Rollup merge of #54370 - nnethercote:better-domain_size, r=nikomatsakis

Improve handling of type bounds in `bit_set.rs`.

Currently, `BitSet` doesn't actually know its own domain size; it just
knows how many words it contains. We can make it better.
This commit is contained in:
Pietro Albini 2018-09-22 09:56:32 +02:00 committed by GitHub
commit 167a045e2e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 210 additions and 202 deletions

View File

@ -44,7 +44,7 @@ use ty::relate::TypeRelation;
use middle::lang_items;
use mir::interpret::{GlobalId};
use rustc_data_structures::bit_set::BitSet;
use rustc_data_structures::bit_set::GrowableBitSet;
use rustc_data_structures::sync::Lock;
use std::iter;
use std::cmp;
@ -3054,7 +3054,7 @@ impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
} else {
return Err(Unimplemented);
};
let mut ty_params = BitSet::new_empty(substs_a.types().count());
let mut ty_params = GrowableBitSet::new_empty();
let mut found = false;
for ty in field.walk() {
if let ty::Param(p) = ty.sty {

View File

@ -9,7 +9,6 @@
// except according to those terms.
use indexed_vec::{Idx, IndexVec};
use rustc_serialize;
use smallvec::SmallVec;
use std::fmt;
use std::iter;
@ -26,33 +25,48 @@ pub const WORD_BITS: usize = WORD_BYTES * 8;
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
#[derive(Clone, Eq, PartialEq)]
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size. All operations that involve two bitsets
/// will panic if the bitsets have differing domain sizes.
#[derive(Clone, Eq, PartialEq, RustcDecodable, RustcEncodable)]
pub struct BitSet<T: Idx> {
domain_size: usize,
words: Vec<Word>,
marker: PhantomData<T>,
}
impl<T: Idx> BitSet<T> {
/// Create a new, empty bitset with a given `domain_size`.
#[inline]
pub fn new_empty(domain_size: usize) -> BitSet<T> {
let num_words = num_words(domain_size);
BitSet {
domain_size,
words: vec![0; num_words],
marker: PhantomData,
}
}
/// Create a new, filled bitset with a given `domain_size`.
#[inline]
pub fn new_filled(domain_size: usize) -> BitSet<T> {
let num_words = num_words(domain_size);
let mut result = BitSet {
domain_size,
words: vec![!0; num_words],
marker: PhantomData,
};
result.clear_above(domain_size);
result.clear_excess_bits();
result
}
/// Get the domain size.
pub fn domain_size(&self) -> usize {
self.domain_size
}
/// Clear all elements.
#[inline]
pub fn clear(&mut self) {
for word in &mut self.words {
@ -60,34 +74,19 @@ impl<T: Idx> BitSet<T> {
}
}
/// Sets all elements up to and including `size`.
pub fn set_up_to(&mut self, elem: usize) {
for word in &mut self.words {
*word = !0;
}
self.clear_above(elem);
}
/// Clear all elements above `elem`.
fn clear_above(&mut self, elem: usize) {
let first_clear_block = elem / WORD_BITS;
if first_clear_block < self.words.len() {
// Within `first_clear_block`, the `elem % WORD_BITS` LSBs should
// remain.
let mask = (1 << (elem % WORD_BITS)) - 1;
self.words[first_clear_block] &= mask;
// All the blocks above `first_clear_block` are fully cleared.
for word in &mut self.words[first_clear_block + 1..] {
*word = 0;
}
/// Clear excess bits in the final word.
fn clear_excess_bits(&mut self) {
let num_bits_in_final_word = self.domain_size % WORD_BITS;
if num_bits_in_final_word > 0 {
let mask = (1 << num_bits_in_final_word) - 1;
let final_word_idx = self.words.len() - 1;
self.words[final_word_idx] &= mask;
}
}
/// Efficiently overwrite `self` with `other`. Panics if `self` and `other`
/// don't have the same length.
