Uplift AliasTy

This commit is contained in:
Michael Goulet 2024-05-13 12:40:08 -04:00
parent 34582118af
commit 1ad28a6f53
15 changed files with 584 additions and 534 deletions

View File

@ -106,6 +106,12 @@ fn into_diag_arg(self) -> DiagArgValue {
}
}
impl<I: rustc_type_ir::Interner> IntoDiagArg for rustc_type_ir::UnevaluatedConst<I> {
fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
format!("{self:?}").into_diag_arg()
}
}
into_diag_arg_for_number!(i8, u8, i16, u16, i32, u32, i64, u64, i128, u128, isize, usize);
impl IntoDiagArg for bool {

View File

@ -7,8 +7,7 @@
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::LocalDefId;
use rustc_macros::{HashStable, TyDecodable, TyEncodable};
use rustc_type_ir::ConstKind as IrConstKind;
use rustc_type_ir::{TypeFlags, WithCachedTypeInfo};
use rustc_type_ir::{self as ir, TypeFlags, WithCachedTypeInfo};
mod int;
mod kind;
@ -20,7 +19,8 @@
use rustc_span::DUMMY_SP;
pub use valtree::*;
pub type ConstKind<'tcx> = IrConstKind<TyCtxt<'tcx>>;
pub type ConstKind<'tcx> = ir::ConstKind<TyCtxt<'tcx>>;
pub type UnevaluatedConst<'tcx> = ir::UnevaluatedConst<TyCtxt<'tcx>>;
#[cfg(target_pointer_width = "64")]
rustc_data_structures::static_assert_size!(ConstKind<'_>, 32);
@ -184,9 +184,21 @@ fn new_anon_bound(
Const::new_bound(tcx, debruijn, var, ty)
}
fn new_unevaluated(
interner: TyCtxt<'tcx>,
uv: ty::UnevaluatedConst<'tcx>,
ty: Ty<'tcx>,
) -> Self {
Const::new_unevaluated(interner, uv, ty)
}
fn ty(self) -> Ty<'tcx> {
self.ty()
}
fn into_term(self) -> ty::Term<'tcx> {
self.into()
}
}
impl<'tcx> Const<'tcx> {

View File

@ -1,30 +1,15 @@
use super::Const;
use crate::mir;
use crate::ty::abstract_const::CastKind;
use crate::ty::GenericArgsRef;
use crate::ty::{self, visit::TypeVisitableExt as _, List, Ty, TyCtxt};
use rustc_hir::def_id::DefId;
use rustc_macros::{HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
use rustc_macros::{extension, HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
/// An unevaluated (potentially generic) constant used in the type-system.
#[derive(Copy, Clone, Eq, PartialEq, TyEncodable, TyDecodable)]
#[derive(Hash, HashStable, TypeFoldable, TypeVisitable)]
pub struct UnevaluatedConst<'tcx> {
pub def: DefId,
pub args: GenericArgsRef<'tcx>,
}
impl rustc_errors::IntoDiagArg for UnevaluatedConst<'_> {
fn into_diag_arg(self) -> rustc_errors::DiagArgValue {
format!("{self:?}").into_diag_arg()
}
}
impl<'tcx> UnevaluatedConst<'tcx> {
#[extension(pub(crate) trait UnevaluatedConstEvalExt<'tcx>)]
impl<'tcx> ty::UnevaluatedConst<'tcx> {
/// FIXME(RalfJung): I cannot explain what this does or why it makes sense, but not doing this
/// hurts performance.
#[inline]
pub(crate) fn prepare_for_eval(
fn prepare_for_eval(
self,
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
@ -55,13 +40,6 @@ pub(crate) fn prepare_for_eval(
}
}
impl<'tcx> UnevaluatedConst<'tcx> {
#[inline]
pub fn new(def: DefId, args: GenericArgsRef<'tcx>) -> UnevaluatedConst<'tcx> {
UnevaluatedConst { def, args }
}
}
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
#[derive(HashStable, TyEncodable, TyDecodable, TypeVisitable, TypeFoldable)]
pub enum Expr<'tcx> {

View File

@ -76,6 +76,7 @@
use rustc_type_ir::WithCachedTypeInfo;
use rustc_type_ir::{CollectAndApply, Interner, TypeFlags};
use std::assert_matches::assert_matches;
use std::borrow::Borrow;
use std::cmp::Ordering;
use std::fmt;
@ -91,67 +92,124 @@ impl<'tcx> Interner for TyCtxt<'tcx> {
type DefiningOpaqueTypes = &'tcx ty::List<LocalDefId>;
type AdtDef = ty::AdtDef<'tcx>;
type GenericArgs = ty::GenericArgsRef<'tcx>;
type GenericArgsSlice = &'tcx [ty::GenericArg<'tcx>];
type GenericArg = ty::GenericArg<'tcx>;
type Term = ty::Term<'tcx>;
type Term = ty::Term<'tcx>;
type Binder<T: TypeVisitable<TyCtxt<'tcx>>> = Binder<'tcx, T>;
type BoundVars = &'tcx List<ty::BoundVariableKind>;
type BoundVar = ty::BoundVariableKind;
type CanonicalVars = CanonicalVarInfos<'tcx>;
type CanonicalVars = CanonicalVarInfos<'tcx>;
type Ty = Ty<'tcx>;
type Tys = &'tcx List<Ty<'tcx>>;
type AliasTy = ty::AliasTy<'tcx>;
type ParamTy = ParamTy;
type BoundTy = ty::BoundTy;
type PlaceholderTy = ty::PlaceholderType;
type ErrorGuaranteed = ErrorGuaranteed;
type ErrorGuaranteed = ErrorGuaranteed;
type BoundExistentialPredicates = &'tcx List<PolyExistentialPredicate<'tcx>>;
type PolyFnSig = PolyFnSig<'tcx>;
type AllocId = crate::mir::interpret::AllocId;
type Pat = Pattern<'tcx>;
type Pat = Pattern<'tcx>;
type Const = ty::Const<'tcx>;
type AliasConst = ty::UnevaluatedConst<'tcx>;
type PlaceholderConst = ty::PlaceholderConst;
type ParamConst = ty::ParamConst;
type BoundConst = ty::BoundVar;
type ValueConst = ty::ValTree<'tcx>;
type ExprConst = ty::Expr<'tcx>;
type ExprConst = ty::Expr<'tcx>;
type Region = Region<'tcx>;
type EarlyParamRegion = ty::EarlyParamRegion;
type LateParamRegion = ty::LateParamRegion;
type BoundRegion = ty::BoundRegion;
type InferRegion = ty::RegionVid;
type PlaceholderRegion = ty::PlaceholderRegion;
type PlaceholderRegion = ty::PlaceholderRegion;
type Predicate = Predicate<'tcx>;
type TraitPredicate = ty::TraitPredicate<'tcx>;
type RegionOutlivesPredicate = ty::RegionOutlivesPredicate<'tcx>;
type TypeOutlivesPredicate = ty::TypeOutlivesPredicate<'tcx>;
type ProjectionPredicate = ty::ProjectionPredicate<'tcx>;
type AliasTerm = ty::AliasTerm<'tcx>;
type NormalizesTo = ty::NormalizesTo<'tcx>;
type SubtypePredicate = ty::SubtypePredicate<'tcx>;
type CoercePredicate = ty::CoercePredicate<'tcx>;
type ClosureKind = ty::ClosureKind;
type Clauses = ty::Clauses<'tcx>;
type Clauses = ty::Clauses<'tcx>;
fn mk_canonical_var_infos(self, infos: &[ty::CanonicalVarInfo<Self>]) -> Self::CanonicalVars {
self.mk_canonical_var_infos(infos)
}
type GenericsOf = &'tcx ty::Generics;
fn generics_of(self, def_id: DefId) -> &'tcx ty::Generics {
self.generics_of(def_id)
}
fn type_of_instantiated(self, def_id: DefId, args: ty::GenericArgsRef<'tcx>) -> Ty<'tcx> {
self.type_of(def_id).instantiate(self, args)
}
fn alias_ty_kind(self, alias: ty::AliasTy<'tcx>) -> ty::AliasTyKind {
match self.def_kind(alias.def_id) {
DefKind::AssocTy => {
if let DefKind::Impl { of_trait: false } = self.def_kind(self.parent(alias.def_id))
{
ty::Inherent
} else {
ty::Projection
}
}
DefKind::OpaqueTy => ty::Opaque,
DefKind::TyAlias => ty::Weak,
kind => bug!("unexpected DefKind in AliasTy: {kind:?}"),
}
}
fn alias_term_kind(self, alias: ty::AliasTerm<'tcx>) -> ty::AliasTermKind {
match self.def_kind(alias.def_id) {
DefKind::AssocTy => {
if let DefKind::Impl { of_trait: false } = self.def_kind(self.parent(alias.def_id))
{
ty::AliasTermKind::InherentTy
} else {
ty::AliasTermKind::ProjectionTy
}
}
DefKind::OpaqueTy => ty::AliasTermKind::OpaqueTy,
DefKind::TyAlias => ty::AliasTermKind::WeakTy,
DefKind::AssocConst => ty::AliasTermKind::ProjectionConst,
DefKind::AnonConst => ty::AliasTermKind::UnevaluatedConst,
kind => bug!("unexpected DefKind in AliasTy: {kind:?}"),
}
}
fn trait_ref_and_own_args_for_alias(
self,
def_id: Self::DefId,
args: Self::GenericArgs,
) -> (rustc_type_ir::TraitRef<Self>, Self::GenericArgsSlice) {
assert_matches!(self.def_kind(def_id), DefKind::AssocTy | DefKind::AssocConst);
let trait_def_id = self.parent(def_id);
assert_matches!(self.def_kind(trait_def_id), DefKind::Trait);
let trait_generics = self.generics_of(trait_def_id);
(
ty::TraitRef::new(self, trait_def_id, args.truncate_to(self, trait_generics)),
&args[trait_generics.count()..],
)
}
fn mk_args(self, args: &[Self::GenericArg]) -> Self::GenericArgs {
self.mk_args(args)
}
fn mk_args_from_iter(self, args: impl Iterator<Item = Self::GenericArg>) -> Self::GenericArgs {
self.mk_args_from_iter(args)
}
fn check_and_mk_args(
self,
def_id: DefId,

