always emit AliasRelate goals when relating aliases

Add `StructurallyRelateAliases` to allow instantiating infer vars with rigid aliases.
Change `instantiate_query_response` to be infallible in the new solver. This requires canonicalization to not hide any information used by the query, so weaken
universe compression. It also modifies `term_is_fully_unconstrained` to allow
region inference variables in a higher universe.
This commit is contained in:
lcnr 2024-02-26 10:17:43 +01:00
parent eeeb9b4d31
commit 1b3164f5c9
21 changed files with 417 additions and 272 deletions

View File

@ -1,7 +1,8 @@
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::ErrorGuaranteed;
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
use rustc_infer::infer::{NllRegionVariableOrigin, ObligationEmittingRelation};
use rustc_infer::infer::NllRegionVariableOrigin;
use rustc_infer::infer::{ObligationEmittingRelation, StructurallyRelateAliases};
use rustc_infer::traits::{Obligation, PredicateObligations};
use rustc_middle::mir::ConstraintCategory;
use rustc_middle::traits::query::NoSolution;
@ -548,6 +549,10 @@ fn span(&self) -> Span {
self.locations.span(self.type_checker.body)
}
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases {
StructurallyRelateAliases::No
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.type_checker.param_env
}

View File

@ -302,7 +302,23 @@ pub fn eq<T>(self, define_opaque_types: DefineOpaqueTypes, a: T, b: T) -> InferR
let Trace { at, trace, a_is_expected } = self;
let mut fields = at.infcx.combine_fields(trace, at.param_env, define_opaque_types);
fields
.equate(a_is_expected)
.equate(StructurallyRelateAliases::No, a_is_expected)
.relate(a, b)
.map(move |_| InferOk { value: (), obligations: fields.obligations })
}
/// Equates `a` and `b` while structurally relating aliases. This should only
/// be used inside of the next generation trait solver when relating rigid aliases.
#[instrument(skip(self), level = "debug")]
pub fn eq_structurally_relating_aliases<T>(self, a: T, b: T) -> InferResult<'tcx, ()>
where
T: Relate<'tcx>,
{
let Trace { at, trace, a_is_expected } = self;
debug_assert!(at.infcx.next_trait_solver());
let mut fields = at.infcx.combine_fields(trace, at.param_env, DefineOpaqueTypes::No);
fields
.equate(StructurallyRelateAliases::Yes, a_is_expected)
.relate(a, b)
.map(move |_| InferOk { value: (), obligations: fields.obligations })
}

View File

@ -54,6 +54,7 @@
RegionConstraintCollector, RegionConstraintStorage, RegionSnapshot,
};
pub use self::relate::combine::CombineFields;
pub use self::relate::StructurallyRelateAliases;
use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
pub mod at;

View File

@ -26,6 +26,7 @@
use super::glb::Glb;
use super::lub::Lub;
use super::sub::Sub;
use super::StructurallyRelateAliases;
use crate::infer::{DefineOpaqueTypes, InferCtxt, TypeTrace};
use crate::traits::{Obligation, PredicateObligations};
use rustc_middle::infer::canonical::OriginalQueryValues;
@ -116,8 +117,15 @@ pub fn super_combine_tys<R>(
}
(_, ty::Alias(..)) | (ty::Alias(..), _) if self.next_trait_solver() => {
relation.register_type_relate_obligation(a, b);
Ok(a)
match relation.structurally_relate_aliases() {
StructurallyRelateAliases::Yes => {
ty::relate::structurally_relate_tys(relation, a, b)
}
StructurallyRelateAliases::No => {
relation.register_type_relate_obligation(a, b);
Ok(a)
}
}
}
// All other cases of inference are errors
@ -240,19 +248,26 @@ pub fn super_combine_consts<R>(
(ty::ConstKind::Unevaluated(..), _) | (_, ty::ConstKind::Unevaluated(..))
if self.tcx.features().generic_const_exprs || self.next_trait_solver() =>
{
let (a, b) = if relation.a_is_expected() { (a, b) } else { (b, a) };
match relation.structurally_relate_aliases() {
StructurallyRelateAliases::No => {
let (a, b) = if relation.a_is_expected() { (a, b) } else { (b, a) };
relation.register_predicates([if self.next_trait_solver() {
ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
ty::AliasRelationDirection::Equate,
)
} else {
ty::PredicateKind::ConstEquate(a, b)
}]);
relation.register_predicates([if self.next_trait_solver() {
ty::PredicateKind::AliasRelate(
a.into(),
b.into(),
ty::AliasRelationDirection::Equate,
)
} else {
ty::PredicateKind::ConstEquate(a, b)
}]);
Ok(b)
Ok(b)
}
StructurallyRelateAliases::Yes => {
ty::relate::structurally_relate_consts(relation, a, b)
}
}
}
_ => ty::relate::structurally_relate_consts(relation, a, b),
}
@ -303,8 +318,12 @@ pub fn tcx(&self) -> TyCtxt<'tcx> {
self.infcx.tcx
}
pub fn equate<'a>(&'a mut self, a_is_expected: bool) -> Equate<'a, 'infcx, 'tcx> {
Equate::new(self, a_is_expected)
pub fn equate<'a>(
&'a mut self,
structurally_relate_aliases: StructurallyRelateAliases,
a_is_expected: bool,
) -> Equate<'a, 'infcx, 'tcx> {
Equate::new(self, structurally_relate_aliases, a_is_expected)
}
pub fn sub<'a>(&'a mut self, a_is_expected: bool) -> Sub<'a, 'infcx, 'tcx> {
@ -335,6 +354,11 @@ pub trait ObligationEmittingRelation<'tcx>: TypeRelation<'tcx> {
fn param_env(&self) -> ty::ParamEnv<'tcx>;
/// Whether aliases should be related structurally. This is pretty much
/// always `No` unless you're equating in some specific locations of the
/// new solver. See the comments in these use-cases for more details.
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases;
/// Register obligations that must hold in order for this relation to hold
fn register_obligations(&mut self, obligations: PredicateObligations<'tcx>);

View File

@ -1,4 +1,5 @@
use super::combine::{CombineFields, ObligationEmittingRelation};
use super::StructurallyRelateAliases;
use crate::infer::{DefineOpaqueTypes, SubregionOrigin};
use crate::traits::PredicateObligations;
@ -13,15 +14,17 @@
/// Ensures `a` is made equal to `b`. Returns `a` on success.
pub struct Equate<'combine, 'infcx, 'tcx> {
fields: &'combine mut CombineFields<'infcx, 'tcx>,
structurally_relate_aliases: StructurallyRelateAliases,
a_is_expected: bool,
}
impl<'combine, 'infcx, 'tcx> Equate<'combine, 'infcx, 'tcx> {
pub fn new(
fields: &'combine mut CombineFields<'infcx, 'tcx>,
structurally_relate_aliases: StructurallyRelateAliases,
a_is_expected: bool,
) -> Equate<'combine, 'infcx, 'tcx> {
Equate { fields, a_is_expected }
Equate { fields, structurally_relate_aliases, a_is_expected }
}
}
@ -99,7 +102,7 @@ fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, .. }),
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, .. }),
) if a_def_id == b_def_id => {
self.fields.infcx.super_combine_tys(self, a, b)?;
infcx.super_combine_tys(self, a, b)?;
}
(&ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }), _)
| (_, &ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }))
@ -120,7 +123,7 @@ fn tys(&mut self, a: Ty<'tcx>, b: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
);
}
_ => {
self.fields.infcx.super_combine_tys(self, a, b)?;
infcx.super_combine_tys(self, a, b)?;
}
}
@ -180,6 +183,10 @@ fn span(&self) -> Span {
self.fields.trace.span()
}
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases {
self.structurally_relate_aliases
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.fields.param_env
}