/// Efficiently overwrite `self` with `other`.
pub fn overwrite(&mut self, other: &BitSet<T>) {
assert!(self.domain_size == other.domain_size);
self.words.clone_from_slice(&other.words);
}
@ -99,16 +98,15 @@ impl<T: Idx> BitSet<T> {
/// True if `self` contains `elem`.
#[inline]
pub fn contains(&self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
(self.words[word_index] & mask) != 0
}
/// True if `self` is a (non-strict) superset of `other`.
///
/// The two sets must have the same domain_size.
/// Is `self` is a (non-strict) superset of `other`?
#[inline]
pub fn superset(&self, other: &BitSet<T>) -> bool {
assert_eq!(self.words.len(), other.words.len());
assert_eq!(self.domain_size, other.domain_size);
self.words.iter().zip(&other.words).all(|(a, b)| (a & b) == *b)
}
@ -121,6 +119,7 @@ impl<T: Idx> BitSet<T> {
/// Insert `elem`. Returns true if the set has changed.
#[inline]
pub fn insert(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
let word_ref = &mut self.words[word_index];
let word = *word_ref;
@ -134,11 +133,13 @@ impl<T: Idx> BitSet<T> {
for word in &mut self.words {
*word = !0;
}
self.clear_excess_bits();
}
/// Returns true if the set has changed.
#[inline]
pub fn remove(&mut self, elem: T) -> bool {
assert!(elem.index() < self.domain_size);
let (word_index, mask) = word_index_and_mask(elem);
let word_ref = &mut self.words[word_index];
let word = *word_ref;
@ -162,6 +163,7 @@ impl<T: Idx> BitSet<T> {
/// Set `self = self & other` and return true if `self` changed.
/// (i.e., if any bits were removed).
pub fn intersect(&mut self, other: &BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut self.words, &other.words, |a, b| { a & b })
}
@ -182,43 +184,8 @@ impl<T: Idx> BitSet<T> {
/// Duplicates the set as a hybrid set.
pub fn to_hybrid(&self) -> HybridBitSet<T> {
// This domain_size may be slightly larger than the one specified
// upon creation, due to rounding up to a whole word. That's ok.
let domain_size = self.words.len() * WORD_BITS;
// Note: we currently don't bother trying to make a Sparse set.
HybridBitSet::Dense(self.to_owned(), domain_size)
}
pub fn to_string(&self, bits: usize) -> String {
let mut result = String::new();
let mut sep = '[';
// Note: this is a little endian printout of bytes.
// i tracks how many bits we have printed so far.
let mut i = 0;
for word in &self.words {
let mut word = *word;
for _ in 0..WORD_BYTES { // for each byte in `word`:
let remain = bits - i;
// If less than a byte remains, then mask just that many bits.
let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
assert!(mask <= 0xFF);
let byte = word & mask;
result.push_str(&format!("{}{:02x}", sep, byte));
if remain <= 8 { break; }
word >>= 8;
i += 8;
sep = '-';
}
sep = '|';
}
result.push(']');
result
HybridBitSet::Dense(self.to_owned())
}
}
@ -238,12 +205,14 @@ pub trait SubtractFromBitSet<T: Idx> {
impl<T: Idx> UnionIntoBitSet<T> for BitSet<T> {
fn union_into(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut other.words, &self.words, |a, b| { a | b })
}
}
impl<T: Idx> SubtractFromBitSet<T> for BitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
bitwise(&mut other.words, &self.words, |a, b| { a & !b })
}
}
@ -256,19 +225,36 @@ impl<T: Idx> fmt::Debug for BitSet<T> {
}
}
impl<T: Idx> rustc_serialize::Encodable for BitSet<T> {
fn encode<E: rustc_serialize::Encoder>(&self, encoder: &mut E) -> Result<(), E::Error> {
self.words.encode(encoder)
}
}
impl<T: Idx> ToString for BitSet<T> {
fn to_string(&self) -> String {
let mut result = String::new();
let mut sep = '[';
impl<T: Idx> rustc_serialize::Decodable for BitSet<T> {
fn decode<D: rustc_serialize::Decoder>(d: &mut D) -> Result<BitSet<T>, D::Error> {
let words: Vec<Word> = rustc_serialize::Decodable::decode(d)?;
Ok(BitSet {
words,
marker: PhantomData,
})
// Note: this is a little endian printout of bytes.