View File

@ -96,9 +96,9 @@
pub use self::parameterized::ParameterizedOverTcx;
pub use self::pattern::{Pattern, PatternKind};
pub use self::predicate::{
Clause, ClauseKind, CoercePredicate, ExistentialPredicate, ExistentialPredicateStableCmpExt,
ExistentialProjection, ExistentialTraitRef, NormalizesTo, OutlivesPredicate,
PolyCoercePredicate, PolyExistentialPredicate, PolyExistentialProjection,
AliasTerm, Clause, ClauseKind, CoercePredicate, ExistentialPredicate,
ExistentialPredicateStableCmpExt, ExistentialProjection, ExistentialTraitRef, NormalizesTo,
OutlivesPredicate, PolyCoercePredicate, PolyExistentialPredicate, PolyExistentialProjection,
PolyExistentialTraitRef, PolyProjectionPredicate, PolyRegionOutlivesPredicate,
PolySubtypePredicate, PolyTraitPredicate, PolyTraitRef, PolyTypeOutlivesPredicate, Predicate,
PredicateKind, ProjectionPredicate, RegionOutlivesPredicate, SubtypePredicate, ToPolyTraitRef,
@ -110,11 +110,11 @@
};
pub use self::rvalue_scopes::RvalueScopes;
pub use self::sty::{
AliasTerm, AliasTy, Article, Binder, BoundTy, BoundTyKind, BoundVariableKind,
CanonicalPolyFnSig, ClosureArgs, ClosureArgsParts, CoroutineArgs, CoroutineArgsParts,
CoroutineClosureArgs, CoroutineClosureArgsParts, CoroutineClosureSignature, FnSig, GenSig,
InlineConstArgs, InlineConstArgsParts, ParamConst, ParamTy, PolyFnSig, TyKind, TypeAndMut,
UpvarArgs, VarianceDiagInfo,
AliasTy, Article, Binder, BoundTy, BoundTyKind, BoundVariableKind, CanonicalPolyFnSig,
ClosureArgs, ClosureArgsParts, CoroutineArgs, CoroutineArgsParts, CoroutineClosureArgs,
CoroutineClosureArgsParts, CoroutineClosureSignature, FnSig, GenSig, InlineConstArgs,
InlineConstArgsParts, ParamConst, ParamTy, PolyFnSig, TyKind, TypeAndMut, UpvarArgs,
VarianceDiagInfo,
};
pub use self::trait_def::TraitDef;
pub use self::typeck_results::{

View File

@ -13,6 +13,7 @@
};
pub type TraitRef<'tcx> = ir::TraitRef<TyCtxt<'tcx>>;
pub type AliasTerm<'tcx> = ir::AliasTerm<TyCtxt<'tcx>>;
pub type ProjectionPredicate<'tcx> = ir::ProjectionPredicate<TyCtxt<'tcx>>;
pub type ExistentialPredicate<'tcx> = ir::ExistentialPredicate<TyCtxt<'tcx>>;
pub type ExistentialTraitRef<'tcx> = ir::ExistentialTraitRef<TyCtxt<'tcx>>;

View File

@ -3038,6 +3038,33 @@ macro_rules! define_print_and_forward_display {
p!(write("<{} as {}>", self.self_ty(), self.print_only_trait_path()))
}
ty::AliasTy<'tcx> {
let alias_term: ty::AliasTerm<'tcx> = (*self).into();
p!(print(alias_term))
}
ty::AliasTerm<'tcx> {
match self.kind(cx.tcx()) {
ty::AliasTermKind::InherentTy => p!(pretty_print_inherent_projection(*self)),
ty::AliasTermKind::ProjectionTy
| ty::AliasTermKind::WeakTy
| ty::AliasTermKind::OpaqueTy
| ty::AliasTermKind::UnevaluatedConst
| ty::AliasTermKind::ProjectionConst => {
// If we're printing verbosely, or don't want to invoke queries
// (`is_impl_trait_in_trait`), then fall back to printing the def path.
// This is likely what you want if you're debugging the compiler anyways.
if !(cx.should_print_verbose() || with_reduced_queries())
&& cx.tcx().is_impl_trait_in_trait(self.def_id)
{
return cx.pretty_print_opaque_impl_type(self.def_id, self.args);
} else {
p!(print_def_path(self.def_id, self.args));
}
}
}
}
ty::TraitPredicate<'tcx> {
p!(print(self.trait_ref.self_ty()), ": ");
p!(pretty_print_bound_constness(self.trait_ref));
@ -3205,33 +3232,6 @@ macro_rules! define_print_and_forward_display {
}
}
ty::AliasTy<'tcx> {
let alias_term: ty::AliasTerm<'tcx> = (*self).into();
p!(print(alias_term))
}
ty::AliasTerm<'tcx> {
match self.kind(cx.tcx()) {
ty::AliasTermKind::InherentTy => p!(pretty_print_inherent_projection(*self)),
ty::AliasTermKind::ProjectionTy
| ty::AliasTermKind::WeakTy
| ty::AliasTermKind::OpaqueTy
| ty::AliasTermKind::UnevaluatedConst
| ty::AliasTermKind::ProjectionConst => {
// If we're printing verbosely, or don't want to invoke queries
// (`is_impl_trait_in_trait`), then fall back to printing the def path.
// This is likely what you want if you're debugging the compiler anyways.
if !(cx.should_print_verbose() || with_reduced_queries())
&& cx.tcx().is_impl_trait_in_trait(self.def_id)
{
return cx.pretty_print_opaque_impl_type(self.def_id, self.args);
} else {
p!(print_def_path(self.def_id, self.args));
}
}
}
}
ty::Predicate<'tcx> {
p!(print(self.kind()))
}

