Make alias bounds sound in the new solver

This commit is contained in:
Michael Goulet 2023-04-22 03:11:25 +00:00
parent 3a37c2f052
commit 0dbaae4165
6 changed files with 233 additions and 2 deletions

View File

@ -8,6 +8,7 @@
use rustc_hir::def_id::DefId; use rustc_hir::def_id::DefId;
use rustc_infer::traits::query::NoSolution; use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::util::elaborate; use rustc_infer::traits::util::elaborate;
use rustc_infer::traits::Reveal;
use rustc_middle::traits::solve::{CanonicalResponse, Certainty, Goal, MaybeCause, QueryResult}; use rustc_middle::traits::solve::{CanonicalResponse, Certainty, Goal, MaybeCause, QueryResult};
use rustc_middle::ty::fast_reject::TreatProjections; use rustc_middle::ty::fast_reject::TreatProjections;
use rustc_middle::ty::TypeFoldable; use rustc_middle::ty::TypeFoldable;
@ -87,7 +88,9 @@ pub(super) enum CandidateSource {
} }
/// Methods used to assemble candidates for either trait or projection goals. /// Methods used to assemble candidates for either trait or projection goals.
pub(super) trait GoalKind<'tcx>: TypeFoldable<TyCtxt<'tcx>> + Copy + Eq { pub(super) trait GoalKind<'tcx>:
TypeFoldable<TyCtxt<'tcx>> + Copy + Eq + std::fmt::Display
{
fn self_ty(self) -> Ty<'tcx>; fn self_ty(self) -> Ty<'tcx>;
fn trait_ref(self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx>; fn trait_ref(self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx>;
@ -106,6 +109,16 @@ fn consider_implied_clause(
requirements: impl IntoIterator<Item = Goal<'tcx, ty::Predicate<'tcx>>>, requirements: impl IntoIterator<Item = Goal<'tcx, ty::Predicate<'tcx>>>,
) -> QueryResult<'tcx>; ) -> QueryResult<'tcx>;
/// Consider a bound originating from the item bounds of an alias. For this we
/// require that the well-formed requirements of the self type of the goal
/// are "satisfied from the param-env".
/// See [`EvalCtxt::validate_alias_bound_self_from_param_env`].
fn consider_alias_bound_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
assumption: ty::Predicate<'tcx>,
) -> QueryResult<'tcx>;
// Consider a clause specifically for a `dyn Trait` self type. This requires // Consider a clause specifically for a `dyn Trait` self type. This requires
// additionally checking all of the supertraits and object bounds to hold, // additionally checking all of the supertraits and object bounds to hold,
// since they're not implied by the well-formedness of the object type. // since they're not implied by the well-formedness of the object type.
@ -463,7 +476,7 @@ fn assemble_alias_bound_candidates<G: GoalKind<'tcx>>(
for assumption in self.tcx().item_bounds(alias_ty.def_id).subst(self.tcx(), alias_ty.substs) for assumption in self.tcx().item_bounds(alias_ty.def_id).subst(self.tcx(), alias_ty.substs)
{ {
match G::consider_implied_clause(self, goal, assumption, []) { match G::consider_alias_bound_candidate(self, goal, assumption) {
Ok(result) => { Ok(result) => {
candidates.push(Candidate { source: CandidateSource::AliasBound, result }) candidates.push(Candidate { source: CandidateSource::AliasBound, result })
} }
@ -472,6 +485,105 @@ fn assemble_alias_bound_candidates<G: GoalKind<'tcx>>(
} }
} }
/// Check that we are allowed to use an alias bound originating from the self
/// type of this goal. This means something different depending on the self type's
/// alias kind.
///
/// * Projection: Given a goal with a self type such as `<Ty as Trait>::Assoc`,
/// we require that the bound `Ty: Trait` can be proven using either a nested alias
/// bound candidate, or a param-env candidate.
///
/// * Opaque: The param-env must be in `Reveal::UserFacing` mode. Otherwise,
/// the goal should be proven by using the hidden type instead.
#[instrument(level = "debug", skip(self), ret)]
pub(super) fn validate_alias_bound_self_from_param_env<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
) -> QueryResult<'tcx> {
match *goal.predicate.self_ty().kind() {
ty::Alias(ty::Projection, projection_ty) => {
let mut param_env_candidates = vec![];
let self_trait_ref = projection_ty.trait_ref(self.tcx());
if self_trait_ref.self_ty().is_ty_var() {
return self
.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS);
}
let trait_goal: Goal<'_, ty::TraitPredicate<'tcx>> = goal.with(
self.tcx(),
ty::TraitPredicate {
trait_ref: self_trait_ref,
constness: ty::BoundConstness::NotConst,
polarity: ty::ImplPolarity::Positive,
},
);
self.assemble_param_env_candidates(trait_goal, &mut param_env_candidates);
// FIXME: We probably need some sort of recursion depth check here.
// Can't come up with an example yet, though, and the worst case
// we can have is a compiler stack overflow...
self.assemble_alias_bound_candidates(trait_goal, &mut param_env_candidates);
// FIXME: We must also consider alias-bound candidates for a peculiar
// class of built-in candidates that I'll call "defaulted" built-ins.
//
// For example, we always know that `T: Pointee` is implemented, but
// we do not always know what `<T as Pointee>::Metadata` actually is,
// similar to if we had a user-defined impl with a `default type ...`.
// For these traits, since we're not able to always normalize their
// associated types to a concrete type, we must consider their alias bounds
// instead, so we can prove bounds such as `<T as Pointee>::Metadata: Copy`.
self.assemble_alias_bound_candidates_for_builtin_impl_default_items(
trait_goal,
&mut param_env_candidates,
);
self.merge_candidates(param_env_candidates)
}
ty::Alias(ty::Opaque, _opaque_ty) => match goal.param_env.reveal() {
Reveal::UserFacing => {
self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes)
}
Reveal::All => return Err(NoSolution),
},
_ => bug!("only expected to be called on alias tys"),
}
}
/// Assemble a subset of builtin impl candidates for a class of candidates called
/// "defaulted" built-in traits.
///
/// For example, we always know that `T: Pointee` is implemented, but we do not
/// always know what `<T as Pointee>::Metadata` actually is! See the comment in
/// [`EvalCtxt::validate_alias_bound_self_from_param_env`] for more detail.
#[instrument(level = "debug", skip_all)]
fn assemble_alias_bound_candidates_for_builtin_impl_default_items<G: GoalKind<'tcx>>(
&mut self,
goal: Goal<'tcx, G>,
candidates: &mut Vec<Candidate<'tcx>>,
) {
let lang_items = self.tcx().lang_items();
let trait_def_id = goal.predicate.trait_def_id(self.tcx());
// You probably shouldn't add anything to this list unless you
// know what you're doing.
let result = if lang_items.pointee_trait() == Some(trait_def_id) {
G::consider_builtin_pointee_candidate(self, goal)
} else if lang_items.discriminant_kind_trait() == Some(trait_def_id) {
G::consider_builtin_discriminant_kind_candidate(self, goal)
} else {
Err(NoSolution)
};
match result {
Ok(result) => {
candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result })
}
Err(NoSolution) => (),
}
}
#[instrument(level = "debug", skip_all)] #[instrument(level = "debug", skip_all)]
fn assemble_object_bound_candidates<G: GoalKind<'tcx>>( fn assemble_object_bound_candidates<G: GoalKind<'tcx>>(
&mut self, &mut self,