// i tracks how many bits we have printed so far.
let mut i = 0;
for word in &self.words {
let mut word = *word;
for _ in 0..WORD_BYTES { // for each byte in `word`:
let remain = self.domain_size - i;
// If less than a byte remains, then mask just that many bits.
let mask = if remain <= 8 { (1 << remain) - 1 } else { 0xFF };
assert!(mask <= 0xFF);
let byte = word & mask;
result.push_str(&format!("{}{:02x}", sep, byte));
if remain <= 8 { break; }
word >>= 8;
i += 8;
sep = '-';
}
sep = '|';
}
result.push(']');
result
}
}
@ -326,67 +312,78 @@ const SPARSE_MAX: usize = 8;
///
/// This type is used by `HybridBitSet`; do not use directly.
#[derive(Clone, Debug)]
pub struct SparseBitSet<T: Idx>(SmallVec<[T; SPARSE_MAX]>);
pub struct SparseBitSet<T: Idx> {
domain_size: usize,
elems: SmallVec<[T; SPARSE_MAX]>,
}
impl<T: Idx> SparseBitSet<T> {
fn new_empty() -> Self {
SparseBitSet(SmallVec::new())
fn new_empty(domain_size: usize) -> Self {
SparseBitSet {
domain_size,
elems: SmallVec::new()
}
}
fn len(&self) -> usize {
self.0.len()
self.elems.len()
}
fn is_empty(&self) -> bool {
self.0.len() == 0
self.elems.len() == 0
}
fn contains(&self, elem: T) -> bool {
self.0.contains(&elem)
assert!(elem.index() < self.domain_size);
self.elems.contains(&elem)
}
fn insert(&mut self, elem: T) -> bool {
assert!(self.len() < SPARSE_MAX);
if let Some(i) = self.0.iter().position(|&e| e >= elem) {
if self.0[i] == elem {
assert!(elem.index() < self.domain_size);
let changed = if let Some(i) = self.elems.iter().position(|&e| e >= elem) {
if self.elems[i] == elem {
// `elem` is already in the set.
false
} else {
// `elem` is smaller than one or more existing elements.
self.0.insert(i, elem);
self.elems.insert(i, elem);
true
}
} else {
// `elem` is larger than all existing elements.
self.0.push(elem);
self.elems.push(elem);
true
}
};
assert!(self.len() <= SPARSE_MAX);
changed
}
fn remove(&mut self, elem: T) -> bool {
if let Some(i) = self.0.iter().position(|&e| e == elem) {
self.0.remove(i);
assert!(elem.index() < self.domain_size);
if let Some(i) = self.elems.iter().position(|&e| e == elem) {
self.elems.remove(i);
true
} else {
false
}
}
fn to_dense(&self, domain_size: usize) -> BitSet<T> {
let mut dense = BitSet::new_empty(domain_size);
for elem in self.0.iter() {
fn to_dense(&self) -> BitSet<T> {
let mut dense = BitSet::new_empty(self.domain_size);
for elem in self.elems.iter() {
dense.insert(*elem);
}
dense
}
fn iter(&self) -> slice::Iter<T> {
self.0.iter()
self.elems.iter()
}
}
impl<T: Idx> UnionIntoBitSet<T> for SparseBitSet<T> {
fn union_into(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
let mut changed = false;
for elem in self.iter() {
changed |= other.insert(*elem);
@ -397,6 +394,7 @@ impl<T: Idx> UnionIntoBitSet<T> for SparseBitSet<T> {
impl<T: Idx> SubtractFromBitSet<T> for SparseBitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
assert_eq!(self.domain_size, other.domain_size);
let mut changed = false;
for elem in self.iter() {
changed |= other.remove(*elem);
@ -414,10 +412,14 @@ impl<T: Idx> SubtractFromBitSet<T> for SparseBitSet<T> {
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size. All operations that involve two bitsets
/// will panic if the bitsets have differing domain sizes.
