coverage: Split out a function for dividing coverage spans into buckets

This commit is contained in:
Zalathar 2024-06-16 01:28:22 +10:00
parent 88ade9c740
commit 118f66c237

View File

@ -8,7 +8,7 @@
use crate::coverage::graph::{BasicCoverageBlock, CoverageGraph};
use crate::coverage::mappings;
use crate::coverage::spans::from_mir::{
extract_covspans_and_holes_from_mir, ExtractedCovspans, SpanFromMir,
extract_covspans_and_holes_from_mir, ExtractedCovspans, Hole, SpanFromMir,
};
use crate::coverage::ExtractedHirInfo;
@ -53,39 +53,8 @@ pub(super) fn extract_refined_covspans(
holes.sort_by(|a, b| compare_spans(a.span, b.span));
holes.dedup_by(|b, a| a.merge_if_overlapping_or_adjacent(b));
// Now we're ready to start carving holes out of the initial coverage spans,
// and grouping them in buckets separated by the holes.
let mut input_covspans = VecDeque::from(covspans);
let mut fragments = vec![];
// For each hole:
// - Identify the spans that are entirely or partly before the hole.
// - Put those spans in a corresponding bucket, truncated to the start of the hole.
// - If one of those spans also extends after the hole, put the rest of it
// in a "fragments" vector that is processed by the next hole.
let mut buckets = (0..holes.len()).map(|_| vec![]).collect::<Vec<_>>();
for (hole, bucket) in holes.iter().zip(&mut buckets) {
let fragments_from_prev = std::mem::take(&mut fragments);
// Only inspect spans that precede or overlap this hole,
// leaving the rest to be inspected by later holes.
// (This relies on the spans and holes both being sorted.)
let relevant_input_covspans =
drain_front_while(&mut input_covspans, |c| c.span.lo() < hole.span.hi());
for covspan in fragments_from_prev.into_iter().chain(relevant_input_covspans) {
let (before, after) = covspan.split_around_hole_span(hole.span);
bucket.extend(before);
fragments.extend(after);
}
}
// After finding the spans before each hole, any remaining fragments/spans
// form their own final bucket, after the final hole.
// (If there were no holes, this will just be all of the initial spans.)
fragments.extend(input_covspans);
buckets.push(fragments);
// Split the covspans into separate buckets that don't overlap any holes.
let buckets = divide_spans_into_buckets(covspans, &holes);
for mut covspans in buckets {
// Make sure each individual bucket is internally sorted.
@ -149,6 +118,55 @@ fn split_visible_macro_spans(covspans: &mut Vec<SpanFromMir>) {
covspans.extend(extra_spans);
}
/// Uses the holes to divide the given covspans into buckets, such that:
/// - No span in any hole overlaps a bucket (truncating the spans if necessary).
/// - The spans in each bucket are strictly after all spans in previous buckets,
/// and strictly before all spans in subsequent buckets.
///
/// The resulting buckets are sorted relative to each other, but might not be
/// internally sorted.
#[instrument(level = "debug")]
fn divide_spans_into_buckets(input_covspans: Vec<Covspan>, holes: &[Hole]) -> Vec<Vec<Covspan>> {
debug_assert!(input_covspans.is_sorted_by(|a, b| compare_spans(a.span, b.span).is_le()));
debug_assert!(holes.is_sorted_by(|a, b| compare_spans(a.span, b.span).is_le()));
// Now we're ready to start carving holes out of the initial coverage spans,
// and grouping them in buckets separated by the holes.
let mut input_covspans = VecDeque::from(input_covspans);
let mut fragments = vec![];
// For each hole:
// - Identify the spans that are entirely or partly before the hole.
// - Put those spans in a corresponding bucket, truncated to the start of the hole.
// - If one of those spans also extends after the hole, put the rest of it
// in a "fragments" vector that is processed by the next hole.
let mut buckets = (0..holes.len()).map(|_| vec![]).collect::<Vec<_>>();
for (hole, bucket) in holes.iter().zip(&mut buckets) {
let fragments_from_prev = std::mem::take(&mut fragments);
// Only inspect spans that precede or overlap this hole,
// leaving the rest to be inspected by later holes.
// (This relies on the spans and holes both being sorted.)
let relevant_input_covspans =
drain_front_while(&mut input_covspans, |c| c.span.lo() < hole.span.hi());
for covspan in fragments_from_prev.into_iter().chain(relevant_input_covspans) {
let (before, after) = covspan.split_around_hole_span(hole.span);
bucket.extend(before);
fragments.extend(after);
}
}
// After finding the spans before each hole, any remaining fragments/spans
// form their own final bucket, after the final hole.
// (If there were no holes, this will just be all of the initial spans.)
fragments.extend(input_covspans);
buckets.push(fragments);
buckets
}
/// Similar to `.drain(..)`, but stops just before it would remove an item not
/// satisfying the predicate.
fn drain_front_while<'a, T>(