View File

@ -1,5 +1,6 @@
use std::mem;
use super::StructurallyRelateAliases;
use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind, TypeVariableValue};
use crate::infer::{InferCtxt, ObligationEmittingRelation, RegionVariableOrigin};
use rustc_data_structures::sso::SsoHashMap;
@ -45,8 +46,14 @@ pub fn instantiate_ty_var<R: ObligationEmittingRelation<'tcx>>(
// region/type inference variables.
//
// We then relate `generalized_ty <: source_ty`,adding constraints like `'x: '?2` and `?1 <: ?3`.
let Generalization { value_may_be_infer: generalized_ty, has_unconstrained_ty_var } =
self.generalize(relation.span(), target_vid, instantiation_variance, source_ty)?;
let Generalization { value_may_be_infer: generalized_ty, has_unconstrained_ty_var } = self
.generalize(
relation.span(),
relation.structurally_relate_aliases(),
target_vid,
instantiation_variance,
source_ty,
)?;
// Constrain `b_vid` to the generalized type `generalized_ty`.
if let &ty::Infer(ty::TyVar(generalized_vid)) = generalized_ty.kind() {
@ -178,8 +185,14 @@ pub(super) fn instantiate_const_var<R: ObligationEmittingRelation<'tcx>>(
) -> RelateResult<'tcx, ()> {
// FIXME(generic_const_exprs): Occurs check failures for unevaluated
// constants and generic expressions are not yet handled correctly.
let Generalization { value_may_be_infer: generalized_ct, has_unconstrained_ty_var } =
self.generalize(relation.span(), target_vid, ty::Variance::Invariant, source_ct)?;
let Generalization { value_may_be_infer: generalized_ct, has_unconstrained_ty_var } = self
.generalize(
relation.span(),
relation.structurally_relate_aliases(),
target_vid,
ty::Variance::Invariant,
source_ct,
)?;
debug_assert!(!generalized_ct.is_ct_infer());
if has_unconstrained_ty_var {
@ -217,6 +230,7 @@ pub(super) fn instantiate_const_var<R: ObligationEmittingRelation<'tcx>>(
fn generalize<T: Into<Term<'tcx>> + Relate<'tcx>>(
&self,
span: Span,
structurally_relate_aliases: StructurallyRelateAliases,
target_vid: impl Into<ty::TermVid>,
ambient_variance: ty::Variance,
source_term: T,
@ -237,6 +251,7 @@ fn generalize<T: Into<Term<'tcx>> + Relate<'tcx>>(
let mut generalizer = Generalizer {
infcx: self,
span,
structurally_relate_aliases,
root_vid,
for_universe,
ambient_variance,
@ -270,6 +285,10 @@ struct Generalizer<'me, 'tcx> {
span: Span,
/// Whether aliases should be related structurally. If not, we have to
/// be careful when generalizing aliases.
structurally_relate_aliases: StructurallyRelateAliases,
/// The vid of the type variable that is in the process of being
/// instantiated. If we find this within the value we are folding,
/// that means we would have created a cyclic value.
@ -314,13 +333,30 @@ fn cyclic_term_error(&self) -> TypeError<'tcx> {
/// to normalize the alias after all.
///
/// We handle this by lazily equating the alias and generalizing
/// it to an inference variable.
/// it to an inference variable. In the new solver, we always
/// generalize to an infer var unless the alias contains escaping
/// bound variables.
///
/// This is incomplete and will hopefully soon get fixed by #119106.
/// Correctly handling aliases with escaping bound variables is
/// difficult and currently incomplete in two opposite ways:
/// - if we get an occurs check failure in the alias, replace it with a new infer var.
/// This causes us to later emit an alias-relate goal and is incomplete in case the
/// alias normalizes to type containing one of the bound variables.
/// - if the alias contains an inference variable not nameable by `for_universe`, we
/// continue generalizing the alias. This ends up pulling down the universe of the
/// inference variable and is incomplete in case the alias would normalize to a type
/// which does not mention that inference variable.
fn generalize_alias_ty(
&mut self,
alias: ty::AliasTy<'tcx>,
) -> Result<Ty<'tcx>, TypeError<'tcx>> {
if self.infcx.next_trait_solver() && !alias.has_escaping_bound_vars() {
return Ok(self.infcx.next_ty_var_in_universe(
TypeVariableOrigin { kind: TypeVariableOriginKind::MiscVariable, span: self.span },
self.for_universe,
));
}
let is_nested_alias = mem::replace(&mut self.in_alias, true);
let result = match self.relate(alias, alias) {
Ok(alias) => Ok(alias.to_ty(self.tcx())),
@ -490,7 +526,10 @@ fn tys(&mut self, t: Ty<'tcx>, t2: Ty<'tcx>) -> RelateResult<'tcx, Ty<'tcx>> {
}
}
ty::Alias(_, data) => self.generalize_alias_ty(data),
ty::Alias(_, data) => match self.structurally_relate_aliases {
StructurallyRelateAliases::No => self.generalize_alias_ty(data),
StructurallyRelateAliases::Yes => relate::structurally_relate_tys(self, t, t),
},
_ => relate::structurally_relate_tys(self, t, t),
}?;

View File

@ -6,6 +6,7 @@
use super::combine::{CombineFields, ObligationEmittingRelation};
use super::lattice::{self, LatticeDir};
use super::StructurallyRelateAliases;
use crate::infer::{DefineOpaqueTypes, InferCtxt, SubregionOrigin};
use crate::traits::{ObligationCause, PredicateObligations};
@ -45,7 +46,9 @@ fn relate_with_variance<T: Relate<'tcx>>(
b: T,
) -> RelateResult<'tcx, T> {
match variance {
ty::Invariant => self.fields.equate(self.a_is_expected).relate(a, b),
ty::Invariant => {
self.fields.equate(StructurallyRelateAliases::No, self.a_is_expected).relate(a, b)
}
ty::Covariant => self.relate(a, b),
// FIXME(#41044) -- not correct, need test
ty::Bivariant => Ok(a),
@ -139,6 +142,10 @@ fn span(&self) -> Span {
self.fields.trace.span()
}
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases {
StructurallyRelateAliases::No
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.fields.param_env
}

