compiler: Wire {TyAnd,}Layout
into rustc_abi
This finally unites TyAndLayout, Layout, and LayoutS into the same crate, as one might imagine they would be placed. No functional changes.
This commit is contained in:
parent
255bdd2f24
commit
10721909f2
254
compiler/rustc_abi/src/callconv.rs
Normal file
254
compiler/rustc_abi/src/callconv.rs
Normal file
@ -0,0 +1,254 @@
|
||||
mod abi {
|
||||
pub(crate) use crate::Primitive::*;
|
||||
pub(crate) use crate::Variants;
|
||||
}
|
||||
|
||||
use rustc_macros::HashStable_Generic;
|
||||
|
||||
use crate::{Abi, Align, FieldsShape, HasDataLayout, Size, TyAbiInterface, TyAndLayout};
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
|
||||
pub enum RegKind {
|
||||
Integer,
|
||||
Float,
|
||||
Vector,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
|
||||
pub struct Reg {
|
||||
pub kind: RegKind,
|
||||
pub size: Size,
|
||||
}
|
||||
|
||||
macro_rules! reg_ctor {
|
||||
($name:ident, $kind:ident, $bits:expr) => {
|
||||
pub fn $name() -> Reg {
|
||||
Reg { kind: RegKind::$kind, size: Size::from_bits($bits) }
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl Reg {
|
||||
reg_ctor!(i8, Integer, 8);
|
||||
reg_ctor!(i16, Integer, 16);
|
||||
reg_ctor!(i32, Integer, 32);
|
||||
reg_ctor!(i64, Integer, 64);
|
||||
reg_ctor!(i128, Integer, 128);
|
||||
|
||||
reg_ctor!(f32, Float, 32);
|
||||
reg_ctor!(f64, Float, 64);
|
||||
}
|
||||
|
||||
impl Reg {
|
||||
pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
|
||||
let dl = cx.data_layout();
|
||||
match self.kind {
|
||||
RegKind::Integer => match self.size.bits() {
|
||||
1 => dl.i1_align.abi,
|
||||
2..=8 => dl.i8_align.abi,
|
||||
9..=16 => dl.i16_align.abi,
|
||||
17..=32 => dl.i32_align.abi,
|
||||
33..=64 => dl.i64_align.abi,
|
||||
65..=128 => dl.i128_align.abi,
|
||||
_ => panic!("unsupported integer: {self:?}"),
|
||||
},
|
||||
RegKind::Float => match self.size.bits() {
|
||||
16 => dl.f16_align.abi,
|
||||
32 => dl.f32_align.abi,
|
||||
64 => dl.f64_align.abi,
|
||||
128 => dl.f128_align.abi,
|
||||
_ => panic!("unsupported float: {self:?}"),
|
||||
},
|
||||
RegKind::Vector => dl.vector_align(self.size).abi,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Return value from the `homogeneous_aggregate` test function.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub enum HomogeneousAggregate {
|
||||
/// Yes, all the "leaf fields" of this struct are passed in the
|
||||
/// same way (specified in the `Reg` value).
|
||||
Homogeneous(Reg),
|
||||
|
||||
/// There are no leaf fields at all.
|
||||
NoData,
|
||||
}
|
||||
|
||||
/// Error from the `homogeneous_aggregate` test function, indicating
|
||||
/// there are distinct leaf fields passed in different ways,
|
||||
/// or this is uninhabited.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct Heterogeneous;
|
||||
|
||||
impl HomogeneousAggregate {
|
||||
/// If this is a homogeneous aggregate, returns the homogeneous
|
||||
/// unit, else `None`.
|
||||
pub fn unit(self) -> Option<Reg> {
|
||||
match self {
|
||||
HomogeneousAggregate::Homogeneous(reg) => Some(reg),
|
||||
HomogeneousAggregate::NoData => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to combine two `HomogeneousAggregate`s, e.g. from two fields in
|
||||
/// the same `struct`. Only succeeds if only one of them has any data,
|
||||
/// or both units are identical.
|
||||
fn merge(self, other: HomogeneousAggregate) -> Result<HomogeneousAggregate, Heterogeneous> {
|
||||
match (self, other) {
|
||||
(x, HomogeneousAggregate::NoData) | (HomogeneousAggregate::NoData, x) => Ok(x),
|
||||
|
||||
(HomogeneousAggregate::Homogeneous(a), HomogeneousAggregate::Homogeneous(b)) => {
|
||||
if a != b {
|
||||
return Err(Heterogeneous);
|
||||
}
|
||||
Ok(self)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, Ty> TyAndLayout<'a, Ty> {
|
||||
/// Returns `true` if this is an aggregate type (including a ScalarPair!)