View File

@ -7,7 +7,7 @@
use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeSuperFoldable};
use crate::ty::print::{with_no_trimmed_paths, FmtPrinter, Printer};
use crate::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor};
use crate::ty::{self, AliasTy, InferConst, Lift, Term, TermKind, Ty, TyCtxt};
use crate::ty::{self, InferConst, Lift, Term, TermKind, Ty, TyCtxt};
use rustc_ast_ir::try_visit;
use rustc_ast_ir::visit::VisitorResult;
use rustc_hir::def::Namespace;
@ -164,23 +164,6 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
}
}
impl<'tcx> fmt::Debug for AliasTy<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
WithInfcx::with_no_infcx(self).fmt(f)
}
}
impl<'tcx> DebugWithInfcx<TyCtxt<'tcx>> for AliasTy<'tcx> {
fn fmt<Infcx: InferCtxtLike<Interner = TyCtxt<'tcx>>>(
this: WithInfcx<'_, Infcx, &Self>,
f: &mut core::fmt::Formatter<'_>,
) -> core::fmt::Result {
f.debug_struct("AliasTy")
.field("args", &this.map(|data| data.args))
.field("def_id", &this.data.def_id)
.finish()
}
}
impl<'tcx> DebugWithInfcx<TyCtxt<'tcx>> for Pattern<'tcx> {
fn fmt<Infcx: InferCtxtLike<Interner = TyCtxt<'tcx>>>(
this: WithInfcx<'_, Infcx, &Self>,
@ -230,23 +213,6 @@ fn fmt<Infcx: InferCtxtLike<Interner = TyCtxt<'tcx>>>(
}
}
impl<'tcx> fmt::Debug for ty::UnevaluatedConst<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
WithInfcx::with_no_infcx(self).fmt(f)
}
}
impl<'tcx> DebugWithInfcx<TyCtxt<'tcx>> for ty::UnevaluatedConst<'tcx> {
fn fmt<Infcx: InferCtxtLike<Interner = TyCtxt<'tcx>>>(
this: WithInfcx<'_, Infcx, &Self>,
f: &mut core::fmt::Formatter<'_>,
) -> core::fmt::Result {
f.debug_struct("UnevaluatedConst")
.field("def", &this.data.def)
.field("args", &this.wrap(this.data.args))
.finish()
}
}
impl<'tcx> fmt::Debug for ty::Const<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
WithInfcx::with_no_infcx(self).fmt(f)