View File

@ -2,6 +2,7 @@
use super::combine::{CombineFields, ObligationEmittingRelation};
use super::lattice::{self, LatticeDir};
use super::StructurallyRelateAliases;
use crate::infer::{DefineOpaqueTypes, InferCtxt, SubregionOrigin};
use crate::traits::{ObligationCause, PredicateObligations};
@ -45,7 +46,9 @@ fn relate_with_variance<T: Relate<'tcx>>(
b: T,
) -> RelateResult<'tcx, T> {
match variance {
ty::Invariant => self.fields.equate(self.a_is_expected).relate(a, b),
ty::Invariant => {
self.fields.equate(StructurallyRelateAliases::No, self.a_is_expected).relate(a, b)
}
ty::Covariant => self.relate(a, b),
// FIXME(#41044) -- not correct, need test
ty::Bivariant => Ok(a),
@ -139,6 +142,10 @@ fn span(&self) -> Span {
self.fields.trace.span()
}
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases {
StructurallyRelateAliases::No
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.fields.param_env
}

View File

@ -9,3 +9,15 @@
mod lattice;
mod lub;
mod sub;
/// Whether aliases should be related structurally or not. Used
/// to adjust the behavior of generalization and combine.
///
/// This should always be `No` unless in a few special-cases when
/// instantiating canonical responses and in the new solver. Each
/// such case should have a comment explaining why it is used.
#[derive(Debug, Copy, Clone)]
pub enum StructurallyRelateAliases {
Yes,
No,
}

View File

@ -1,4 +1,5 @@
use super::combine::CombineFields;
use super::StructurallyRelateAliases;
use crate::infer::{DefineOpaqueTypes, ObligationEmittingRelation, SubregionOrigin};
use crate::traits::{Obligation, PredicateObligations};
@ -64,7 +65,9 @@ fn relate_with_variance<T: Relate<'tcx>>(
b: T,
) -> RelateResult<'tcx, T> {
match variance {
ty::Invariant => self.fields.equate(self.a_is_expected).relate(a, b),
ty::Invariant => {
self.fields.equate(StructurallyRelateAliases::No, self.a_is_expected).relate(a, b)
}
ty::Covariant => self.relate(a, b),
ty::Bivariant => Ok(a),
ty::Contravariant => self.with_expected_switched(|this| this.relate(b, a)),
@ -204,6 +207,10 @@ fn span(&self) -> Span {
self.fields.trace.span()
}
fn structurally_relate_aliases(&self) -> StructurallyRelateAliases {
StructurallyRelateAliases::No
}
fn param_env(&self) -> ty::ParamEnv<'tcx> {
self.fields.param_env
}

View File

@ -58,8 +58,6 @@ pub struct GoalEvaluation<'tcx> {
pub uncanonicalized_goal: Goal<'tcx, ty::Predicate<'tcx>>,
pub kind: GoalEvaluationKind<'tcx>,
pub evaluation: CanonicalGoalEvaluation<'tcx>,
/// The nested goals from instantiating the query response.
pub returned_goals: Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
}
#[derive(Eq, PartialEq)]

View File

@ -48,20 +48,7 @@ pub(super) fn format_goal_evaluation(&mut self, eval: &GoalEvaluation<'_>) -> st
},
};
writeln!(self.f, "{}: {:?}", goal_text, eval.uncanonicalized_goal)?;
self.nested(|this| this.format_canonical_goal_evaluation(&eval.evaluation))?;
if eval.returned_goals.len() > 0 {
writeln!(self.f, "NESTED GOALS ADDED TO CALLER: [")?;
self.nested(|this| {
for goal in eval.returned_goals.iter() {
writeln!(this.f, "ADDED GOAL: {goal:?},")?;
}
Ok(())
})?;
writeln!(self.f, "]")
} else {
Ok(())
}
self.nested(|this| this.format_canonical_goal_evaluation(&eval.evaluation))
}
pub(super) fn format_canonical_goal_evaluation(

View File

@ -108,21 +108,22 @@ fn finalize(self) -> (ty::UniverseIndex, I::CanonicalVars) {
// universes `n`, this algorithm compresses them in place so that:
//
// - the new universe indices are as small as possible
// - we only create a new universe if we would otherwise put a placeholder in
// the same compressed universe as an existential which cannot name it
// - we create a new universe if we would otherwise
// 1. put existentials from a different universe into the same one
// 2. put a placeholder in the same universe as an existential which cannot name it
//
// Let's walk through an example:
// - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 0, next_orig_uv: 0
// - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 0, next_orig_uv: 1
// - var_infos: [E0, U1, E5, U2, E2, E6, U6], curr_compressed_uv: 1, next_orig_uv: 2
// - var_infos: [E0, U1, E5, U1, E1, E6, U6], curr_compressed_uv: 1, next_orig_uv: 5
// - var_infos: [E0, U1, E1, U1, E1, E6, U6], curr_compressed_uv: 1, next_orig_uv: 6
// - var_infos: [E0, U1, E1, U1, E1, E2, U2], curr_compressed_uv: 2, next_orig_uv: -
// - var_infos: [E0, U1, E2, U1, E1, E6, U6], curr_compressed_uv: 2, next_orig_uv: 6
// - var_infos: [E0, U1, E1, U1, E1, E3, U3], curr_compressed_uv: 2, next_orig_uv: -
//
// This algorithm runs in `O(n²)` where `n` is the number of different universe
// indices in the input. This should be fine as `n` is expected to be small.
let mut curr_compressed_uv = ty::UniverseIndex::ROOT;
let mut existential_in_new_uv = false;
let mut existential_in_new_uv = None;
let mut next_orig_uv = Some(ty::UniverseIndex::ROOT);
while let Some(orig_uv) = next_orig_uv.take() {
let mut update_uv = |var: &mut CanonicalVarInfo<I>, orig_uv, is_existential| {
@ -131,14 +132,29 @@ fn finalize(self) -> (ty::UniverseIndex, I::CanonicalVars) {
Ordering::Less => (), // Already updated
Ordering::Equal => {
if is_existential {
existential_in_new_uv = true;
} else if existential_in_new_uv {
if existential_in_new_uv.is_some_and(|uv| uv < orig_uv) {
// Condition 1.
//
// We already put an existential from a outer universe
// into the current compressed universe, so we need to
// create a new one.
curr_compressed_uv = curr_compressed_uv.next_universe();
}
// `curr_compressed_uv` will now contain an existential from
// `orig_uv`. Trying to canonicalizing an existential from
// a higher universe has to therefore use a new compressed
// universe.
existential_in_new_uv = Some(orig_uv);
} else if existential_in_new_uv.is_some() {
// Condition 2.
//
// `var` is a placeholder from a universe which is not nameable
// by an existential which we already put into the compressed
// universe `curr_compressed_uv`. We therefore have to create a
// new universe for `var`.
curr_compressed_uv = curr_compressed_uv.next_universe();
existential_in_new_uv = false;
existential_in_new_uv = None;
}
*var = var.with_updated_universe(curr_compressed_uv);
@ -174,8 +190,14 @@ fn finalize(self) -> (ty::UniverseIndex, I::CanonicalVars) {
}
}
// We uniquify regions and always put them into their own universe
let mut first_region = true;
for var in var_infos.iter_mut() {
if var.is_region() {
if first_region {
first_region = false;
curr_compressed_uv = curr_compressed_uv.next_universe();
}
assert!(var.is_existential());
*var = var.with_updated_universe(curr_compressed_uv);
}