|
||||
pub fn is_aggregate(&self) -> bool {
|
||||
match self.abi {
|
||||
Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } => false,
|
||||
Abi::ScalarPair(..) | Abi::Aggregate { .. } => true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns `Homogeneous` if this layout is an aggregate containing fields of
|
||||
/// only a single type (e.g., `(u32, u32)`). Such aggregates are often
|
||||
/// special-cased in ABIs.
|
||||
///
|
||||
/// Note: We generally ignore 1-ZST fields when computing this value (see #56877).
|
||||
///
|
||||
/// This is public so that it can be used in unit tests, but
|
||||
/// should generally only be relevant to the ABI details of
|
||||
/// specific targets.
|
||||
pub fn homogeneous_aggregate<C>(&self, cx: &C) -> Result<HomogeneousAggregate, Heterogeneous>
|
||||
where
|
||||
Ty: TyAbiInterface<'a, C> + Copy,
|
||||
{
|
||||
match self.abi {
|
||||
Abi::Uninhabited => Err(Heterogeneous),
|
||||
|
||||
// The primitive for this algorithm.
|
||||
Abi::Scalar(scalar) => {
|
||||
let kind = match scalar.primitive() {
|
||||
abi::Int(..) | abi::Pointer(_) => RegKind::Integer,
|
||||
abi::Float(_) => RegKind::Float,
|
||||
};
|
||||
Ok(HomogeneousAggregate::Homogeneous(Reg { kind, size: self.size }))
|
||||
}
|
||||
|
||||
Abi::Vector { .. } => {
|
||||
assert!(!self.is_zst());
|
||||
Ok(HomogeneousAggregate::Homogeneous(Reg {
|
||||
kind: RegKind::Vector,
|
||||
size: self.size,
|
||||
}))
|
||||
}
|
||||
|
||||
Abi::ScalarPair(..) | Abi::Aggregate { sized: true } => {
|
||||
// Helper for computing `homogeneous_aggregate`, allowing a custom
|
||||
// starting offset (used below for handling variants).
|
||||
let from_fields_at =
|
||||
|layout: Self,
|
||||
start: Size|
|
||||
-> Result<(HomogeneousAggregate, Size), Heterogeneous> {
|
||||
let is_union = match layout.fields {
|
||||
FieldsShape::Primitive => {
|
||||
unreachable!("aggregates can't have `FieldsShape::Primitive`")
|
||||
}
|
||||
FieldsShape::Array { count, .. } => {
|
||||
assert_eq!(start, Size::ZERO);
|
||||
|
||||
let result = if count > 0 {
|
||||
layout.field(cx, 0).homogeneous_aggregate(cx)?
|
||||
} else {
|
||||
HomogeneousAggregate::NoData
|
||||
};
|
||||
return Ok((result, layout.size));
|
||||
}
|
||||
FieldsShape::Union(_) => true,
|
||||
FieldsShape::Arbitrary { .. } => false,
|
||||
};
|
||||
|
||||
let mut result = HomogeneousAggregate::NoData;
|
||||
let mut total = start;
|
||||
|
||||
for i in 0..layout.fields.count() {
|
||||
let field = layout.field(cx, i);
|
||||
if field.is_1zst() {
|
||||
// No data here and no impact on layout, can be ignored.
|
||||
// (We might be able to also ignore all aligned ZST but that's less clear.)
|
||||
continue;
|
||||
}
|
||||
|
||||
if !is_union && total != layout.fields.offset(i) {
|
||||
// This field isn't just after the previous one we considered, abort.
|
||||
return Err(Heterogeneous);
|
||||
}
|
||||
|
||||
result = result.merge(field.homogeneous_aggregate(cx)?)?;
|
||||
|
||||
// Keep track of the offset (without padding).
|
||||
let size = field.size;
|
||||
if is_union {
|
||||
total = total.max(size);
|
||||
} else {
|
||||
total += size;
|
||||
}
|
||||
}
|
||||
|
||||
Ok((result, total))
|
||||
};
|
||||
|
||||
let (mut result, mut total) = from_fields_at(*self, Size::ZERO)?;
|
||||
|
||||
match &self.variants {
|
||||
abi::Variants::Single { .. } => {}
|
||||
abi::Variants::Multiple { variants, .. } => {
|
||||
// Treat enum variants like union members.