#[derive(Clone, Debug)]
pub enum HybridBitSet<T: Idx> {
Sparse(SparseBitSet<T>, usize),
Dense(BitSet<T>, usize),
Sparse(SparseBitSet<T>),
Dense(BitSet<T>),
}
impl<T: Idx> HybridBitSet<T> {
@ -427,17 +429,17 @@ impl<T: Idx> HybridBitSet<T> {
fn dummy() -> Self {
// The cheapest HybridBitSet to construct, which is only used to get
// around the borrow checker.
HybridBitSet::Sparse(SparseBitSet::new_empty(), 0)
HybridBitSet::Sparse(SparseBitSet::new_empty(0))
}
pub fn new_empty(domain_size: usize) -> Self {
HybridBitSet::Sparse(SparseBitSet::new_empty(), domain_size)
HybridBitSet::Sparse(SparseBitSet::new_empty(domain_size))
}
pub fn domain_size(&self) -> usize {
match *self {
HybridBitSet::Sparse(_, size) => size,
HybridBitSet::Dense(_, size) => size,
fn domain_size(&self) -> usize {
match self {
HybridBitSet::Sparse(sparse) => sparse.domain_size,
HybridBitSet::Dense(dense) => dense.domain_size,
}
}
@ -448,83 +450,88 @@ impl<T: Idx> HybridBitSet<T> {
pub fn contains(&self, elem: T) -> bool {
match self {
HybridBitSet::Sparse(sparse, _) => sparse.contains(elem),
HybridBitSet::Dense(dense, _) => dense.contains(elem),
HybridBitSet::Sparse(sparse) => sparse.contains(elem),
HybridBitSet::Dense(dense) => dense.contains(elem),
}
}
pub fn superset(&self, other: &HybridBitSet<T>) -> bool {
match (self, other) {
(HybridBitSet::Dense(self_dense, _), HybridBitSet::Dense(other_dense, _)) => {
(HybridBitSet::Dense(self_dense), HybridBitSet::Dense(other_dense)) => {
self_dense.superset(other_dense)
}
_ => other.iter().all(|elem| self.contains(elem)),
_ => {
assert!(self.domain_size() == other.domain_size());
other.iter().all(|elem| self.contains(elem))
}
}
}
pub fn is_empty(&self) -> bool {
match self {
HybridBitSet::Sparse(sparse, _) => sparse.is_empty(),
HybridBitSet::Dense(dense, _) => dense.is_empty(),
HybridBitSet::Sparse(sparse) => sparse.is_empty(),
HybridBitSet::Dense(dense) => dense.is_empty(),
}
}
pub fn insert(&mut self, elem: T) -> bool {
// No need to check `elem` against `self.domain_size` here because all
// the match cases check it, one way or another.
match self {
HybridBitSet::Sparse(sparse, _) if sparse.len() < SPARSE_MAX => {
HybridBitSet::Sparse(sparse) if sparse.len() < SPARSE_MAX => {
// The set is sparse and has space for `elem`.
sparse.insert(elem)
}
HybridBitSet::Sparse(sparse, _) if sparse.contains(elem) => {
HybridBitSet::Sparse(sparse) if sparse.contains(elem) => {
// The set is sparse and does not have space for `elem`, but
// that doesn't matter because `elem` is already present.
false
}
HybridBitSet::Sparse(_, _) => {
HybridBitSet::Sparse(_) => {
// The set is sparse and full. Convert to a dense set.