View File

@ -28,20 +28,17 @@
use std::ops::{ControlFlow, Deref, Range};
use ty::util::IntTypeExt;
use rustc_type_ir::BoundVar;
use rustc_type_ir::CollectAndApply;
use rustc_type_ir::DynKind;
use rustc_type_ir::TyKind as IrTyKind;
use rustc_type_ir::TyKind::*;
use rustc_type_ir::TypeAndMut as IrTypeAndMut;
use rustc_type_ir::{self as ir, BoundVar, CollectAndApply, DynKind};
use super::fold::FnMutDelegate;
use super::GenericParamDefKind;
// Re-export and re-parameterize some `I = TyCtxt<'tcx>` types here
#[rustc_diagnostic_item = "TyKind"]
pub type TyKind<'tcx> = IrTyKind<TyCtxt<'tcx>>;
pub type TypeAndMut<'tcx> = IrTypeAndMut<TyCtxt<'tcx>>;
pub type TyKind<'tcx> = ir::TyKind<TyCtxt<'tcx>>;
pub type TypeAndMut<'tcx> = ir::TypeAndMut<TyCtxt<'tcx>>;
pub type AliasTy<'tcx> = ir::AliasTy<TyCtxt<'tcx>>;
pub trait Article {
fn article(&self) -> &'static str;
@ -1105,371 +1102,6 @@ fn into_diag_arg(self) -> DiagArgValue {
}
}
/// Represents the unprojected term of a projection goal.
///
/// * For a projection, this would be `<Ty as Trait<...>>::N<...>`.
/// * For an inherent projection, this would be `Ty::N<...>`.
/// * For an opaque type, there is no explicit syntax.
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct AliasTerm<'tcx> {
/// The parameters of the associated or opaque item.
///
/// For a projection, these are the generic parameters for the trait and the
/// GAT parameters, if there are any.
///
/// For an inherent projection, they consist of the self type and the GAT parameters,
/// if there are any.
///
/// For RPIT the generic parameters are for the generics of the function,
/// while for TAIT it is used for the generic parameters of the alias.
pub args: GenericArgsRef<'tcx>,
/// The `DefId` of the `TraitItem` or `ImplItem` for the associated type `N` depending on whether
/// this is a projection or an inherent projection or the `DefId` of the `OpaqueType` item if
/// this is an opaque.
///
/// During codegen, `tcx.type_of(def_id)` can be used to get the type of the
/// underlying type if the type is an opaque.
///
/// Note that if this is an associated type, this is not the `DefId` of the
/// `TraitRef` containing this associated type, which is in `tcx.associated_item(def_id).container`,
/// aka. `tcx.parent(def_id)`.
pub def_id: DefId,
/// This field exists to prevent the creation of `AliasTerm` without using
/// [AliasTerm::new].
_use_alias_term_new_instead: (),
}
// FIXME: Remove these when we uplift `AliasTerm`
use crate::ty::{DebugWithInfcx, InferCtxtLike, WithInfcx};
impl<'tcx> std::fmt::Debug for AliasTerm<'tcx> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
WithInfcx::with_no_infcx(self).fmt(f)
}
}
impl<'tcx> DebugWithInfcx<TyCtxt<'tcx>> for AliasTerm<'tcx> {
fn fmt<Infcx: InferCtxtLike<Interner = TyCtxt<'tcx>>>(
this: WithInfcx<'_, Infcx, &Self>,
f: &mut std::fmt::Formatter<'_>,
) -> std::fmt::Result {
f.debug_struct("AliasTerm")
.field("args", &this.map(|data| data.args))
.field("def_id", &this.data.def_id)
.finish()
}
}
impl<'tcx> rustc_type_ir::inherent::AliasTerm<TyCtxt<'tcx>> for AliasTerm<'tcx> {
fn new(
interner: TyCtxt<'tcx>,
trait_def_id: DefId,
args: impl IntoIterator<Item: Into<ty::GenericArg<'tcx>>>,
) -> Self {
AliasTerm::new(interner, trait_def_id, args)
}
fn def_id(self) -> DefId {
self.def_id
}
fn args(self) -> ty::GenericArgsRef<'tcx> {
self.args
}
fn trait_def_id(self, interner: TyCtxt<'tcx>) -> DefId {
self.trait_def_id(interner)
}
fn self_ty(self) -> Ty<'tcx> {
self.self_ty()
}
fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
self.with_self_ty(tcx, self_ty)
}
}
impl<'tcx> AliasTerm<'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
def_id: DefId,
args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
) -> AliasTerm<'tcx> {
let args = tcx.check_and_mk_args(def_id, args);
AliasTerm { def_id, args, _use_alias_term_new_instead: () }
}
pub fn expect_ty(self, tcx: TyCtxt<'tcx>) -> AliasTy<'tcx> {
match self.kind(tcx) {
ty::AliasTermKind::ProjectionTy
| ty::AliasTermKind::InherentTy
| ty::AliasTermKind::OpaqueTy
| ty::AliasTermKind::WeakTy => {}
ty::AliasTermKind::UnevaluatedConst | ty::AliasTermKind::ProjectionConst => {
bug!("Cannot turn `UnevaluatedConst` into `AliasTy`")
}
}
ty::AliasTy { def_id: self.def_id, args: self.args, _use_alias_ty_new_instead: () }
}
pub fn kind(self, tcx: TyCtxt<'tcx>) -> ty::AliasTermKind {
match tcx.def_kind(self.def_id) {
DefKind::AssocTy => {
if let DefKind::Impl { of_trait: false } = tcx.def_kind(tcx.parent(self.def_id)) {
ty::AliasTermKind::InherentTy
} else {
ty::AliasTermKind::ProjectionTy
}
}
DefKind::OpaqueTy => ty::AliasTermKind::OpaqueTy,
DefKind::TyAlias => ty::AliasTermKind::WeakTy,
DefKind::AnonConst => ty::AliasTermKind::UnevaluatedConst,
DefKind::AssocConst => ty::AliasTermKind::ProjectionConst,
kind => bug!("unexpected DefKind in AliasTy: {kind:?}"),
}
}
}
/// The following methods work only with (trait) associated item projections.
impl<'tcx> AliasTerm<'tcx> {
pub fn self_ty(self) -> Ty<'tcx> {
self.args.type_at(0)
}
pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
AliasTerm::new(
tcx,
self.def_id,
[self_ty.into()].into_iter().chain(self.args.iter().skip(1)),
)
}
pub fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId {
match tcx.def_kind(self.def_id) {
DefKind::AssocTy | DefKind::AssocConst => tcx.parent(self.def_id),
kind => bug!("expected a projection AliasTy; found {kind:?}"),
}
}
/// Extracts the underlying trait reference from this projection.
/// For example, if this is a projection of `<T as Iterator>::Item`,
/// then this function would return a `T: Iterator` trait reference.
///
/// NOTE: This will drop the args for generic associated types
/// consider calling [Self::trait_ref_and_own_args] to get those
/// as well.
pub fn trait_ref(self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
let def_id = self.trait_def_id(tcx);
ty::TraitRef::new(tcx, def_id, self.args.truncate_to(tcx, tcx.generics_of(def_id)))
}
/// Extracts the underlying trait reference and own args from this projection.
/// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
/// then this function would return a `T: StreamingIterator` trait reference and `['a]` as the own args
pub fn trait_ref_and_own_args(
self,
tcx: TyCtxt<'tcx>,
) -> (ty::TraitRef<'tcx>, &'tcx [ty::GenericArg<'tcx>]) {
let trait_def_id = self.trait_def_id(tcx);
let trait_generics = tcx.generics_of(trait_def_id);
(
ty::TraitRef::new(tcx, trait_def_id, self.args.truncate_to(tcx, trait_generics)),
&self.args[trait_generics.count()..],
)
}
pub fn to_term(self, tcx: TyCtxt<'tcx>) -> ty::Term<'tcx> {
match self.kind(tcx) {
ty::AliasTermKind::ProjectionTy => Ty::new_alias(
tcx,
ty::Projection,
AliasTy { def_id: self.def_id, args: self.args, _use_alias_ty_new_instead: () },
)
.into(),
ty::AliasTermKind::InherentTy => Ty::new_alias(
tcx,
ty::Inherent,
AliasTy { def_id: self.def_id, args: self.args, _use_alias_ty_new_instead: () },
)
.into(),
ty::AliasTermKind::OpaqueTy => Ty::new_alias(
tcx,
ty::Opaque,
AliasTy { def_id: self.def_id, args: self.args, _use_alias_ty_new_instead: () },
)
.into(),
ty::AliasTermKind::WeakTy => Ty::new_alias(
tcx,
ty::Weak,
AliasTy { def_id: self.def_id, args: self.args, _use_alias_ty_new_instead: () },
)
.into(),
ty::AliasTermKind::UnevaluatedConst | ty::AliasTermKind::ProjectionConst => {
ty::Const::new_unevaluated(
tcx,
ty::UnevaluatedConst::new(self.def_id, self.args),
tcx.type_of(self.def_id).instantiate(tcx, self.args),
)
.into()
}
}
}
}
impl<'tcx> From<AliasTy<'tcx>> for AliasTerm<'tcx> {
fn from(ty: AliasTy<'tcx>) -> Self {
AliasTerm { args: ty.args, def_id: ty.def_id, _use_alias_term_new_instead: () }
}
}
impl<'tcx> From<ty::UnevaluatedConst<'tcx>> for AliasTerm<'tcx> {
fn from(ct: ty::UnevaluatedConst<'tcx>) -> Self {
AliasTerm { args: ct.args, def_id: ct.def, _use_alias_term_new_instead: () }
}
}
/// Represents the projection of an associated, opaque, or lazy-type-alias type.
///
/// * For a projection, this would be `<Ty as Trait<...>>::N<...>`.
/// * For an inherent projection, this would be `Ty::N<...>`.
/// * For an opaque type, there is no explicit syntax.
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable)]
#[derive(HashStable, TypeFoldable, TypeVisitable, Lift)]
pub struct AliasTy<'tcx> {
/// The parameters of the associated or opaque type.
///
/// For a projection, these are the generic parameters for the trait and the
/// GAT parameters, if there are any.
///
/// For an inherent projection, they consist of the self type and the GAT parameters,
/// if there are any.
///
/// For RPIT the generic parameters are for the generics of the function,
/// while for TAIT it is used for the generic parameters of the alias.
pub args: GenericArgsRef<'tcx>,
/// The `DefId` of the `TraitItem` or `ImplItem` for the associated type `N` depending on whether
/// this is a projection or an inherent projection or the `DefId` of the `OpaqueType` item if
/// this is an opaque.
///
/// During codegen, `tcx.type_of(def_id)` can be used to get the type of the
/// underlying type if the type is an opaque.
///
/// Note that if this is an associated type, this is not the `DefId` of the
/// `TraitRef` containing this associated type, which is in `tcx.associated_item(def_id).container`,
/// aka. `tcx.parent(def_id)`.
pub def_id: DefId,
/// This field exists to prevent the creation of `AliasT` without using
/// [AliasTy::new].
_use_alias_ty_new_instead: (),
}
impl<'tcx> AliasTy<'tcx> {
pub fn new(
tcx: TyCtxt<'tcx>,
def_id: DefId,
args: impl IntoIterator<Item: Into<GenericArg<'tcx>>>,
) -> ty::AliasTy<'tcx> {
let args = tcx.check_and_mk_args(def_id, args);
ty::AliasTy { def_id, args, _use_alias_ty_new_instead: () }
}
pub fn kind(self, tcx: TyCtxt<'tcx>) -> ty::AliasTyKind {
match tcx.def_kind(self.def_id) {
DefKind::AssocTy
if let DefKind::Impl { of_trait: false } =
tcx.def_kind(tcx.parent(self.def_id)) =>
{
ty::Inherent
}
DefKind::AssocTy => ty::Projection,
DefKind::OpaqueTy => ty::Opaque,
DefKind::TyAlias => ty::Weak,
kind => bug!("unexpected DefKind in AliasTy: {kind:?}"),
}
}
/// Whether this alias type is an opaque.
pub fn is_opaque(self, tcx: TyCtxt<'tcx>) -> bool {
matches!(self.kind(tcx), ty::Opaque)
}
pub fn to_ty(self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
Ty::new_alias(tcx, self.kind(tcx), self)
}
}
/// The following methods work only with (trait) associated type projections.
impl<'tcx> AliasTy<'tcx> {
pub fn self_ty(self) -> Ty<'tcx> {
self.args.type_at(0)
}
pub fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self {
AliasTy::new(tcx, self.def_id, [self_ty.into()].into_iter().chain(self.args.iter().skip(1)))
}
pub fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId {
match tcx.def_kind(self.def_id) {
DefKind::AssocTy | DefKind::AssocConst => tcx.parent(self.def_id),
kind => bug!("expected a projection AliasTy; found {kind:?}"),
}
}
/// Extracts the underlying trait reference and own args from this projection.
/// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
/// then this function would return a `T: StreamingIterator` trait reference and `['a]` as the own args
pub fn trait_ref_and_own_args(
self,
tcx: TyCtxt<'tcx>,
) -> (ty::TraitRef<'tcx>, &'tcx [ty::GenericArg<'tcx>]) {
let trait_def_id = self.trait_def_id(tcx);
let trait_generics = tcx.generics_of(trait_def_id);
(
ty::TraitRef::new(tcx, trait_def_id, self.args.truncate_to(tcx, trait_generics)),
&self.args[trait_generics.count()..],
)
}
/// Extracts the underlying trait reference from this projection.
/// For example, if this is a projection of `<T as Iterator>::Item`,
/// then this function would return a `T: Iterator` trait reference.
///
/// WARNING: This will drop the args for generic associated types
/// consider calling [Self::trait_ref_and_own_args] to get those
/// as well.
pub fn trait_ref(self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx> {
let def_id = self.trait_def_id(tcx);
ty::TraitRef::new(tcx, def_id, self.args.truncate_to(tcx, tcx.generics_of(def_id)))
}
}
/// The following methods work only with inherent associated type projections.
impl<'tcx> AliasTy<'tcx> {
/// Transform the generic parameters to have the given `impl` args as the base and the GAT args on top of that.
///
/// Does the following transformation:
///
/// ```text
/// [Self, P_0...P_m] -> [I_0...I_n, P_0...P_m]
///
/// I_i impl args
/// P_j GAT args
/// ```
pub fn rebase_inherent_args_onto_impl(
self,
impl_args: ty::GenericArgsRef<'tcx>,
tcx: TyCtxt<'tcx>,
) -> ty::GenericArgsRef<'tcx> {
debug_assert_eq!(self.kind(tcx), ty::Inherent);
tcx.mk_args_from_iter(impl_args.into_iter().chain(self.args.into_iter().skip(1)))
}
}
#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable)]
pub struct GenSig<'tcx> {
pub resume_ty: Ty<'tcx>,
@ -2020,6 +1652,18 @@ impl<'tcx> rustc_type_ir::inherent::Ty<TyCtxt<'tcx>> for Ty<'tcx> {
fn new_anon_bound(tcx: TyCtxt<'tcx>, debruijn: ty::DebruijnIndex, var: ty::BoundVar) -> Self {
Ty::new_bound(tcx, debruijn, ty::BoundTy { var, kind: ty::BoundTyKind::Anon })
}
fn new_alias(
interner: TyCtxt<'tcx>,
kind: ty::AliasTyKind,
alias_ty: ty::AliasTy<'tcx>,
) -> Self {
Ty::new_alias(interner, kind, alias_ty)
}
fn into_term(self) -> ty::Term<'tcx> {
self.into()
}
}
/// Type utilities