|
||||
// HACK(eddyb) pretend the `enum` field (discriminant)
|
||||
// is at the start of every variant (otherwise the gap
|
||||
// at the start of all variants would disqualify them).
|
||||
//
|
||||
// NB: for all tagged `enum`s (which include all non-C-like
|
||||
// `enum`s with defined FFI representation), this will
|
||||
// match the homogeneous computation on the equivalent
|
||||
// `struct { tag; union { variant1; ... } }` and/or
|
||||
// `union { struct { tag; variant1; } ... }`
|
||||
// (the offsets of variant fields should be identical
|
||||
// between the two for either to be a homogeneous aggregate).
|
||||
let variant_start = total;
|
||||
for variant_idx in variants.indices() {
|
||||
let (variant_result, variant_total) =
|
||||
from_fields_at(self.for_variant(cx, variant_idx), variant_start)?;
|
||||
|
||||
result = result.merge(variant_result)?;
|
||||
total = total.max(variant_total);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// There needs to be no padding.
|
||||
if total != self.size {
|
||||
Err(Heterogeneous)
|
||||
} else {
|
||||
match result {
|
||||
HomogeneousAggregate::Homogeneous(_) => {
|
||||
assert_ne!(total, Size::ZERO);
|
||||
}
|
||||
HomogeneousAggregate::NoData => {
|
||||
assert_eq!(total, Size::ZERO);
|
||||
}
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
}
|
||||
Abi::Aggregate { sized: false } => Err(Heterogeneous),
|
||||
}
|
||||
}
|
||||
}
|
@ -11,6 +11,10 @@
|
||||
Variants, WrappingRange,
|
||||
};
|
||||
|
||||
mod ty;
|
||||
|
||||
pub use ty::{FIRST_VARIANT, FieldIdx, Layout, TyAbiInterface, TyAndLayout, VariantIdx};
|
||||
|
||||
// A variant is absent if it's uninhabited and only has ZST fields.
|
||||
// Present uninhabited variants only require space for their fields,
|
||||
// but *not* an encoding of the discriminant (e.g., a tag value).
|
||||
|
@ -6,10 +6,8 @@
|
||||
use rustc_data_structures::intern::Interned;
|
||||
use rustc_macros::HashStable_Generic;
|
||||
|
||||
pub mod call;
|
||||
|
||||
// Explicitly import `Float` to avoid ambiguity with `Primitive::Float`.
|
||||
pub use rustc_abi::{Float, *};
|
||||
use crate::{Float, *};
|
||||
|
||||
rustc_index::newtype_index! {
|
||||
/// The *source-order* index of a field in a variant.
|
||||
|
@ -1,6 +1,7 @@
|
||||
// tidy-alphabetical-start
|
||||
#![cfg_attr(feature = "nightly", allow(internal_features))]
|
||||
#![cfg_attr(feature = "nightly", doc(rust_logo))]
|
||||
#![cfg_attr(feature = "nightly", feature(rustc_attrs))]
|
||||
#![cfg_attr(feature = "nightly", feature(rustdoc_internals))]
|
||||
#![cfg_attr(feature = "nightly", feature(step_trait))]
|
||||
#![warn(unreachable_pub)]
|
||||
@ -22,11 +23,16 @@
|
||||
#[cfg(feature = "nightly")]
|
||||
use rustc_macros::{Decodable_Generic, Encodable_Generic};
|
||||
|
||||
mod callconv;
|
||||
mod layout;
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
pub use layout::{LayoutCalculator, LayoutCalculatorError};
|
||||
pub use callconv::{Heterogeneous, HomogeneousAggregate, Reg, RegKind};
|
||||
pub use layout::{
|
||||
FIRST_VARIANT, FieldIdx, Layout, LayoutCalculator, LayoutCalculatorError, TyAbiInterface,
|
||||
TyAndLayout, VariantIdx,
|
||||
};
|
||||
|
||||
/// Requirements for a `StableHashingContext` to be used in this crate.