View File

@ -8,8 +8,9 @@
//!
//! (1.) If we end up with two rigid aliases, then we relate them structurally.
//!
//! (2.) If we end up with an infer var and a rigid alias, then
//! we assign the alias to the infer var.
//! (2.) If we end up with an infer var and a rigid alias, then we instantiate
//! the infer var with the constructor of the alias and then recursively relate
//! the terms.
//!
//! (3.) Otherwise, if we end with two rigid (non-projection) or infer types,
//! relate them structurally.
@ -53,22 +54,15 @@ pub(super) fn compute_alias_relate_goal(
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
(Some(_), None) => {
if rhs.is_infer() {
self.relate(param_env, lhs, variance, rhs)?;
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
} else {
Err(NoSolution)
}
}
(None, Some(_)) => {
if lhs.is_infer() {
self.relate(param_env, lhs, variance, rhs)?;
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
} else {
Err(NoSolution)
}
(Some(alias), None) => {
self.relate_rigid_alias_non_alias(param_env, alias, variance, rhs)
}
(None, Some(alias)) => self.relate_rigid_alias_non_alias(
param_env,
alias,
variance.xform(ty::Variance::Contravariant),
lhs,
),
(Some(alias_lhs), Some(alias_rhs)) => {
self.relate(param_env, alias_lhs, variance, alias_rhs)?;
@ -77,6 +71,39 @@ pub(super) fn compute_alias_relate_goal(
}
}
/// Relate a rigid alias with another type. This is the same as
/// an ordinary relate except that we treat the outer most alias
/// constructor as rigid.
#[instrument(level = "debug", skip(self, param_env), ret)]
fn relate_rigid_alias_non_alias(
&mut self,
param_env: ty::ParamEnv<'tcx>,
alias: ty::AliasTy<'tcx>,
variance: ty::Variance,
term: ty::Term<'tcx>,
) -> QueryResult<'tcx> {
// NOTE: this check is purely an optimization, the structural eq would
// always fail if the term is not an inference variable.
if term.is_infer() {
let tcx = self.tcx();
// We need to relate `alias` to `term` treating only the outermost
// constructor as rigid, relating any contained generic arguments as
// normal. We do this by first structurally equating the `term`
// with the alias constructor instantiated with unconstrained infer vars,
// and then relate this with the whole `alias`.
//
// Alternatively we could modify `Equate` for this case by adding another
// variant to `StructurallyRelateAliases`.
let identity_args = self.fresh_args_for_item(alias.def_id);
let rigid_ctor = ty::AliasTy::new(tcx, alias.def_id, identity_args);
self.eq_structurally_relating_aliases(param_env, term, rigid_ctor.to_ty(tcx).into())?;
self.eq(param_env, alias, rigid_ctor)?;
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
} else {
Err(NoSolution)
}
}
// FIXME: This needs a name that reflects that it's okay to bottom-out with an inference var.
/// Normalize the `term` to equate it later.
#[instrument(level = "debug", skip(self, param_env), ret)]
@ -105,6 +132,7 @@ fn try_normalize_term(
}
}
#[instrument(level = "debug", skip(self, param_env), ret)]
fn try_normalize_ty_recur(
&mut self,
param_env: ty::ParamEnv<'tcx>,
@ -128,10 +156,9 @@ fn try_normalize_ty_recur(
);
this.add_goal(GoalSource::Misc, normalizes_to_goal);
this.try_evaluate_added_goals()?;
let ty = this.resolve_vars_if_possible(normalized_ty);
Ok(this.try_normalize_ty_recur(param_env, depth + 1, ty))
Ok(this.resolve_vars_if_possible(normalized_ty))
}) {
Ok(ty) => ty,
Ok(ty) => self.try_normalize_ty_recur(param_env, depth + 1, ty),
Err(NoSolution) => Some(ty),
}
}

View File

@ -18,7 +18,7 @@
use rustc_infer::infer::canonical::CanonicalVarValues;
use rustc_infer::infer::canonical::{CanonicalExt, QueryRegionConstraints};
use rustc_infer::infer::resolve::EagerResolver;
use rustc_infer::infer::{DefineOpaqueTypes, InferCtxt, InferOk};
use rustc_infer::infer::{InferCtxt, InferOk};
use rustc_middle::infer::canonical::Canonical;
use rustc_middle::traits::query::NoSolution;
use rustc_middle::traits::solve::{
@ -80,7 +80,7 @@ pub(super) fn canonicalize_goal<T: TypeFoldable<TyCtxt<'tcx>>>(
/// the values inferred while solving the instantiated goal.
/// - `external_constraints`: additional constraints which aren't expressible
/// using simple unification of inference variables.
#[instrument(level = "debug", skip(self))]
#[instrument(level = "debug", skip(self), ret)]
pub(in crate::solve) fn evaluate_added_goals_and_make_canonical_response(
&mut self,
certainty: Certainty,
@ -191,7 +191,7 @@ pub(super) fn instantiate_and_apply_query_response(
param_env: ty::ParamEnv<'tcx>,
original_values: Vec<ty::GenericArg<'tcx>>,
response: CanonicalResponse<'tcx>,
) -> Result<(Certainty, Vec<Goal<'tcx, ty::Predicate<'tcx>>>), NoSolution> {
) -> Certainty {
let instantiation = Self::compute_query_response_instantiation_values(
self.infcx,
&original_values,
@ -201,15 +201,13 @@ pub(super) fn instantiate_and_apply_query_response(
let Response { var_values, external_constraints, certainty } =
response.instantiate(self.tcx(), &instantiation);
let nested_goals =
Self::unify_query_var_values(self.infcx, param_env, &original_values, var_values)?;
Self::unify_query_var_values(self.infcx, param_env, &original_values, var_values);
let ExternalConstraintsData { region_constraints, opaque_types } =
external_constraints.deref();
self.register_region_constraints(region_constraints);
self.register_opaque_types(param_env, opaque_types)?;
Ok((certainty, nested_goals))
self.register_new_opaque_types(param_env, opaque_types);
certainty
}
/// This returns the canoncial variable values to instantiate the bound variables of
@ -296,32 +294,36 @@ fn compute_query_response_instantiation_values<T: ResponseT<'tcx>>(
CanonicalVarValues { var_values }
}
#[instrument(level = "debug", skip(infcx, param_env), ret)]
/// Unify the `original_values` with the `var_values` returned by the canonical query..
///
/// This assumes that this unification will always succeed. This is the case when
/// applying a query response right away. However, calling a canonical query, doing any
/// other kind of trait solving, and only then instantiating the result of the query
/// can cause the instantiation to fail. This is not supported and we ICE in this case.
///
/// We always structurally instantiate aliases. Relating aliases needs to be different
/// depending on whether the alias is *rigid* or not. We're only really able to tell
/// whether an alias is rigid by using the trait solver. When instantiating a response
/// from the solver we assume that the solver correctly handled aliases and therefore
/// always relate them structurally here.
#[instrument(level = "debug", skip(infcx), ret)]
fn unify_query_var_values(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
original_values: &[ty::GenericArg<'tcx>],
var_values: CanonicalVarValues<'tcx>,
) -> Result<Vec<Goal<'tcx, ty::Predicate<'tcx>>>, NoSolution> {
) {
assert_eq!(original_values.len(), var_values.len());
let mut nested_goals = vec![];
let cause = ObligationCause::dummy();
for (&orig, response) in iter::zip(original_values, var_values.var_values) {
nested_goals.extend(
infcx
.at(&ObligationCause::dummy(), param_env)
.eq(DefineOpaqueTypes::No, orig, response)
.map(|InferOk { value: (), obligations }| {
obligations.into_iter().map(|o| Goal::from(o))
})
.map_err(|e| {
debug!(?e, "failed to equate");
NoSolution
})?,
);
let InferOk { value: (), obligations } = infcx
.at(&cause, param_env)
.trace(orig, response)
.eq_structurally_relating_aliases(orig, response)
.unwrap();
assert!(obligations.is_empty());
}
Ok(nested_goals)
}
fn register_region_constraints(&mut self, region_constraints: &QueryRegionConstraints<'tcx>) {
@ -333,21 +335,17 @@ fn register_region_constraints(&mut self, region_constraints: &QueryRegionConstr
}
}
for member_constraint in &region_constraints.member_constraints {
// FIXME: Deal with member constraints :<
let _ = member_constraint;
}
assert!(region_constraints.member_constraints.is_empty());
}
fn register_opaque_types(
fn register_new_opaque_types(
&mut self,
param_env: ty::ParamEnv<'tcx>,
opaque_types: &[(ty::OpaqueTypeKey<'tcx>, Ty<'tcx>)],
) -> Result<(), NoSolution> {
) {
for &(key, ty) in opaque_types {
self.insert_hidden_type(key, param_env, ty)?;
self.insert_hidden_type(key, param_env, ty).unwrap();
}
Ok(())
}
}
@ -366,19 +364,21 @@ pub fn make_canonical_state<T: TypeFoldable<TyCtxt<'tcx>>>(
)
}
/// Instantiate a `CanonicalState`. This assumes that unifying the var values
/// trivially succeeds. Adding any inference constraints which weren't present when
/// originally computing the canonical query can result in bugs.
pub fn instantiate_canonical_state<T: TypeFoldable<TyCtxt<'tcx>>>(
infcx: &InferCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
original_values: &[ty::GenericArg<'tcx>],
state: inspect::CanonicalState<'tcx, T>,
) -> Result<(Vec<Goal<'tcx, ty::Predicate<'tcx>>>, T), NoSolution> {
) -> T {
let instantiation =
EvalCtxt::compute_query_response_instantiation_values(infcx, original_values, &state);
let inspect::State { var_values, data } = state.instantiate(infcx.tcx, &instantiation);
let nested_goals =
EvalCtxt::unify_query_var_values(infcx, param_env, original_values, var_values)?;
Ok((nested_goals, data))
EvalCtxt::unify_query_var_values(infcx, param_env, original_values, var_values);
data
}
}

