Construct a new pin by mapping the interior value.
///
/// For example, if you wanted to get a `PinMut` of a field of something,
/// For example, if you wanted to get a `Pin` of a field of something,
/// you could use this to get access to that field in one line of code.
///
/// # Safety
///
/// This function is unsafe. You must guarantee that the data you return
/// will not move so long as the argument value does not move (for example,
/// because it is one of the fields of that value), and also that you do
/// not move out of the argument you receive to the interior function.
#[unstable(feature = "pin", issue = "49150")]
pub unsafe fn map_unchecked<U, F>(this: PinMut<'a, T>, f: F) -> PinMut<'a, U> where
F: FnOnce(&mut T) -> &mut U
pub unsafe fn map_unchecked<U, F>(this: Pin<&'a T>, func: F) -> Pin<&'a U> where
F: FnOnce(&T) -> &U,
{
PinMut { inner: f(this.inner) }
let pointer = &*this.pointer;
let new_pointer = func(pointer);
Pin::new_unchecked(new_pointer)
}
/// Assign a new value to the memory behind the pinned reference.
/// Get a shared reference out of a pin.
///
/// Note: `Pin` also implements `Deref` to the target, which can be used
/// to access the inner value. However, `Deref` only provides a reference
/// that lives for as long as the borrow of the `Pin`, not the lifetime of
/// the `Pin` itself. This method allows turning the `Pin` into a reference
/// with the same lifetime as the original `Pin`.
#[unstable(feature = "pin", issue = "49150")]
pub fn set(this: PinMut<'a, T>, value: T)
where T: Sized,
#[inline(always)]
pub fn get_ref(this: Pin<&'a T>) -> &'a T {
this.pointer
}
}
impl<'a, T: ?Sized> Pin<&'a mut T> {
/// Convert this `Pin<&mut T>` into a `Pin<&T>` with the same lifetime.
#[unstable(feature = "pin", issue = "49150")]
#[inline(always)]
pub fn into_ref(this: Pin<&'a mut T>) -> Pin<&'a T> {
Pin { pointer: this.pointer }
}
/// Get a mutable reference to the data inside of this `Pin`.
///
/// This requires that the data inside this `Pin` is `Unpin`.
///
/// Note: `Pin` also implements `DerefMut` to the data, which can be used
/// to access the inner value. However, `DerefMut` only provides a reference
/// that lives for as long as the borrow of the `Pin`, not the lifetime of
/// the `Pin` itself. This method allows turning the `Pin` into a reference
/// with the same lifetime as the original `Pin`.
#[unstable(feature = "pin", issue = "49150")]
#[inline(always)]
pub fn get_mut(this: Pin<&'a mut T>) -> &'a mut T
where T: Unpin,
{
*this.inner = value;
this.pointer
}
/// Get a mutable reference to the data inside of this `Pin`.
///
/// # Safety
///
/// This function is unsafe. You must guarantee that you will never move
/// the data out of the mutable reference you receive when you call this
/// function, so that the invariants on the `Pin` type can be upheld.
///
/// If the underlying data is `Unpin`, `Pin::get_mut` should be used
/// instead.
#[unstable(feature = "pin", issue = "49150")]
#[inline(always)]
pub unsafe fn get_mut_unchecked(this: Pin<&'a mut T>) -> &'a mut T {
this.pointer
}
/// Construct a new pin by mapping the interior value.
///
/// For example, if you wanted to get a `Pin` of a field of something,
/// you could use this to get access to that field in one line of code.
///
/// # Safety
///
/// This function is unsafe. You must guarantee that the data you return
/// will not move so long as the argument value does not move (for example,
/// because it is one of the fields of that value), and also that you do
/// not move out of the argument you receive to the interior function.
#[unstable(feature = "pin", issue = "49150")]
pub unsafe fn map_unchecked_mut<U, F>(this: Pin<&'a mut T>, func: F) -> Pin<&'a mut U> where
F: FnOnce(&mut T) -> &mut U,
{
let pointer = Pin::get_mut_unchecked(this);
let new_pointer = func(pointer);
Pin::new_unchecked(new_pointer)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, T: ?Sized> Deref for PinMut<'a, T> {
type Target = T;
fn deref(&self) -> &T {
&*self.inner
impl<P: Deref> Deref for Pin<P> {
type Target = P::Target;
fn deref(&self) -> &P::Target {
Pin::get_ref(Pin::as_ref(self))
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, T: ?Sized + Unpin> DerefMut for PinMut<'a, T> {
fn deref_mut(&mut self) -> &mut T {
self.inner
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, T: fmt::Debug + ?Sized> fmt::Debug for PinMut<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, T: fmt::Display + ?Sized> fmt::Display for PinMut<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&**self, f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, T: ?Sized> fmt::Pointer for PinMut<'a, T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&(&*self.inner as *const T), f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<PinMut<'a, U>> for PinMut<'a, T> {}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, T: ?Sized> Unpin for PinMut<'a, T> {}
#[unstable(feature = "futures_api", issue = "50547")]
unsafe impl<'a, T, F> UnsafeFutureObj<'a, T> for PinMut<'a, F>
where F: Future<Output = T> + 'a
impl<P: DerefMut> DerefMut for Pin<P>
where
P::Target: Unpin
{
fn into_raw(self) -> *mut () {
unsafe { PinMut::get_mut_unchecked(self) as *mut F as *mut () }
fn deref_mut(&mut self) -> &mut P::Target {
Pin::get_mut(Pin::as_mut(self))
}
unsafe fn poll(ptr: *mut (), cx: &mut Context) -> Poll<T> {
PinMut::new_unchecked(&mut *(ptr as *mut F)).poll(cx)
}
unsafe fn drop(_ptr: *mut ()) {}
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, P: fmt::Debug> fmt::Debug for Pin<P> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self.pointer, f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, P: fmt::Display> fmt::Display for Pin<P> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(&self.pointer, f)
}
}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, P: fmt::Pointer> fmt::Pointer for Pin<P> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Pointer::fmt(&self.pointer, f)
}
}
// Note: this means that any impl of `CoerceUnsized` that allows coercing from
// a type that impls `Deref<Target=impl !Unpin>` to a type that impls
// `Deref<Target=Unpin>` is unsound. Any such impl would probably be unsound
// for other reasons, though, so we just need to take care not to allow such
// impls to land in std.
#[unstable(feature = "pin", issue = "49150")]
impl<'a, P, U> CoerceUnsized<Pin<U>> for Pin<P>
where
P: CoerceUnsized<U>,
{}
#[unstable(feature = "pin", issue = "49150")]
impl<'a, P> Unpin for Pin<P> {}