match mem::replace(self, HybridBitSet::dummy()) {
HybridBitSet::Sparse(sparse, domain_size) => {
let mut dense = sparse.to_dense(domain_size);
HybridBitSet::Sparse(sparse) => {
let mut dense = sparse.to_dense();
let changed = dense.insert(elem);
assert!(changed);
*self = HybridBitSet::Dense(dense, domain_size);
*self = HybridBitSet::Dense(dense);
changed
}
_ => unreachable!()
}
}
HybridBitSet::Dense(dense, _) => dense.insert(elem),
HybridBitSet::Dense(dense) => dense.insert(elem),
}
}
pub fn insert_all(&mut self) {
let domain_size = self.domain_size();
match self {
HybridBitSet::Sparse(_, _) => {
let dense = BitSet::new_filled(domain_size);
*self = HybridBitSet::Dense(dense, domain_size);
HybridBitSet::Sparse(_) => {
*self = HybridBitSet::Dense(BitSet::new_filled(domain_size));
}
HybridBitSet::Dense(dense, _) => dense.insert_all(),
HybridBitSet::Dense(dense) => dense.insert_all(),
}
}
pub fn remove(&mut self, elem: T) -> bool {
// Note: we currently don't bother going from Dense back to Sparse.
match self {
HybridBitSet::Sparse(sparse, _) => sparse.remove(elem),
HybridBitSet::Dense(dense, _) => dense.remove(elem),
HybridBitSet::Sparse(sparse) => sparse.remove(elem),
HybridBitSet::Dense(dense) => dense.remove(elem),
}
}
pub fn union(&mut self, other: &HybridBitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(_, _) => {
HybridBitSet::Sparse(_) => {
match other {
HybridBitSet::Sparse(other_sparse, _) => {
HybridBitSet::Sparse(other_sparse) => {
// Both sets are sparse. Add the elements in
// `other_sparse` to `self_hybrid` one at a time. This
// may or may not cause `self_hybrid` to be densified.
assert_eq!(self.domain_size(), other.domain_size());
let mut self_hybrid = mem::replace(self, HybridBitSet::dummy());
let mut changed = false;
for elem in other_sparse.iter() {
@ -533,14 +540,14 @@ impl<T: Idx> HybridBitSet<T> {
*self = self_hybrid;
changed
}
HybridBitSet::Dense(other_dense, _) => {
HybridBitSet::Dense(other_dense) => {
// `self` is sparse and `other` is dense. Densify
// `self` and then do the bitwise union.
match mem::replace(self, HybridBitSet::dummy()) {
HybridBitSet::Sparse(self_sparse, self_domain_size) => {
let mut new_dense = self_sparse.to_dense(self_domain_size);
HybridBitSet::Sparse(self_sparse) => {
let mut new_dense = self_sparse.to_dense();
let changed = new_dense.union(other_dense);
*self = HybridBitSet::Dense(new_dense, self_domain_size);
*self = HybridBitSet::Dense(new_dense);
changed
}
_ => unreachable!()
@ -549,22 +556,22 @@ impl<T: Idx> HybridBitSet<T> {
}
}
HybridBitSet::Dense(self_dense, _) => self_dense.union(other),
HybridBitSet::Dense(self_dense) => self_dense.union(other),
}
}
/// Converts to a dense set, consuming itself in the process.