View File

@ -17,8 +17,8 @@
};
use rustc_middle::traits::{specialization_graph, DefiningAnchor};
use rustc_middle::ty::{
self, OpaqueTypeKey, Ty, TyCtxt, TypeFoldable, TypeSuperVisitable, TypeVisitable,
TypeVisitableExt, TypeVisitor,
self, InferCtxtLike, OpaqueTypeKey, Ty, TyCtxt, TypeFoldable, TypeSuperVisitable,
TypeVisitable, TypeVisitableExt, TypeVisitor,
};
use rustc_session::config::DumpSolverProofTree;
use rustc_span::DUMMY_SP;
@ -142,10 +142,7 @@ fn evaluate_root_goal(
&self,
goal: Goal<'tcx, ty::Predicate<'tcx>>,
generate_proof_tree: GenerateProofTree,
) -> (
Result<(bool, Certainty, Vec<Goal<'tcx, ty::Predicate<'tcx>>>), NoSolution>,
Option<inspect::GoalEvaluation<'tcx>>,
) {
) -> (Result<(bool, Certainty), NoSolution>, Option<inspect::GoalEvaluation<'tcx>>) {
EvalCtxt::enter_root(self, generate_proof_tree, |ecx| {
ecx.evaluate_goal(GoalEvaluationKind::Root, GoalSource::Misc, goal)
})
@ -327,7 +324,7 @@ fn evaluate_goal(
goal_evaluation_kind: GoalEvaluationKind,
source: GoalSource,
goal: Goal<'tcx, ty::Predicate<'tcx>>,
) -> Result<(bool, Certainty, Vec<Goal<'tcx, ty::Predicate<'tcx>>>), NoSolution> {
) -> Result<(bool, Certainty), NoSolution> {
let (orig_values, canonical_goal) = self.canonicalize_goal(goal);
let mut goal_evaluation =
self.inspect.new_goal_evaluation(goal, &orig_values, goal_evaluation_kind);
@ -345,26 +342,13 @@ fn evaluate_goal(
Ok(response) => response,
};
let (certainty, has_changed, nested_goals) = match self
.instantiate_response_discarding_overflow(
goal.param_env,
source,
orig_values,
canonical_response,
) {
Err(e) => {
self.inspect.goal_evaluation(goal_evaluation);
return Err(e);
}
Ok(response) => response,
};
goal_evaluation.returned_goals(&nested_goals);
let (certainty, has_changed) = self.instantiate_response_discarding_overflow(
goal.param_env,
source,
orig_values,
canonical_response,
);
self.inspect.goal_evaluation(goal_evaluation);
if !has_changed && !nested_goals.is_empty() {
bug!("an unchanged goal shouldn't have any side-effects on instantiation");
}
// FIXME: We previously had an assert here that checked that recomputing
// a goal after applying its constraints did not change its response.
//
@ -375,7 +359,7 @@ fn evaluate_goal(
// Once we have decided on how to handle trait-system-refactor-initiative#75,
// we should re-add an assert here.
Ok((has_changed, certainty, nested_goals))
Ok((has_changed, certainty))
}
fn instantiate_response_discarding_overflow(
@ -384,7 +368,7 @@ fn instantiate_response_discarding_overflow(
source: GoalSource,
original_values: Vec<ty::GenericArg<'tcx>>,
response: CanonicalResponse<'tcx>,
) -> Result<(Certainty, bool, Vec<Goal<'tcx, ty::Predicate<'tcx>>>), NoSolution> {
) -> (Certainty, bool) {
// The old solver did not evaluate nested goals when normalizing.
// It returned the selection constraints allowing a `Projection`
// obligation to not hold in coherence while avoiding the fatal error
@ -405,14 +389,14 @@ fn instantiate_response_discarding_overflow(
};
if response.value.certainty == Certainty::OVERFLOW && !keep_overflow_constraints() {
Ok((Certainty::OVERFLOW, false, Vec::new()))
(Certainty::OVERFLOW, false)
} else {
let has_changed = !response.value.var_values.is_identity_modulo_regions()
|| !response.value.external_constraints.opaque_types.is_empty();
let (certainty, nested_goals) =
self.instantiate_and_apply_query_response(param_env, original_values, response)?;
Ok((certainty, has_changed, nested_goals))
let certainty =
self.instantiate_and_apply_query_response(param_env, original_values, response);
(certainty, has_changed)
}
}
@ -537,12 +521,11 @@ fn with_misc_source<'tcx>(
ty::NormalizesTo { alias: goal.predicate.alias, term: unconstrained_rhs },
);
let (_, certainty, instantiate_goals) = self.evaluate_goal(
let (_, certainty) = self.evaluate_goal(
GoalEvaluationKind::Nested { is_normalizes_to_hack: IsNormalizesToHack::Yes },
GoalSource::Misc,
unconstrained_goal,
)?;
self.nested_goals.goals.extend(with_misc_source(instantiate_goals));
// Finally, equate the goal's RHS with the unconstrained var.
// We put the nested goals from this into goals instead of
@ -573,12 +556,11 @@ fn with_misc_source<'tcx>(
}
for (source, goal) in goals.goals.drain(..) {
let (has_changed, certainty, instantiate_goals) = self.evaluate_goal(
let (has_changed, certainty) = self.evaluate_goal(