View File

@ -2,6 +2,7 @@
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
#[cfg(feature = "nightly")]
use rustc_macros::{HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_type_ir_macros::{Lift_Generic, TypeFoldable_Generic, TypeVisitable_Generic};
use std::fmt;
use crate::{DebruijnIndex, DebugWithInfcx, InferCtxtLike, Interner, WithInfcx};
@ -86,6 +87,46 @@ fn fmt<Infcx: InferCtxtLike<Interner = I>>(
}
}
/// An unevaluated (potentially generic) constant used in the type-system.
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct UnevaluatedConst<I: Interner> {
pub def: I::DefId,
pub args: I::GenericArgs,
}
impl<I: Interner> UnevaluatedConst<I> {
#[inline]
pub fn new(def: I::DefId, args: I::GenericArgs) -> UnevaluatedConst<I> {
UnevaluatedConst { def, args }
}
}
impl<I: Interner> fmt::Debug for UnevaluatedConst<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
WithInfcx::with_no_infcx(self).fmt(f)
}
}
impl<I: Interner> DebugWithInfcx<I> for UnevaluatedConst<I> {
fn fmt<Infcx: InferCtxtLike<Interner = I>>(
this: WithInfcx<'_, Infcx, &Self>,
f: &mut core::fmt::Formatter<'_>,
) -> core::fmt::Result {
f.debug_struct("UnevaluatedConst")
.field("def", &this.data.def)
.field("args", &this.wrap(this.data.args))
.finish()
}
}
rustc_index::newtype_index! {
/// A **`const`** **v**ariable **ID**.
#[encodable]

View File

@ -5,7 +5,8 @@
use crate::fold::TypeSuperFoldable;
use crate::visit::{Flags, TypeSuperVisitable};
use crate::{
BoundVar, ConstKind, DebruijnIndex, DebugWithInfcx, Interner, RegionKind, TyKind, UniverseIndex,
AliasTy, AliasTyKind, BoundVar, ConstKind, DebruijnIndex, DebugWithInfcx, Interner, RegionKind,
TyKind, UnevaluatedConst, UniverseIndex,
};
pub trait Ty<I: Interner<Ty = Self>>:
@ -20,6 +21,10 @@ pub trait Ty<I: Interner<Ty = Self>>:
+ Flags
{
fn new_anon_bound(interner: I, debruijn: DebruijnIndex, var: BoundVar) -> Self;
fn new_alias(interner: I, kind: AliasTyKind, alias_ty: AliasTy<I>) -> Self;
fn into_term(self) -> I::Term;
}
pub trait Region<I: Interner<Region = Self>>:
@ -43,7 +48,11 @@ pub trait Const<I: Interner<Const = Self>>:
{
fn new_anon_bound(interner: I, debruijn: DebruijnIndex, var: BoundVar, ty: I::Ty) -> Self;
fn new_unevaluated(interner: I, uv: UnevaluatedConst<I>, ty: I::Ty) -> Self;
fn ty(self) -> I::Ty;
fn into_term(self) -> I::Term;
}
pub trait GenericsOf<I: Interner<GenericsOf = Self>> {
@ -89,21 +98,3 @@ pub trait BoundVars<I: Interner> {
fn has_no_bound_vars(&self) -> bool;
}
pub trait AliasTerm<I: Interner>: Copy + DebugWithInfcx<I> + Hash + Eq + Sized {
fn new(
interner: I,
trait_def_id: I::DefId,
args: impl IntoIterator<Item: Into<I::GenericArg>>,
) -> Self;
fn def_id(self) -> I::DefId;
fn args(self) -> I::GenericArgs;
fn trait_def_id(self, interner: I) -> I::DefId;
fn self_ty(self) -> I::Ty;
fn with_self_ty(self, tcx: I, self_ty: I::Ty) -> Self;
}