pub fn to_dense(self) -> BitSet<T> {
match self {
HybridBitSet::Sparse(sparse, domain_size) => sparse.to_dense(domain_size),
HybridBitSet::Dense(dense, _) => dense,
HybridBitSet::Sparse(sparse) => sparse.to_dense(),
HybridBitSet::Dense(dense) => dense,
}
}
pub fn iter(&self) -> HybridIter<T> {
match self {
HybridBitSet::Sparse(sparse, _) => HybridIter::Sparse(sparse.iter()),
HybridBitSet::Dense(dense, _) => HybridIter::Dense(dense.iter()),
HybridBitSet::Sparse(sparse) => HybridIter::Sparse(sparse.iter()),
HybridBitSet::Dense(dense) => HybridIter::Dense(dense.iter()),
}
}
}
@ -572,8 +579,8 @@ impl<T: Idx> HybridBitSet<T> {
impl<T: Idx> UnionIntoBitSet<T> for HybridBitSet<T> {
fn union_into(&self, other: &mut BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse, _) => sparse.union_into(other),
HybridBitSet::Dense(dense, _) => dense.union_into(other),
HybridBitSet::Sparse(sparse) => sparse.union_into(other),
HybridBitSet::Dense(dense) => dense.union_into(other),
}
}
}
@ -581,8 +588,8 @@ impl<T: Idx> UnionIntoBitSet<T> for HybridBitSet<T> {
impl<T: Idx> SubtractFromBitSet<T> for HybridBitSet<T> {
fn subtract_from(&self, other: &mut BitSet<T>) -> bool {
match self {
HybridBitSet::Sparse(sparse, _) => sparse.subtract_from(other),
HybridBitSet::Dense(dense, _) => dense.subtract_from(other),
HybridBitSet::Sparse(sparse) => sparse.subtract_from(other),
HybridBitSet::Dense(dense) => dense.subtract_from(other),
}
}
}
@ -607,16 +614,24 @@ impl<'a, T: Idx> Iterator for HybridIter<'a, T> {
///
/// `T` is an index type, typically a newtyped `usize` wrapper, but it can also
/// just be `usize`.
///
/// All operations that involve an element will panic if the element is equal
/// to or greater than the domain size.
#[derive(Clone, Debug, PartialEq)]
pub struct GrowableBitSet<T: Idx> {
bit_set: BitSet<T>,
}
impl<T: Idx> GrowableBitSet<T> {
pub fn grow(&mut self, domain_size: T) {
let num_words = num_words(domain_size);
if self.bit_set.words.len() <= num_words {
self.bit_set.words.resize(num_words + 1, 0)
/// Ensure that the set can hold at least `min_domain_size` elements.
pub fn ensure(&mut self, min_domain_size: usize) {
if self.bit_set.domain_size < min_domain_size {
self.bit_set.domain_size = min_domain_size;
}
let min_num_words = num_words(min_domain_size);
if self.bit_set.words.len() < min_num_words {
self.bit_set.words.resize(min_num_words, 0)
}
}
@ -631,7 +646,7 @@ impl<T: Idx> GrowableBitSet<T> {
/// Returns true if the set has changed.
#[inline]
pub fn insert(&mut self, elem: T) -> bool {
self.grow(elem);
self.ensure(elem.index() + 1);
self.bit_set.insert(elem)
}
@ -651,31 +666,34 @@ impl<T: Idx> GrowableBitSet<T> {
/// `R` and `C` are index types used to identify rows and columns respectively;
/// typically newtyped `usize` wrappers, but they can also just be `usize`.
///
/// All operations that involve a row and/or column index will panic if the
/// index exceeds the relevant bound.
#[derive(Clone, Debug)]
pub struct BitMatrix<R: Idx, C: Idx> {
columns: usize,
num_rows: usize,
num_columns: usize,
words: Vec<Word>,
marker: PhantomData<(R, C)>,
}
impl<R: Idx, C: Idx> BitMatrix<R, C> {
/// Create a new `rows x columns` matrix, initially empty.
pub fn new(rows: usize, columns: usize) -> BitMatrix<R, C> {
pub fn new(num_rows: usize, num_columns: usize) -> BitMatrix<R, C> {
// For every element, we need one bit for every other
// element. Round up to an even number of words.
let words_per_row = num_words(columns);
let words_per_row = num_words(num_columns);
BitMatrix {
columns,
words: vec![0; rows * words_per_row],
num_rows,
num_columns,
words: vec![0; num_rows * words_per_row],
marker: PhantomData,
}
}
/// The range of bits for a given row.
fn range(&self, row: R) -> (usize, usize) {
let row = row.index();
let words_per_row = num_words(self.columns);
let start = row * words_per_row;
let words_per_row = num_words(self.num_columns);
let start = row.index() * words_per_row;
(start, start + words_per_row)
}
@ -683,7 +701,8 @@ impl<R: Idx, C: Idx> BitMatrix<R, C> {
/// `column` to the bitset for `row`.