View File

@ -12,7 +12,7 @@
use core::cell::Cell;
use core::marker::Unpin;
use core::pin::PinMut;
use core::pin::Pin;
use core::option::Option;
use core::ptr::NonNull;
use core::task::{self, Poll};
@ -42,8 +42,8 @@ impl<T: Generator<Yield = ()>> !Unpin for GenFuture<T> {}
#[unstable(feature = "gen_future", issue = "50547")]
impl<T: Generator<Yield = ()>> Future for GenFuture<T> {
type Output = T::Return;
fn poll(self: PinMut<Self>, cx: &mut task::Context) -> Poll<Self::Output> {
set_task_cx(cx, || match unsafe { PinMut::get_mut_unchecked(self).0.resume() } {
fn poll(self: Pin<&mut Self>, cx: &mut task::Context) -> Poll<Self::Output> {
set_task_cx(cx, || match unsafe { Pin::get_mut_unchecked(self).0.resume() } {
GeneratorState::Yielded(()) => Poll::Pending,
GeneratorState::Complete(x) => Poll::Ready(x),
})
@ -108,9 +108,9 @@ pub fn get_task_cx<F, R>(f: F) -> R
#[unstable(feature = "gen_future", issue = "50547")]
/// Polls a future in the current thread-local task context.
pub fn poll_in_task_cx<F>(f: PinMut<F>) -> Poll<F::Output>
pub fn poll_in_task_cx<F>(f: Pin<&mut F>) -> Poll<F::Output>
where
F: Future
{
get_task_cx(|cx| f.poll(cx))
get_task_cx(|cx| F::poll(f, cx))
}

View File

@ -435,7 +435,7 @@
#[stable(feature = "rust1", since = "1.0.0")]
pub use alloc_crate::format;
#[unstable(feature = "pin", issue = "49150")]
pub use alloc_crate::pin;
pub use core::pin;
#[stable(feature = "rust1", since = "1.0.0")]
pub use alloc_crate::slice;
#[stable(feature = "rust1", since = "1.0.0")]

View File

@ -230,7 +230,7 @@ macro_rules! await {
loop {
if let $crate::task::Poll::Ready(x) =
$crate::future::poll_in_task_cx(unsafe {
$crate::pin::PinMut::new_unchecked(&mut pinned)
$crate::pin::Pin::new_unchecked(&mut pinned)
})
{
break x;

View File

@ -16,7 +16,7 @@
use cell::UnsafeCell;
use fmt;
use future::Future;
use pin::PinMut;
use pin::Pin;
use ops::{Deref, DerefMut};
use panicking;
use ptr::{Unique, NonNull};
@ -327,9 +327,9 @@ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
impl<'a, F: Future> Future for AssertUnwindSafe<F> {
type Output = F::Output;
fn poll(self: PinMut<Self>, cx: &mut task::Context) -> Poll<Self::Output> {
let pinned_field = unsafe { PinMut::map_unchecked(self, |x| &mut x.0) };
pinned_field.poll(cx)
fn poll(self: Pin<&mut Self>, cx: &mut task::Context) -> Poll<Self::Output> {
let pinned_field = unsafe { Pin::map_unchecked_mut(self, |x| &mut x.0) };
F::poll(pinned_field, cx)
}
}