|
||||
/// This is a hack to allow using the `HashStable_Generic` derive macro
|
||||
|
@ -12,6 +12,7 @@
|
||||
use std::ops::{Bound, Deref};
|
||||
use std::{fmt, iter, mem};
|
||||
|
||||
use rustc_abi::{FieldIdx, Layout, LayoutS, TargetDataLayout, VariantIdx};
|
||||
use rustc_ast::{self as ast, attr};
|
||||
use rustc_data_structures::defer;
|
||||
use rustc_data_structures::fingerprint::Fingerprint;
|
||||
@ -48,7 +49,6 @@
|
||||
use rustc_span::def_id::{CRATE_DEF_ID, DefPathHash, StableCrateId};
|
||||
use rustc_span::symbol::{Ident, Symbol, kw, sym};
|
||||
use rustc_span::{DUMMY_SP, Span};
|
||||
use rustc_target::abi::{FieldIdx, Layout, LayoutS, TargetDataLayout, VariantIdx};
|
||||
use rustc_target::spec::abi;
|
||||
use rustc_type_ir::TyKind::*;
|
||||
use rustc_type_ir::fold::TypeFoldable;
|
||||
|
@ -1,10 +1,11 @@
|
||||
use std::fmt;
|
||||
use std::str::FromStr;
|
||||
|
||||
pub use rustc_abi::{Reg, RegKind};
|
||||
use rustc_macros::HashStable_Generic;
|
||||
use rustc_span::Symbol;
|
||||
|
||||
use crate::abi::{self, Abi, Align, FieldsShape, HasDataLayout, Size, TyAbiInterface, TyAndLayout};
|
||||
use crate::abi::{self, Abi, Align, HasDataLayout, Size, TyAbiInterface, TyAndLayout};
|
||||
use crate::spec::{self, HasTargetSpec, HasWasmCAbiOpt, WasmCAbi};
|
||||
|
||||
mod aarch64;
|
||||
@ -192,63 +193,6 @@ pub fn eq_abi(&self, other: &Self) -> bool {
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
|
||||
pub enum RegKind {
|
||||
Integer,
|
||||
Float,
|
||||
Vector,
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
|
||||
pub struct Reg {
|
||||
pub kind: RegKind,
|
||||
pub size: Size,
|
||||
}
|
||||
|
||||
macro_rules! reg_ctor {
|
||||
($name:ident, $kind:ident, $bits:expr) => {
|
||||
pub fn $name() -> Reg {
|
||||
Reg { kind: RegKind::$kind, size: Size::from_bits($bits) }
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl Reg {
|
||||
reg_ctor!(i8, Integer, 8);
|
||||
reg_ctor!(i16, Integer, 16);
|
||||
reg_ctor!(i32, Integer, 32);
|
||||
reg_ctor!(i64, Integer, 64);
|
||||
reg_ctor!(i128, Integer, 128);
|
||||
|
||||
reg_ctor!(f32, Float, 32);
|
||||
reg_ctor!(f64, Float, 64);
|
||||
}
|
||||
|
||||
impl Reg {
|
||||
pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
|
||||
let dl = cx.data_layout();
|
||||
match self.kind {
|
||||
RegKind::Integer => match self.size.bits() {
|
||||
1 => dl.i1_align.abi,
|
||||
2..=8 => dl.i8_align.abi,
|
||||
9..=16 => dl.i16_align.abi,
|
||||
17..=32 => dl.i32_align.abi,
|
||||
33..=64 => dl.i64_align.abi,
|
||||
65..=128 => dl.i128_align.abi,
|
||||
_ => panic!("unsupported integer: {self:?}"),
|
||||
},
|
||||
RegKind::Float => match self.size.bits() {
|
||||
16 => dl.f16_align.abi,
|
||||
32 => dl.f32_align.abi,
|
||||
64 => dl.f64_align.abi,
|
||||
128 => dl.f128_align.abi,
|
||||
_ => panic!("unsupported float: {self:?}"),
|
||||
},
|
||||
RegKind::Vector => dl.vector_align(self.size).abi,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// An argument passed entirely registers with the
|
||||
/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
|
||||
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
|
||||
@ -380,195 +324,6 @@ pub fn eq_abi(&self, other: &Self) -> bool {
|
||||
}
|
||||
}
|
||||
|
||||
/// Return value from the `homogeneous_aggregate` test function.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub enum HomogeneousAggregate {
|
||||
/// Yes, all the "leaf fields" of this struct are passed in the
|
||||
/// same way (specified in the `Reg` value).