///
/// Returns true if this changed the matrix, and false otherwise.
pub fn insert(&mut self, row: R, column: R) -> bool {
pub fn insert(&mut self, row: R, column: C) -> bool {
assert!(row.index() < self.num_rows && column.index() < self.num_columns);
let (start, _) = self.range(row);
let (word_index, mask) = word_index_and_mask(column);
let words = &mut self.words[..];
@ -697,7 +716,8 @@ impl<R: Idx, C: Idx> BitMatrix<R, C> {
/// the matrix cell at `(row, column)` true? Put yet another way,
/// if the matrix represents (transitive) reachability, can
/// `row` reach `column`?
pub fn contains(&self, row: R, column: R) -> bool {
pub fn contains(&self, row: R, column: C) -> bool {
assert!(row.index() < self.num_rows && column.index() < self.num_columns);
let (start, _) = self.range(row);
let (word_index, mask) = word_index_and_mask(column);
(self.words[start + word_index] & mask) != 0
@ -707,11 +727,12 @@ impl<R: Idx, C: Idx> BitMatrix<R, C> {
/// is an O(n) operation where `n` is the number of elements
/// (somewhat independent from the actual size of the
/// intersection, in particular).
pub fn intersect_rows(&self, a: R, b: R) -> Vec<C> {
let (a_start, a_end) = self.range(a);
let (b_start, b_end) = self.range(b);
let mut result = Vec::with_capacity(self.columns);
for (base, (i, j)) in (a_start..a_end).zip(b_start..b_end).enumerate() {
pub fn intersect_rows(&self, row1: R, row2: R) -> Vec<C> {
assert!(row1.index() < self.num_rows && row2.index() < self.num_rows);
let (row1_start, row1_end) = self.range(row1);
let (row2_start, row2_end) = self.range(row2);
let mut result = Vec::with_capacity(self.num_columns);
for (base, (i, j)) in (row1_start..row1_end).zip(row2_start..row2_end).enumerate() {
let mut v = self.words[i] & self.words[j];
for bit in 0..WORD_BITS {
if v == 0 {
@ -734,6 +755,7 @@ impl<R: Idx, C: Idx> BitMatrix<R, C> {
/// `write` can reach everything that `read` can (and
/// potentially more).
pub fn union_rows(&mut self, read: R, write: R) -> bool {
assert!(read.index() < self.num_rows && write.index() < self.num_rows);
let (read_start, read_end) = self.range(read);
let (write_start, write_end) = self.range(write);
let words = &mut self.words[..];
@ -750,6 +772,7 @@ impl<R: Idx, C: Idx> BitMatrix<R, C> {
/// Iterates through all the columns set to true in a given row of
/// the matrix.