GoalEvaluationKind::Nested { is_normalizes_to_hack: IsNormalizesToHack::No },
source,
goal,
)?;
self.nested_goals.goals.extend(with_misc_source(instantiate_goals));
if has_changed {
unchanged_certainty = None;
}
@ -633,43 +615,46 @@ pub(super) fn term_is_fully_unconstrained(
&self,
goal: Goal<'tcx, ty::NormalizesTo<'tcx>>,
) -> bool {
let term_is_infer = match goal.predicate.term.unpack() {
let universe_of_term = match goal.predicate.term.unpack() {
ty::TermKind::Ty(ty) => {
if let &ty::Infer(ty::TyVar(vid)) = ty.kind() {
match self.infcx.probe_ty_var(vid) {
Ok(value) => bug!("resolved var in query: {goal:?} {value:?}"),
Err(universe) => universe == self.infcx.universe(),
}
self.infcx.universe_of_ty(vid).unwrap()
} else {
false
return false;
}
}
ty::TermKind::Const(ct) => {
if let ty::ConstKind::Infer(ty::InferConst::Var(vid)) = ct.kind() {
match self.infcx.probe_const_var(vid) {
Ok(value) => bug!("resolved var in query: {goal:?} {value:?}"),
Err(universe) => universe == self.infcx.universe(),
}
self.infcx.universe_of_ct(vid).unwrap()
} else {
false
return false;
}
}
};
// Guard against `<T as Trait<?0>>::Assoc = ?0>`.
struct ContainsTerm<'a, 'tcx> {
struct ContainsTermOrNotNameable<'a, 'tcx> {
term: ty::Term<'tcx>,
universe_of_term: ty::UniverseIndex,
infcx: &'a InferCtxt<'tcx>,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTerm<'_, 'tcx> {
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ContainsTermOrNotNameable<'_, 'tcx> {
type BreakTy = ();
fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
if let Some(vid) = t.ty_vid()
&& let ty::TermKind::Ty(term) = self.term.unpack()
&& let Some(term_vid) = term.ty_vid()
&& self.infcx.root_var(vid) == self.infcx.root_var(term_vid)
{
ControlFlow::Break(())
if let Some(vid) = t.ty_vid() {
if let ty::TermKind::Ty(term) = self.term.unpack()
&& let Some(term_vid) = term.ty_vid()
&& self.infcx.root_var(vid) == self.infcx.root_var(term_vid)
{
ControlFlow::Break(())
} else if self
.universe_of_term
.cannot_name(self.infcx.universe_of_ty(vid).unwrap())
{
ControlFlow::Break(())
} else {
ControlFlow::Continue(())
}
} else if t.has_non_region_infer() {
t.super_visit_with(self)
} else {
@ -678,12 +663,20 @@ fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow<Self::BreakTy> {
}
fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
if let ty::ConstKind::Infer(ty::InferConst::Var(vid)) = c.kind()
&& let ty::TermKind::Const(term) = self.term.unpack()
&& let ty::ConstKind::Infer(ty::InferConst::Var(term_vid)) = term.kind()
&& self.infcx.root_const_var(vid) == self.infcx.root_const_var(term_vid)
{
ControlFlow::Break(())
if let ty::ConstKind::Infer(ty::InferConst::Var(vid)) = c.kind() {
if let ty::TermKind::Const(term) = self.term.unpack()
&& let ty::ConstKind::Infer(ty::InferConst::Var(term_vid)) = term.kind()
&& self.infcx.root_const_var(vid) == self.infcx.root_const_var(term_vid)
{
ControlFlow::Break(())
} else if self
.universe_of_term
.cannot_name(self.infcx.universe_of_ct(vid).unwrap())
{
ControlFlow::Break(())
} else {
ControlFlow::Continue(())
}
} else if c.has_non_region_infer() {
c.super_visit_with(self)
} else {
@ -692,10 +685,12 @@ fn visit_const(&mut self, c: ty::Const<'tcx>) -> ControlFlow<Self::BreakTy> {
}
}
let mut visitor = ContainsTerm { infcx: self.infcx, term: goal.predicate.term };
term_is_infer
&& goal.predicate.alias.visit_with(&mut visitor).is_continue()
let mut visitor = ContainsTermOrNotNameable {
infcx: self.infcx,
universe_of_term,
term: goal.predicate.term,
};
goal.predicate.alias.visit_with(&mut visitor).is_continue()
&& goal.param_env.visit_with(&mut visitor).is_continue()
}
@ -718,6 +713,26 @@ pub(super) fn eq<T: ToTrace<'tcx>>(
})
}
/// This sohuld only be used when we're either instantiating a previously
/// unconstrained "return value" or when we're sure that all aliases in
/// the types are rigid.
#[instrument(level = "debug", skip(self, param_env), ret)]
pub(super) fn eq_structurally_relating_aliases<T: ToTrace<'tcx>>(
&mut self,
param_env: ty::ParamEnv<'tcx>,
lhs: T,
rhs: T,
) -> Result<(), NoSolution> {
let cause = ObligationCause::dummy();
let InferOk { value: (), obligations } = self
.infcx
.at(&cause, param_env)
.trace(lhs, rhs)
.eq_structurally_relating_aliases(lhs, rhs)?;
assert!(obligations.is_empty());
Ok(())
}
#[instrument(level = "debug", skip(self, param_env), ret)]
pub(super) fn sub<T: ToTrace<'tcx>>(
&mut self,