View File

@ -6,13 +6,16 @@
use crate::ir_print::IrPrint;
use crate::visit::{Flags, TypeSuperVisitable, TypeVisitable};
use crate::{
CanonicalVarInfo, CoercePredicate, DebugWithInfcx, ExistentialProjection, ExistentialTraitRef,
NormalizesTo, ProjectionPredicate, SubtypePredicate, TraitPredicate, TraitRef,
AliasTerm, AliasTermKind, AliasTy, AliasTyKind, CanonicalVarInfo, CoercePredicate,
DebugWithInfcx, ExistentialProjection, ExistentialTraitRef, NormalizesTo, ProjectionPredicate,
SubtypePredicate, TraitPredicate, TraitRef,
};
pub trait Interner:
Sized
+ Copy
+ IrPrint<AliasTy<Self>>
+ IrPrint<AliasTerm<Self>>
+ IrPrint<TraitRef<Self>>
+ IrPrint<TraitPredicate<Self>>
+ IrPrint<ExistentialTraitRef<Self>>
@ -27,6 +30,7 @@ pub trait Interner:
type AdtDef: Copy + Debug + Hash + Eq;
type GenericArgs: GenericArgs<Self>;
type GenericArgsSlice: Copy + Debug + Hash + Eq;
type GenericArg: Copy + DebugWithInfcx<Self> + Hash + Eq;
type Term: Copy + Debug + Hash + Eq;
@ -39,7 +43,6 @@ pub trait Interner:
// Kinds of tys
type Ty: Ty<Self>;
type Tys: Copy + Debug + Hash + Eq + IntoIterator<Item = Self::Ty>;
type AliasTy: Copy + DebugWithInfcx<Self> + Hash + Eq + Sized;
type ParamTy: Copy + Debug + Hash + Eq;
type BoundTy: Copy + Debug + Hash + Eq;
type PlaceholderTy: PlaceholderLike;
@ -74,7 +77,6 @@ pub trait Interner:
type RegionOutlivesPredicate: Copy + Debug + Hash + Eq;
type TypeOutlivesPredicate: Copy + Debug + Hash + Eq;
type ProjectionPredicate: Copy + Debug + Hash + Eq;
type AliasTerm: AliasTerm<Self>;
type NormalizesTo: Copy + Debug + Hash + Eq;
type SubtypePredicate: Copy + Debug + Hash + Eq;
type CoercePredicate: Copy + Debug + Hash + Eq;
@ -86,8 +88,23 @@ pub trait Interner:
type GenericsOf: GenericsOf<Self>;
fn generics_of(self, def_id: Self::DefId) -> Self::GenericsOf;
// FIXME: Remove after uplifting `EarlyBinder`
fn type_of_instantiated(self, def_id: Self::DefId, args: Self::GenericArgs) -> Self::Ty;
fn alias_ty_kind(self, alias: AliasTy<Self>) -> AliasTyKind;
fn alias_term_kind(self, alias: AliasTerm<Self>) -> AliasTermKind;
fn trait_ref_and_own_args_for_alias(
self,
def_id: Self::DefId,
args: Self::GenericArgs,
) -> (TraitRef<Self>, Self::GenericArgsSlice);
fn mk_args(self, args: &[Self::GenericArg]) -> Self::GenericArgs;
fn mk_args_from_iter(self, args: impl Iterator<Item = Self::GenericArg>) -> Self::GenericArgs;
fn check_and_mk_args(
self,
def_id: Self::DefId,

View File

@ -1,8 +1,8 @@
use std::fmt;
use crate::{
CoercePredicate, ExistentialProjection, ExistentialTraitRef, Interner, NormalizesTo,
ProjectionPredicate, SubtypePredicate, TraitPredicate, TraitRef,
AliasTerm, AliasTy, CoercePredicate, ExistentialProjection, ExistentialTraitRef, Interner,
NormalizesTo, ProjectionPredicate, SubtypePredicate, TraitPredicate, TraitRef,
};
pub trait IrPrint<T> {
@ -43,6 +43,8 @@ fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
NormalizesTo,
SubtypePredicate,
CoercePredicate,
AliasTy,
AliasTerm,
);
define_debug_via_print!(TraitRef, ExistentialTraitRef, ExistentialProjection);