View File

@ -12,8 +12,7 @@
#![feature(arbitrary_self_types, async_await, await_macro, futures_api, pin)]
use std::pin::PinBox;
use std::pin::PinMut;
use std::pin::Pin;
use std::future::Future;
use std::sync::{
Arc,
@ -49,7 +48,7 @@ fn wake_and_yield_once() -> WakeOnceThenComplete { WakeOnceThenComplete(false) }
impl Future for WakeOnceThenComplete {
type Output = ();
fn poll(mut self: PinMut<Self>, cx: &mut Context) -> Poll<()> {
fn poll(mut self: Pin<&mut Self>, cx: &mut Context) -> Poll<()> {
if self.0 {
Poll::Ready(())
} else {
@ -148,16 +147,16 @@ fn test_future_yields_once_then_returns<F, Fut>(f: F)
F: FnOnce(u8) -> Fut,
Fut: Future<Output = u8>,
{
let mut fut = PinBox::new(f(9));
let mut fut = Box::pinned(f(9));
let counter = Arc::new(Counter { wakes: AtomicUsize::new(0) });
let waker = local_waker_from_nonlocal(counter.clone());
let spawner = &mut NoopSpawner;
let cx = &mut Context::new(&waker, spawner);
assert_eq!(0, counter.wakes.load(atomic::Ordering::SeqCst));
assert_eq!(Poll::Pending, fut.as_pin_mut().poll(cx));
assert_eq!(Poll::Pending, fut.as_mut().poll(cx));
assert_eq!(1, counter.wakes.load(atomic::Ordering::SeqCst));
assert_eq!(Poll::Ready(9), fut.as_pin_mut().poll(cx));
assert_eq!(Poll::Ready(9), fut.as_mut().poll(cx));
}
fn main() {

View File

@ -11,9 +11,8 @@
#![feature(arbitrary_self_types, futures_api, pin)]
#![allow(unused)]
use std::pin::PinBox;
use std::future::Future;
use std::pin::PinMut;
use std::pin::Pin;
use std::rc::Rc;
use std::sync::{
Arc,
@ -54,12 +53,12 @@ fn spawn_obj(&mut self, _: FutureObj<'static, ()>) -> Result<(), SpawnObjError>
impl Future for MyFuture {
type Output = ();
fn poll(self: PinMut<Self>, cx: &mut Context) -> Poll<Self::Output> {
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
// Ensure all the methods work appropriately
cx.waker().wake();
cx.waker().wake();
cx.local_waker().wake();
cx.spawner().spawn_obj(PinBox::new(MyFuture).into()).unwrap();
cx.spawner().spawn_obj(Box::pinned(MyFuture).into()).unwrap();
Poll::Ready(())
}
}
@ -72,7 +71,7 @@ fn test_local_waker() {
let waker = unsafe { local_waker(counter.clone()) };
let spawner = &mut NoopSpawner;
let cx = &mut Context::new(&waker, spawner);
assert_eq!(Poll::Ready(()), PinMut::new(&mut MyFuture).poll(cx));
assert_eq!(Poll::Ready(()), Pin::new(&mut MyFuture).poll(cx));
assert_eq!(1, counter.local_wakes.load(atomic::Ordering::SeqCst));
assert_eq!(2, counter.nonlocal_wakes.load(atomic::Ordering::SeqCst));
}
@ -85,7 +84,7 @@ fn test_local_as_nonlocal_waker() {
let waker: LocalWaker = local_waker_from_nonlocal(counter.clone());
let spawner = &mut NoopSpawner;
let cx = &mut Context::new(&waker, spawner);
assert_eq!(Poll::Ready(()), PinMut::new(&mut MyFuture).poll(cx));
assert_eq!(Poll::Ready(()), Pin::new(&mut MyFuture).poll(cx));
assert_eq!(0, counter.local_wakes.load(atomic::Ordering::SeqCst));
assert_eq!(3, counter.nonlocal_wakes.load(atomic::Ordering::SeqCst));
}

View File

@ -1,20 +0,0 @@
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// exact-check
const QUERY = 'pinbox::new';
const EXPECTED = {
'others': [
{ 'path': 'std::pin::PinBox', 'name': 'new' },
{ 'path': 'alloc::pin::PinBox', 'name': 'new' },
],
};

View File

@ -14,6 +14,5 @@ const EXPECTED = {
'others': [
{ 'path': 'std::vec::Vec', 'name': 'new' },
{ 'path': 'std::vec::Vec', 'name': 'ne' },
{ 'path': 'std::pin::PinBox', 'name': 'new' },
],
};