|
||||
Homogeneous(Reg),
|
||||
|
||||
/// There are no leaf fields at all.
|
||||
NoData,
|
||||
}
|
||||
|
||||
/// Error from the `homogeneous_aggregate` test function, indicating
|
||||
/// there are distinct leaf fields passed in different ways,
|
||||
/// or this is uninhabited.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct Heterogeneous;
|
||||
|
||||
impl HomogeneousAggregate {
|
||||
/// If this is a homogeneous aggregate, returns the homogeneous
|
||||
/// unit, else `None`.
|
||||
pub fn unit(self) -> Option<Reg> {
|
||||
match self {
|
||||
HomogeneousAggregate::Homogeneous(reg) => Some(reg),
|
||||
HomogeneousAggregate::NoData => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to combine two `HomogeneousAggregate`s, e.g. from two fields in
|
||||
/// the same `struct`. Only succeeds if only one of them has any data,
|
||||
/// or both units are identical.
|
||||
fn merge(self, other: HomogeneousAggregate) -> Result<HomogeneousAggregate, Heterogeneous> {
|
||||
match (self, other) {
|
||||
(x, HomogeneousAggregate::NoData) | (HomogeneousAggregate::NoData, x) => Ok(x),
|
||||
|
||||
(HomogeneousAggregate::Homogeneous(a), HomogeneousAggregate::Homogeneous(b)) => {
|
||||
if a != b {
|
||||
return Err(Heterogeneous);
|
||||
}
|
||||
Ok(self)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, Ty> TyAndLayout<'a, Ty> {
|
||||
/// Returns `true` if this is an aggregate type (including a ScalarPair!)
|
||||
fn is_aggregate(&self) -> bool {
|
||||
match self.abi {
|
||||
Abi::Uninhabited | Abi::Scalar(_) | Abi::Vector { .. } => false,
|
||||
Abi::ScalarPair(..) | Abi::Aggregate { .. } => true,
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns `Homogeneous` if this layout is an aggregate containing fields of
|
||||
/// only a single type (e.g., `(u32, u32)`). Such aggregates are often
|
||||
/// special-cased in ABIs.
|
||||
///
|
||||
/// Note: We generally ignore 1-ZST fields when computing this value (see #56877).
|
||||
///
|
||||
/// This is public so that it can be used in unit tests, but
|
||||
/// should generally only be relevant to the ABI details of
|
||||
/// specific targets.
|
||||
pub fn homogeneous_aggregate<C>(&self, cx: &C) -> Result<HomogeneousAggregate, Heterogeneous>
|
||||
where
|
||||
Ty: TyAbiInterface<'a, C> + Copy,
|
||||
{
|
||||
match self.abi {
|
||||
Abi::Uninhabited => Err(Heterogeneous),
|
||||
|
||||
// The primitive for this algorithm.
|
||||
Abi::Scalar(scalar) => {
|
||||
let kind = match scalar.primitive() {
|
||||
abi::Int(..) | abi::Pointer(_) => RegKind::Integer,
|
||||
abi::Float(_) => RegKind::Float,
|
||||
};
|
||||
Ok(HomogeneousAggregate::Homogeneous(Reg { kind, size: self.size }))
|
||||
}
|
||||
|
||||
Abi::Vector { .. } => {
|
||||
assert!(!self.is_zst());
|
||||
Ok(HomogeneousAggregate::Homogeneous(Reg {
|
||||
kind: RegKind::Vector,
|
||||
size: self.size,
|
||||
}))
|
||||
}
|
||||
|
||||
Abi::ScalarPair(..) | Abi::Aggregate { sized: true } => {
|
||||
// Helper for computing `homogeneous_aggregate`, allowing a custom
|
||||
// starting offset (used below for handling variants).
|
||||
let from_fields_at =
|
||||
|layout: Self,
|
||||
start: Size|
|
||||
-> Result<(HomogeneousAggregate, Size), Heterogeneous> {
|
||||
let is_union = match layout.fields {
|
||||
FieldsShape::Primitive => {
|
||||
unreachable!("aggregates can't have `FieldsShape::Primitive`")
|
||||
}
|
||||
FieldsShape::Array { count, .. } => {
|
||||
assert_eq!(start, Size::ZERO);
|
||||
|
||||
let result = if count > 0 {
|
||||
layout.field(cx, 0).homogeneous_aggregate(cx)?