View File

@ -6,7 +6,9 @@
use crate::inherent::*;
use crate::visit::TypeVisitableExt as _;
use crate::{DebugWithInfcx, Interner};
use crate::{
AliasTy, AliasTyKind, DebugWithInfcx, InferCtxtLike, Interner, UnevaluatedConst, WithInfcx,
};
/// A complete reference to a trait. These take numerous guises in syntax,
/// but perhaps the most recognizable form is in a where-clause:
@ -272,20 +274,20 @@ impl<I: Interner> ExistentialProjection<I> {
/// For example, if this is a projection of `exists T. <T as Iterator>::Item == X`,
/// then this function would return an `exists T. T: Iterator` existential trait
/// reference.
pub fn trait_ref(&self, tcx: I) -> ExistentialTraitRef<I> {
let def_id = tcx.parent(self.def_id);
let args_count = tcx.generics_of(def_id).count() - 1;
let args = tcx.mk_args(&self.args[..args_count]);
pub fn trait_ref(&self, interner: I) -> ExistentialTraitRef<I> {
let def_id = interner.parent(self.def_id);
let args_count = interner.generics_of(def_id).count() - 1;
let args = interner.mk_args(&self.args[..args_count]);
ExistentialTraitRef { def_id, args }
}
pub fn with_self_ty(&self, tcx: I, self_ty: I::Ty) -> ProjectionPredicate<I> {
pub fn with_self_ty(&self, interner: I, self_ty: I::Ty) -> ProjectionPredicate<I> {
// otherwise the escaping regions would be captured by the binders
debug_assert!(!self_ty.has_escaping_bound_vars());
ProjectionPredicate {
projection_term: I::AliasTerm::new(
tcx,
projection_term: AliasTerm::new(
interner,
self.def_id,
[self_ty.into()].into_iter().chain(self.args),
),
@ -293,13 +295,13 @@ pub fn with_self_ty(&self, tcx: I, self_ty: I::Ty) -> ProjectionPredicate<I> {
}
}
pub fn erase_self_ty(tcx: I, projection_predicate: ProjectionPredicate<I>) -> Self {
pub fn erase_self_ty(interner: I, projection_predicate: ProjectionPredicate<I>) -> Self {
// Assert there is a Self.
projection_predicate.projection_term.args().type_at(0);
projection_predicate.projection_term.args.type_at(0);
Self {
def_id: projection_predicate.projection_term.def_id(),
args: tcx.mk_args(&projection_predicate.projection_term.args()[1..]),
def_id: projection_predicate.projection_term.def_id,
args: interner.mk_args(&projection_predicate.projection_term.args[1..]),
term: projection_predicate.term,
}
}
@ -339,6 +341,190 @@ pub fn descr(self) -> &'static str {
}
}
/// Represents the unprojected term of a projection goal.
///
/// * For a projection, this would be `<Ty as Trait<...>>::N<...>`.
/// * For an inherent projection, this would be `Ty::N<...>`.
/// * For an opaque type, there is no explicit syntax.
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct AliasTerm<I: Interner> {
/// The parameters of the associated or opaque item.
///
/// For a projection, these are the generic parameters for the trait and the
/// GAT parameters, if there are any.
///
/// For an inherent projection, they consist of the self type and the GAT parameters,
/// if there are any.
///
/// For RPIT the generic parameters are for the generics of the function,
/// while for TAIT it is used for the generic parameters of the alias.
pub args: I::GenericArgs,
/// The `DefId` of the `TraitItem` or `ImplItem` for the associated type `N` depending on whether
/// this is a projection or an inherent projection or the `DefId` of the `OpaqueType` item if
/// this is an opaque.
///
/// During codegen, `interner.type_of(def_id)` can be used to get the type of the
/// underlying type if the type is an opaque.
///
/// Note that if this is an associated type, this is not the `DefId` of the
/// `TraitRef` containing this associated type, which is in `interner.associated_item(def_id).container`,
/// aka. `interner.parent(def_id)`.
pub def_id: I::DefId,
/// This field exists to prevent the creation of `AliasTerm` without using
/// [AliasTerm::new].
_use_alias_term_new_instead: (),
}
impl<I: Interner> std::fmt::Debug for AliasTerm<I> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
WithInfcx::with_no_infcx(self).fmt(f)
}
}
impl<I: Interner> DebugWithInfcx<I> for AliasTerm<I> {
fn fmt<Infcx: InferCtxtLike<Interner = I>>(
this: WithInfcx<'_, Infcx, &Self>,
f: &mut std::fmt::Formatter<'_>,
) -> std::fmt::Result {
f.debug_struct("AliasTerm")
.field("args", &this.map(|data| data.args))
.field("def_id", &this.data.def_id)
.finish()
}
}
impl<I: Interner> AliasTerm<I> {
pub fn new(
interner: I,
def_id: I::DefId,
args: impl IntoIterator<Item: Into<I::GenericArg>>,
) -> AliasTerm<I> {
let args = interner.check_and_mk_args(def_id, args);
AliasTerm { def_id, args, _use_alias_term_new_instead: () }
}
pub fn expect_ty(self, interner: I) -> AliasTy<I> {
match self.kind(interner) {
AliasTermKind::ProjectionTy
| AliasTermKind::InherentTy
| AliasTermKind::OpaqueTy
| AliasTermKind::WeakTy => {}
AliasTermKind::UnevaluatedConst | AliasTermKind::ProjectionConst => {
panic!("Cannot turn `UnevaluatedConst` into `AliasTy`")
}
}
AliasTy { def_id: self.def_id, args: self.args, _use_alias_ty_new_instead: () }
}
pub fn kind(self, interner: I) -> AliasTermKind {
interner.alias_term_kind(self)
}
pub fn to_term(self, interner: I) -> I::Term {
match self.kind(interner) {
AliasTermKind::ProjectionTy => Ty::new_alias(
interner,
AliasTyKind::Projection,
AliasTy { def_id: self.def_id, args: self.args, _use_alias_ty_new_instead: () },
)
.into_term(),
AliasTermKind::InherentTy => Ty::new_alias(
interner,
AliasTyKind::Inherent,
AliasTy { def_id: self.def_id, args: self.args, _use_alias_ty_new_instead: () },
)
.into_term(),
AliasTermKind::OpaqueTy => Ty::new_alias(
interner,
AliasTyKind::Opaque,
AliasTy { def_id: self.def_id, args: self.args, _use_alias_ty_new_instead: () },
)
.into_term(),
AliasTermKind::WeakTy => Ty::new_alias(
interner,
AliasTyKind::Weak,
AliasTy { def_id: self.def_id, args: self.args, _use_alias_ty_new_instead: () },
)
.into_term(),
AliasTermKind::UnevaluatedConst | AliasTermKind::ProjectionConst => {
I::Const::new_unevaluated(
interner,
UnevaluatedConst::new(self.def_id, self.args),
interner.type_of_instantiated(self.def_id, self.args),
)
.into_term()
}
}
}
}
/// The following methods work only with (trait) associated type projections.
impl<I: Interner> AliasTerm<I> {
pub fn self_ty(self) -> I::Ty {
self.args.type_at(0)
}
pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> Self {
AliasTerm::new(
interner,
self.def_id,
[self_ty.into()].into_iter().chain(self.args.into_iter().skip(1)),
)
}
pub fn trait_def_id(self, interner: I) -> I::DefId {
assert!(
matches!(
self.kind(interner),
AliasTermKind::ProjectionTy | AliasTermKind::ProjectionConst
),
"expected a projection"
);
interner.parent(self.def_id)
}
/// Extracts the underlying trait reference and own args from this projection.
/// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
/// then this function would return a `T: StreamingIterator` trait reference and
/// `['a]` as the own args.
pub fn trait_ref_and_own_args(self, interner: I) -> (TraitRef<I>, I::GenericArgsSlice) {
interner.trait_ref_and_own_args_for_alias(self.def_id, self.args)
}
/// Extracts the underlying trait reference from this projection.
/// For example, if this is a projection of `<T as Iterator>::Item`,
/// then this function would return a `T: Iterator` trait reference.
///
/// WARNING: This will drop the args for generic associated types
/// consider calling [Self::trait_ref_and_own_args] to get those
/// as well.
pub fn trait_ref(self, interner: I) -> TraitRef<I> {
self.trait_ref_and_own_args(interner).0
}
}
impl<I: Interner> From<AliasTy<I>> for AliasTerm<I> {
fn from(ty: AliasTy<I>) -> Self {
AliasTerm { args: ty.args, def_id: ty.def_id, _use_alias_term_new_instead: () }
}
}
impl<I: Interner> From<UnevaluatedConst<I>> for AliasTerm<I> {
fn from(ct: UnevaluatedConst<I>) -> Self {
AliasTerm { args: ct.args, def_id: ct.def, _use_alias_term_new_instead: () }
}
}
/// This kind of predicate has no *direct* correspondent in the
/// syntax, but it roughly corresponds to the syntactic forms:
///
@ -362,7 +548,7 @@ pub fn descr(self) -> &'static str {
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct ProjectionPredicate<I: Interner> {
pub projection_term: I::AliasTerm,
pub projection_term: AliasTerm<I>,
pub term: I::Term,
}
@ -371,16 +557,16 @@ pub fn self_ty(self) -> I::Ty {
self.projection_term.self_ty()
}
pub fn with_self_ty(self, tcx: I, self_ty: I::Ty) -> ProjectionPredicate<I> {
Self { projection_term: self.projection_term.with_self_ty(tcx, self_ty), ..self }
pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> ProjectionPredicate<I> {
Self { projection_term: self.projection_term.with_self_ty(interner, self_ty), ..self }
}
pub fn trait_def_id(self, tcx: I) -> I::DefId {
self.projection_term.trait_def_id(tcx)
pub fn trait_def_id(self, interner: I) -> I::DefId {
self.projection_term.trait_def_id(interner)
}
pub fn def_id(self) -> I::DefId {
self.projection_term.def_id()
self.projection_term.def_id
}
}
@ -403,7 +589,7 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct NormalizesTo<I: Interner> {
pub alias: I::AliasTerm,
pub alias: AliasTerm<I>,
pub term: I::Term,
}
@ -412,16 +598,16 @@ pub fn self_ty(self) -> I::Ty {
self.alias.self_ty()
}
pub fn with_self_ty(self, tcx: I, self_ty: I::Ty) -> NormalizesTo<I> {
Self { alias: self.alias.with_self_ty(tcx, self_ty), ..self }
pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> NormalizesTo<I> {
Self { alias: self.alias.with_self_ty(interner, self_ty), ..self }
}
pub fn trait_def_id(self, tcx: I) -> I::DefId {
self.alias.trait_def_id(tcx)
pub fn trait_def_id(self, interner: I) -> I::DefId {
self.alias.trait_def_id(interner)
}
pub fn def_id(self) -> I::DefId {
self.alias.def_id()
self.alias.def_id
}
}