View File

@ -58,44 +58,26 @@ fn select_in_new_trait_solver(
}
let candidate = candidates.pop().unwrap();
let (certainty, nested_goals) = ecx
.instantiate_and_apply_query_response(
trait_goal.param_env,
orig_values,
candidate.result,
)
.map_err(|_| SelectionError::Unimplemented)?;
let certainty = ecx.instantiate_and_apply_query_response(
trait_goal.param_env,
orig_values,
candidate.result,
);
Ok(Some((candidate, certainty, nested_goals)))
Ok(Some((candidate, certainty)))
});
let (candidate, certainty, nested_goals) = match result {
Ok(Some((candidate, certainty, nested_goals))) => {
(candidate, certainty, nested_goals)
}
let (candidate, certainty) = match result {
Ok(Some(result)) => result,
Ok(None) => return Ok(None),
Err(e) => return Err(e),
};
let nested_obligations: Vec<_> = nested_goals
.into_iter()
.map(|goal| {
Obligation::new(
self.tcx,
ObligationCause::dummy(),
goal.param_env,
goal.predicate,
)
})
.collect();
let goal = self.resolve_vars_if_possible(trait_goal);
match (certainty, candidate.source) {
// Rematching the implementation will instantiate the same nested goals that
// would have caused the ambiguity, so we can still make progress here regardless.
(_, CandidateSource::Impl(def_id)) => {
rematch_impl(self, goal, def_id, nested_obligations)
}
(_, CandidateSource::Impl(def_id)) => rematch_impl(self, goal, def_id),
// If an unsize goal is ambiguous, then we can manually rematch it to make
// selection progress for coercion during HIR typeck. If it is *not* ambiguous,
@ -108,20 +90,20 @@ fn select_in_new_trait_solver(
| (Certainty::Yes, CandidateSource::BuiltinImpl(src @ BuiltinImplSource::Misc))
if self.tcx.lang_items().unsize_trait() == Some(goal.predicate.def_id()) =>
{
rematch_unsize(self, goal, nested_obligations, src, certainty)
rematch_unsize(self, goal, src, certainty)
}
// Technically some builtin impls have nested obligations, but if
// `Certainty::Yes`, then they should've all been verified and don't
// need re-checking.
(Certainty::Yes, CandidateSource::BuiltinImpl(src)) => {
Ok(Some(ImplSource::Builtin(src, nested_obligations)))
Ok(Some(ImplSource::Builtin(src, vec![])))
}
// It's fine not to do anything to rematch these, since there are no
// nested obligations.
(Certainty::Yes, CandidateSource::ParamEnv(_) | CandidateSource::AliasBound) => {
Ok(Some(ImplSource::Param(nested_obligations)))
Ok(Some(ImplSource::Param(vec![])))
}
(Certainty::Maybe(_), _) => Ok(None),
@ -192,19 +174,16 @@ fn rematch_impl<'tcx>(
infcx: &InferCtxt<'tcx>,
goal: Goal<'tcx, ty::TraitPredicate<'tcx>>,
impl_def_id: DefId,
mut nested: Vec<PredicateObligation<'tcx>>,
) -> SelectionResult<'tcx, Selection<'tcx>> {
let args = infcx.fresh_args_for_item(DUMMY_SP, impl_def_id);
let impl_trait_ref =
infcx.tcx.impl_trait_ref(impl_def_id).unwrap().instantiate(infcx.tcx, args);
nested.extend(
infcx
.at(&ObligationCause::dummy(), goal.param_env)
.eq(DefineOpaqueTypes::No, goal.predicate.trait_ref, impl_trait_ref)
.map_err(|_| SelectionError::Unimplemented)?
.into_obligations(),
);
let mut nested = infcx
.at(&ObligationCause::dummy(), goal.param_env)
.eq(DefineOpaqueTypes::No, goal.predicate.trait_ref, impl_trait_ref)
.map_err(|_| SelectionError::Unimplemented)?
.into_obligations();
nested.extend(
infcx.tcx.predicates_of(impl_def_id).instantiate(infcx.tcx, args).into_iter().map(
@ -221,11 +200,11 @@ fn rematch_impl<'tcx>(
fn rematch_unsize<'tcx>(
infcx: &InferCtxt<'tcx>,
goal: Goal<'tcx, ty::TraitPredicate<'tcx>>,
mut nested: Vec<PredicateObligation<'tcx>>,
source: BuiltinImplSource,
certainty: Certainty,
) -> SelectionResult<'tcx, Selection<'tcx>> {
let tcx = infcx.tcx;
let mut nested = vec![];
let a_ty = structurally_normalize(goal.predicate.self_ty(), infcx, goal.param_env, &mut nested);
let b_ty = structurally_normalize(
goal.predicate.trait_ref.args.type_at(1),

View File

@ -2,7 +2,6 @@
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::solve::MaybeCause;
use rustc_infer::traits::Obligation;
use rustc_infer::traits::{
query::NoSolution, FulfillmentError, FulfillmentErrorCode, MismatchedProjectionTypes,
PredicateObligation, SelectionError, TraitEngine,
@ -11,7 +10,7 @@
use rustc_middle::ty::error::{ExpectedFound, TypeError};
use super::eval_ctxt::GenerateProofTree;
use super::{Certainty, Goal, InferCtxtEvalExt};
use super::{Certainty, InferCtxtEvalExt};
/// A trait engine using the new trait solver.
///
@ -48,11 +47,11 @@ fn inspect_evaluated_obligation(
&self,
infcx: &InferCtxt<'tcx>,
obligation: &PredicateObligation<'tcx>,
result: &Result<(bool, Certainty, Vec<Goal<'tcx, ty::Predicate<'tcx>>>), NoSolution>,
result: &Result<(bool, Certainty), NoSolution>,
) {
if let Some(inspector) = infcx.obligation_inspector.get() {
let result = match result {
Ok((_, c, _)) => Ok(*c),
Ok((_, c)) => Ok(*c),
Err(NoSolution) => Err(NoSolution),
};
(inspector)(infcx, &obligation, result);
@ -80,13 +79,13 @@ fn collect_remaining_errors(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<Fulfillme
.evaluate_root_goal(obligation.clone().into(), GenerateProofTree::IfEnabled)
.0
{
Ok((_, Certainty::Maybe(MaybeCause::Ambiguity), _)) => {
Ok((_, Certainty::Maybe(MaybeCause::Ambiguity))) => {
FulfillmentErrorCode::Ambiguity { overflow: false }
}
Ok((_, Certainty::Maybe(MaybeCause::Overflow), _)) => {
Ok((_, Certainty::Maybe(MaybeCause::Overflow))) => {
FulfillmentErrorCode::Ambiguity { overflow: true }
}
Ok((_, Certainty::Yes, _)) => {
Ok((_, Certainty::Yes)) => {
bug!("did not expect successful goal when collecting ambiguity errors")
}
Err(_) => {
@ -120,7 +119,7 @@ fn select_where_possible(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<FulfillmentE
let goal = obligation.clone().into();
let result = infcx.evaluate_root_goal(goal, GenerateProofTree::IfEnabled).0;
self.inspect_evaluated_obligation(infcx, &obligation, &result);
let (changed, certainty, nested_goals) = match result {
let (changed, certainty) = match result {
Ok(result) => result,
Err(NoSolution) => {
errors.push(FulfillmentError {
@ -178,16 +177,6 @@ fn select_where_possible(&mut self, infcx: &InferCtxt<'tcx>) -> Vec<FulfillmentE
continue;
}
};
// Push any nested goals that we get from unifying our canonical response
// with our obligation onto the fulfillment context.
self.obligations.extend(nested_goals.into_iter().map(|goal| {
Obligation::new(
infcx.tcx,
obligation.cause.clone(),
goal.param_env,
goal.predicate,
)
}));
has_changed |= changed;
match certainty {
Certainty::Yes => {}