|
||||
} else {
|
||||
HomogeneousAggregate::NoData
|
||||
};
|
||||
return Ok((result, layout.size));
|
||||
}
|
||||
FieldsShape::Union(_) => true,
|
||||
FieldsShape::Arbitrary { .. } => false,
|
||||
};
|
||||
|
||||
let mut result = HomogeneousAggregate::NoData;
|
||||
let mut total = start;
|
||||
|
||||
for i in 0..layout.fields.count() {
|
||||
let field = layout.field(cx, i);
|
||||
if field.is_1zst() {
|
||||
// No data here and no impact on layout, can be ignored.
|
||||
// (We might be able to also ignore all aligned ZST but that's less clear.)
|
||||
continue;
|
||||
}
|
||||
|
||||
if !is_union && total != layout.fields.offset(i) {
|
||||
// This field isn't just after the previous one we considered, abort.
|
||||
return Err(Heterogeneous);
|
||||
}
|
||||
|
||||
result = result.merge(field.homogeneous_aggregate(cx)?)?;
|
||||
|
||||
// Keep track of the offset (without padding).
|
||||
let size = field.size;
|
||||
if is_union {
|
||||
total = total.max(size);
|
||||
} else {
|
||||
total += size;
|
||||
}
|
||||
}
|
||||
|
||||
Ok((result, total))
|
||||
};
|
||||
|
||||
let (mut result, mut total) = from_fields_at(*self, Size::ZERO)?;
|
||||
|
||||
match &self.variants {
|
||||
abi::Variants::Single { .. } => {}
|
||||
abi::Variants::Multiple { variants, .. } => {
|
||||
// Treat enum variants like union members.
|
||||
// HACK(eddyb) pretend the `enum` field (discriminant)
|
||||
// is at the start of every variant (otherwise the gap
|
||||
// at the start of all variants would disqualify them).
|
||||
//
|
||||
// NB: for all tagged `enum`s (which include all non-C-like
|
||||
// `enum`s with defined FFI representation), this will
|
||||
// match the homogeneous computation on the equivalent
|
||||
// `struct { tag; union { variant1; ... } }` and/or
|
||||
// `union { struct { tag; variant1; } ... }`
|
||||
// (the offsets of variant fields should be identical
|
||||
// between the two for either to be a homogeneous aggregate).
|
||||
let variant_start = total;
|
||||
for variant_idx in variants.indices() {
|
||||
let (variant_result, variant_total) =
|
||||
from_fields_at(self.for_variant(cx, variant_idx), variant_start)?;
|
||||
|
||||
result = result.merge(variant_result)?;
|
||||
total = total.max(variant_total);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// There needs to be no padding.
|
||||
if total != self.size {
|
||||
Err(Heterogeneous)
|
||||
} else {
|
||||
match result {
|
||||
HomogeneousAggregate::Homogeneous(_) => {
|
||||
assert_ne!(total, Size::ZERO);
|
||||
}
|
||||
HomogeneousAggregate::NoData => {
|
||||
assert_eq!(total, Size::ZERO);
|
||||
}
|
||||
}
|
||||
Ok(result)
|
||||
}
|
||||
}
|
||||
Abi::Aggregate { sized: false } => Err(Heterogeneous),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Information about how to pass an argument to,
|
||||
/// or return a value from, a function, under some ABI.
|
||||
#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
|
||||
|
@ -21,8 +21,8 @@
|
||||
|
||||
use std::path::{Path, PathBuf};
|
||||
|
||||
pub mod abi;
|
||||
pub mod asm;
|
||||
pub mod callconv;
|
||||
pub mod json;
|
||||
pub mod spec;
|
||||
pub mod target_features;
|
||||
@ -30,6 +30,15 @@
|
||||
#[cfg(test)]
|
||||
mod tests;
|
||||
|
||||
pub mod abi {
|
||||
pub(crate) use Float::*;
|
||||
pub(crate) use Primitive::*;
|
||||
// Explicitly import `Float` to avoid ambiguity with `Primitive::Float`.
|
||||
pub use rustc_abi::{Float, *};
|
||||
|
||||
pub use crate::callconv as call;
|
||||
}
|
||||
|
||||
pub use rustc_abi::HashStableContext;
|
||||
|
||||
/// The name of rustc's own place to organize libraries.
|
||||
|
Loading…
Reference in New Issue
Block a user