pub fn iter<'a>(&'a self, row: R) -> BitIter<'a, C> {
assert!(row.index() < self.num_rows);
let (start, end) = self.range(row);
BitIter {
cur: None,
@ -865,47 +888,18 @@ impl<R: Idx, C: Idx> SparseBitMatrix<R, C> {
}
#[inline]
fn num_words<T: Idx>(elements: T) -> usize {
(elements.index() + WORD_BITS - 1) / WORD_BITS
fn num_words<T: Idx>(domain_size: T) -> usize {
(domain_size.index() + WORD_BITS - 1) / WORD_BITS
}
#[inline]
fn word_index_and_mask<T: Idx>(index: T) -> (usize, Word) {
let index = index.index();
let word_index = index / WORD_BITS;
let mask = 1 << (index % WORD_BITS);
fn word_index_and_mask<T: Idx>(elem: T) -> (usize, Word) {
let elem = elem.index();
let word_index = elem / WORD_BITS;
let mask = 1 << (elem % WORD_BITS);
(word_index, mask)
}
#[test]
fn test_clear_above() {
use std::cmp;
for i in 0..256 {
let mut idx_buf: BitSet<usize> = BitSet::new_filled(128);
idx_buf.clear_above(i);
let elems: Vec<usize> = idx_buf.iter().collect();
let expected: Vec<usize> = (0..cmp::min(i, 128)).collect();
assert_eq!(elems, expected);
}
}
#[test]
fn test_set_up_to() {
for i in 0..128 {
for mut idx_buf in
vec![BitSet::new_empty(128), BitSet::new_filled(128)].into_iter()
{
idx_buf.set_up_to(i);
let elems: Vec<usize> = idx_buf.iter().collect();
let expected: Vec<usize> = (0..i).collect();
assert_eq!(elems, expected);
}
}
}
#[test]
fn test_new_filled() {
for i in 0..128 {
@ -936,7 +930,7 @@ fn bitset_iter_works() {
#[test]
fn bitset_iter_works_2() {
let mut bitset: BitSet<usize> = BitSet::new_empty(319);
let mut bitset: BitSet<usize> = BitSet::new_empty(320);
bitset.insert(0);
bitset.insert(127);
bitset.insert(191);
@ -1037,7 +1031,7 @@ fn grow() {
assert!(set.insert(index));
assert!(!set.insert(index));
}
set.grow(128);
set.ensure(128);
// Check if the bits set before growing are still set
for index in 0..65 {

View File

@ -216,13 +216,12 @@ where MWF: MirWithFlowState<'tcx>,
let i = n.index();
let flow = self.mbcx.flow_state();
let bits_per_block = flow.sets.bits_per_block();
write!(w, "<tr>")?;
// Entry
let set = flow.sets.on_entry_set_for(i);
write!(w, "<td>{:?}</td>", dot::escape_html(&set.to_string(bits_per_block)))?;
write!(w, "<td>{:?}</td>", dot::escape_html(&set.to_string()))?;
// Terminator
write!(w, "<td>")?;

View File

@ -354,7 +354,8 @@ impl<'a, 'gcx, 'tcx> BitDenotation for MaybeUninitializedPlaces<'a, 'gcx, 'tcx>
// sets on_entry bits for Arg places
fn start_block_effect(&self, entry_set: &mut BitSet<MovePathIndex>) {
// set all bits to 1 (uninit) before gathering counterevidence
entry_set.set_up_to(self.bits_per_block());
assert!(self.bits_per_block() == entry_set.domain_size());
entry_set.insert_all();
drop_flag_effects_for_function_entry(
self.tcx, self.mir, self.mdpe,

View File

@ -256,7 +256,7 @@ impl<'tcx> InliningMap<'tcx> {
let new_items_count_total = new_items_count + self.targets.len();
self.targets.reserve(new_items_count);
self.inlines.grow(new_items_count_total);
self.inlines.ensure(new_items_count_total);
for (i, (target, inline)) in new_targets.enumerate() {
self.targets.push(target);

View File

@ -16,6 +16,7 @@ Core encoding and decoding interfaces.
use std::borrow::Cow;
use std::intrinsics;
use std::marker::PhantomData;
use std::path;
use std::rc::Rc;
use std::cell::{Cell, RefCell};
@ -547,6 +548,19 @@ impl Decodable for () {
}
}
impl<T> Encodable for PhantomData<T> {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_unit()
}
}
impl<T> Decodable for PhantomData<T> {
fn decode<D: Decoder>(d: &mut D) -> Result<PhantomData<T>, D::Error> {
d.read_nil()?;
Ok(PhantomData)
}
}
impl<'a, T: ?Sized + Encodable> Encodable for &'a T {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
(**self).encode(s)