View File

@ -63,21 +63,12 @@ pub fn visit_nested<V: ProofTreeVisitor<'tcx>>(
infcx.probe(|_| {
let mut instantiated_goals = vec![];
for goal in &self.nested_goals {
let goal = match ProofTreeBuilder::instantiate_canonical_state(
let goal = ProofTreeBuilder::instantiate_canonical_state(
infcx,
self.goal.goal.param_env,
self.goal.orig_values,
*goal,
) {
Ok((_goals, goal)) => goal,
Err(NoSolution) => {
warn!(
"unexpected failure when instantiating {:?}: {:?}",
goal, self.nested_goals
);
return ControlFlow::Continue(());
}
};
);
instantiated_goals.push(goal);
}

View File

@ -87,7 +87,6 @@ struct WipGoalEvaluation<'tcx> {
pub uncanonicalized_goal: Goal<'tcx, ty::Predicate<'tcx>>,
pub kind: WipGoalEvaluationKind<'tcx>,
pub evaluation: Option<WipCanonicalGoalEvaluation<'tcx>>,
pub returned_goals: Vec<Goal<'tcx, ty::Predicate<'tcx>>>,
}
impl<'tcx> WipGoalEvaluation<'tcx> {
@ -103,7 +102,6 @@ fn finalize(self) -> inspect::GoalEvaluation<'tcx> {
}
},
evaluation: self.evaluation.unwrap().finalize(),
returned_goals: self.returned_goals,
}
}
}
@ -312,7 +310,6 @@ pub(in crate::solve) fn new_goal_evaluation(
}
},
evaluation: None,
returned_goals: vec![],
})
}
@ -369,17 +366,6 @@ pub fn goal_evaluation_kind(&mut self, kind: WipCanonicalGoalEvaluationKind<'tcx
}
}
pub fn returned_goals(&mut self, goals: &[Goal<'tcx, ty::Predicate<'tcx>>]) {
if let Some(this) = self.as_mut() {
match this {
DebugSolver::GoalEvaluation(evaluation) => {
assert!(evaluation.returned_goals.is_empty());
evaluation.returned_goals.extend(goals);
}
_ => unreachable!(),
}
}
}
pub fn goal_evaluation(&mut self, goal_evaluation: ProofTreeBuilder<'tcx>) {
if let Some(this) = self.as_mut() {
match (this, *goal_evaluation.state.unwrap()) {

View File

@ -68,6 +68,34 @@ pub(super) fn compute_normalizes_to_goal(
kind => bug!("unknown DefKind {} in projection goal: {goal:#?}", kind.descr(def_id)),
}
}
/// When normalizing an associated item, constrain the result to `term`.
///
/// While `NormalizesTo` goals have the normalized-to term as an argument,
/// this argument is always fully unconstrained for associated items.
/// It is therefore appropriate to instead think of these `NormalizesTo` goals
/// as function returning a term after normalizing.
///
/// When equating an inference variable and an alias, we tend to emit `alias-relate`
/// goals and only actually instantiate the inference variable with an alias if the
/// alias is rigid. However, this means that constraining the expected term of
/// such goals ends up fully structurally normalizing the resulting type instead of
/// only by one step. To avoid this we instead use structural equality here, resulting
/// in each `NormalizesTo` only projects by a single step.
///
/// Not doing so, currently causes issues because trying to normalize an opaque type
/// during alias-relate doesn't actually constrain the opaque if the concrete type
/// is an inference variable. This means that `NormalizesTo` for associated types
/// normalizing to an opaque type always resulted in ambiguity, breaking tests e.g.
/// tests/ui/type-alias-impl-trait/issue-78450.rs.
pub fn instantiate_normalizes_to_term(
&mut self,
goal: Goal<'tcx, NormalizesTo<'tcx>>,
term: ty::Term<'tcx>,
) {
self.eq_structurally_relating_aliases(goal.param_env, goal.predicate.term, term)
.expect("expected goal term to be fully unconstrained");
}
}
impl<'tcx> assembly::GoalKind<'tcx> for NormalizesTo<'tcx> {
@ -104,8 +132,8 @@ fn probe_and_match_goal_against_assumption(
goal.predicate.alias,
assumption_projection_pred.projection_ty,
)?;
ecx.eq(goal.param_env, goal.predicate.term, assumption_projection_pred.term)
.expect("expected goal term to be fully unconstrained");
ecx.instantiate_normalizes_to_term(goal, assumption_projection_pred.term);
// Add GAT where clauses from the trait's definition
ecx.add_goals(
@ -192,8 +220,7 @@ fn consider_impl_candidate(
"cannot project to an associated function"
),
};
ecx.eq(goal.param_env, goal.predicate.term, error_term)
.expect("expected goal term to be fully unconstrained");
ecx.instantiate_normalizes_to_term(goal, error_term);
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
};
@ -248,8 +275,7 @@ fn consider_impl_candidate(
ty::AssocKind::Fn => unreachable!("we should never project to a fn"),
};
ecx.eq(goal.param_env, goal.predicate.term, term.instantiate(tcx, args))
.expect("expected goal term to be fully unconstrained");
ecx.instantiate_normalizes_to_term(goal, term.instantiate(tcx, args));
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
})
}
@ -456,7 +482,7 @@ fn consider_builtin_async_fn_kind_helper_candidate(
borrow_region.expect_region(),
);
ecx.eq(goal.param_env, goal.predicate.term.ty().unwrap(), upvars_ty)?;
ecx.instantiate_normalizes_to_term(goal, upvars_ty.into());
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
@ -543,8 +569,7 @@ fn consider_builtin_pointee_candidate(
),
};
ecx.eq(goal.param_env, goal.predicate.term, metadata_ty.into())
.expect("expected goal term to be fully unconstrained");
ecx.instantiate_normalizes_to_term(goal, metadata_ty.into());
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
})
}
@ -627,20 +652,22 @@ fn consider_builtin_async_iterator_candidate(
}
ecx.probe_misc_candidate("builtin AsyncIterator kind").enter(|ecx| {
let expected_ty = ecx.next_ty_infer();
// Take `AsyncIterator<Item = I>` and turn it into the corresponding
// coroutine yield ty `Poll<Option<I>>`.
let expected_ty = Ty::new_adt(
let wrapped_expected_ty = Ty::new_adt(
tcx,
tcx.adt_def(tcx.require_lang_item(LangItem::Poll, None)),
tcx.mk_args(&[Ty::new_adt(
tcx,
tcx.adt_def(tcx.require_lang_item(LangItem::Option, None)),
tcx.mk_args(&[goal.predicate.term.into()]),
tcx.mk_args(&[expected_ty.into()]),
)
.into()]),
);
let yield_ty = args.as_coroutine().yield_ty();
ecx.eq(goal.param_env, expected_ty, yield_ty)?;
ecx.eq(goal.param_env, wrapped_expected_ty, yield_ty)?;
ecx.instantiate_normalizes_to_term(goal, expected_ty.into());
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
})
}
@ -742,8 +769,7 @@ fn consider_builtin_discriminant_kind_candidate(
};
ecx.probe_misc_candidate("builtin discriminant kind").enter(|ecx| {
ecx.eq(goal.param_env, goal.predicate.term, discriminant_ty.into())
.expect("expected goal term to be fully unconstrained");
ecx.instantiate_normalizes_to_term(goal, discriminant_ty.into());
ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
})
}