View File

@ -4,11 +4,11 @@
use rustc_data_structures::unify::{EqUnifyValue, UnifyKey};
#[cfg(feature = "nightly")]
use rustc_macros::{Decodable, Encodable, HashStable_NoContext, TyDecodable, TyEncodable};
use rustc_type_ir_macros::{TypeFoldable_Generic, TypeVisitable_Generic};
use rustc_type_ir_macros::{Lift_Generic, TypeFoldable_Generic, TypeVisitable_Generic};
use std::fmt;
use crate::Interner;
use crate::{DebruijnIndex, DebugWithInfcx, InferCtxtLike, WithInfcx};
use crate::inherent::*;
use crate::{DebruijnIndex, DebugWithInfcx, InferCtxtLike, Interner, TraitRef, WithInfcx};
use self::TyKind::*;
@ -88,7 +88,7 @@ pub enum TyKind<I: Interner> {
/// for `struct List<T>` and the args `[i32]`.
///
/// Note that generic parameters in fields only get lazily instantiated
/// by using something like `adt_def.all_fields().map(|field| field.ty(tcx, args))`.
/// by using something like `adt_def.all_fields().map(|field| field.ty(interner, args))`.
Adt(I::AdtDef, I::GenericArgs),
/// An unsized FFI type that is opaque to Rust. Written as `extern type T`.
@ -201,7 +201,7 @@ pub enum TyKind<I: Interner> {
/// A projection, opaque type, weak type alias, or inherent associated type.
/// All of these types are represented as pairs of def-id and args, and can
/// be normalized, so they are grouped conceptually.
Alias(AliasTyKind, I::AliasTy),
Alias(AliasTyKind, AliasTy<I>),
/// A type parameter; for example, `T` in `fn f<T>(x: T) {}`.
Param(I::ParamTy),
@ -422,6 +422,154 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
}
}
/// Represents the projection of an associated, opaque, or lazy-type-alias type.
///
/// * For a projection, this would be `<Ty as Trait<...>>::N<...>`.
/// * For an inherent projection, this would be `Ty::N<...>`.
/// * For an opaque type, there is no explicit syntax.
#[derive(derivative::Derivative)]
#[derivative(
Clone(bound = ""),
Copy(bound = ""),
Hash(bound = ""),
PartialEq(bound = ""),
Eq(bound = "")
)]
#[derive(TypeVisitable_Generic, TypeFoldable_Generic, Lift_Generic)]
#[cfg_attr(feature = "nightly", derive(TyDecodable, TyEncodable, HashStable_NoContext))]
pub struct AliasTy<I: Interner> {
/// The parameters of the associated or opaque type.
///
/// For a projection, these are the generic parameters for the trait and the
/// GAT parameters, if there are any.
///
/// For an inherent projection, they consist of the self type and the GAT parameters,
/// if there are any.
///
/// For RPIT the generic parameters are for the generics of the function,
/// while for TAIT it is used for the generic parameters of the alias.
pub args: I::GenericArgs,
/// The `DefId` of the `TraitItem` or `ImplItem` for the associated type `N` depending on whether
/// this is a projection or an inherent projection or the `DefId` of the `OpaqueType` item if
/// this is an opaque.
///
/// During codegen, `interner.type_of(def_id)` can be used to get the type of the
/// underlying type if the type is an opaque.
///
/// Note that if this is an associated type, this is not the `DefId` of the
/// `TraitRef` containing this associated type, which is in `interner.associated_item(def_id).container`,
/// aka. `interner.parent(def_id)`.
pub def_id: I::DefId,
/// This field exists to prevent the creation of `AliasTy` without using
/// [AliasTy::new].
pub(crate) _use_alias_ty_new_instead: (),
}
impl<I: Interner> AliasTy<I> {
pub fn new(
interner: I,
def_id: I::DefId,
args: impl IntoIterator<Item: Into<I::GenericArg>>,
) -> AliasTy<I> {
let args = interner.check_and_mk_args(def_id, args);
AliasTy { def_id, args, _use_alias_ty_new_instead: () }
}
pub fn kind(self, interner: I) -> AliasTyKind {
interner.alias_ty_kind(self)
}
/// Whether this alias type is an opaque.
pub fn is_opaque(self, interner: I) -> bool {
matches!(self.kind(interner), AliasTyKind::Opaque)
}
pub fn to_ty(self, interner: I) -> I::Ty {
Ty::new_alias(interner, self.kind(interner), self)
}
}
/// The following methods work only with (trait) associated type projections.
impl<I: Interner> AliasTy<I> {
pub fn self_ty(self) -> I::Ty {
self.args.type_at(0)
}
pub fn with_self_ty(self, interner: I, self_ty: I::Ty) -> Self {
AliasTy::new(
interner,
self.def_id,
[self_ty.into()].into_iter().chain(self.args.into_iter().skip(1)),
)
}
pub fn trait_def_id(self, interner: I) -> I::DefId {
assert_eq!(self.kind(interner), AliasTyKind::Projection, "expected a projection");
interner.parent(self.def_id)
}
/// Extracts the underlying trait reference and own args from this projection.
/// For example, if this is a projection of `<T as StreamingIterator>::Item<'a>`,
/// then this function would return a `T: StreamingIterator` trait reference and
/// `['a]` as the own args.
pub fn trait_ref_and_own_args(self, interner: I) -> (TraitRef<I>, I::GenericArgsSlice) {
debug_assert_eq!(self.kind(interner), AliasTyKind::Projection);
interner.trait_ref_and_own_args_for_alias(self.def_id, self.args)
}
/// Extracts the underlying trait reference from this projection.
/// For example, if this is a projection of `<T as Iterator>::Item`,
/// then this function would return a `T: Iterator` trait reference.
///
/// WARNING: This will drop the args for generic associated types
/// consider calling [Self::trait_ref_and_own_args] to get those
/// as well.
pub fn trait_ref(self, interner: I) -> TraitRef<I> {
self.trait_ref_and_own_args(interner).0
}
}
/// The following methods work only with inherent associated type projections.
impl<I: Interner> AliasTy<I> {
/// Transform the generic parameters to have the given `impl` args as the base and the GAT args on top of that.
///
/// Does the following transformation:
///
/// ```text
/// [Self, P_0...P_m] -> [I_0...I_n, P_0...P_m]
///
/// I_i impl args
/// P_j GAT args
/// ```
pub fn rebase_inherent_args_onto_impl(
self,
impl_args: I::GenericArgs,
interner: I,
) -> I::GenericArgs {
debug_assert_eq!(self.kind(interner), AliasTyKind::Inherent);
interner.mk_args_from_iter(impl_args.into_iter().chain(self.args.into_iter().skip(1)))
}
}
impl<I: Interner> fmt::Debug for AliasTy<I> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
WithInfcx::with_no_infcx(self).fmt(f)
}
}
impl<I: Interner> DebugWithInfcx<I> for AliasTy<I> {
fn fmt<Infcx: InferCtxtLike<Interner = I>>(
this: WithInfcx<'_, Infcx, &Self>,
f: &mut core::fmt::Formatter<'_>,
) -> core::fmt::Result {
f.debug_struct("AliasTy")
.field("args", &this.map(|data| data.args))
.field("def_id", &this.data.def_id)
.finish()
}
}
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "nightly", derive(Encodable, Decodable, HashStable_NoContext))]
pub enum IntTy {