View File

@ -83,6 +83,30 @@ fn consider_implied_clause(
} }
} }
fn consider_alias_bound_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
assumption: ty::Predicate<'tcx>,
) -> QueryResult<'tcx> {
if let Some(poly_projection_pred) = assumption.to_opt_poly_projection_pred()
&& poly_projection_pred.projection_def_id() == goal.predicate.def_id()
{
ecx.probe(|ecx| {
let assumption_projection_pred =
ecx.instantiate_binder_with_infer(poly_projection_pred);
ecx.eq(
goal.param_env,
goal.predicate.projection_ty,
assumption_projection_pred.projection_ty,
)?;
ecx.eq(goal.param_env, goal.predicate.term, assumption_projection_pred.term)?;
ecx.validate_alias_bound_self_from_param_env(goal)
})
} else {
Err(NoSolution)
}
}
fn consider_object_bound_candidate( fn consider_object_bound_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>, ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>, goal: Goal<'tcx, Self>,

View File

@ -105,6 +105,30 @@ fn consider_implied_clause(
} }
} }
fn consider_alias_bound_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
assumption: ty::Predicate<'tcx>,
) -> QueryResult<'tcx> {
if let Some(poly_trait_pred) = assumption.to_opt_poly_trait_pred()
&& poly_trait_pred.def_id() == goal.predicate.def_id()
{
// FIXME: Constness and polarity
ecx.probe(|ecx| {
let assumption_trait_pred =
ecx.instantiate_binder_with_infer(poly_trait_pred);
ecx.eq(
goal.param_env,
goal.predicate.trait_ref,
assumption_trait_pred.trait_ref,
)?;
ecx.validate_alias_bound_self_from_param_env(goal)
})
} else {
Err(NoSolution)
}
}
fn consider_object_bound_candidate( fn consider_object_bound_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>, ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>, goal: Goal<'tcx, Self>,

View File

@ -0,0 +1,27 @@
// compile-flags: -Ztrait-solver=next
// Makes sure that alias bounds are not unsound!
#![feature(trivial_bounds)]
trait Foo {
type Item: Copy
where
<Self as Foo>::Item: Copy;
fn copy_me(x: &Self::Item) -> Self::Item {
*x
}
}
impl Foo for () {
type Item = String where String: Copy;
}
fn main() {
let x = String::from("hello, world");
drop(<() as Foo>::copy_me(&x));
//~^ ERROR `<() as Foo>::Item: Copy` is not satisfied
//~| ERROR `<() as Foo>::Item` is not well-formed
println!("{x}");
}

View File

@ -0,0 +1,24 @@
error[E0277]: the trait bound `<() as Foo>::Item: Copy` is not satisfied
--> $DIR/alias-bound-unsound.rs:23:10
|
LL | drop(<() as Foo>::copy_me(&x));
| ^^^^^^^^^^^^^^^^^^^^^^^^ the trait `Copy` is not implemented for `<() as Foo>::Item`
|
note: required by a bound in `Foo::Item`
--> $DIR/alias-bound-unsound.rs:10:30
|
LL | type Item: Copy
| ---- required by a bound in this associated type
LL | where
LL | <Self as Foo>::Item: Copy;
| ^^^^ required by this bound in `Foo::Item`
error: the type `<() as Foo>::Item` is not well-formed
--> $DIR/alias-bound-unsound.rs:23:10
|
LL | drop(<() as Foo>::copy_me(&x));
| ^^^^^^^^^^^^^^^^^^^^^^^^
error: aborting due to 2 previous errors
For more information about this error, try `rustc --explain E0277`.

View File

@ -0,0 +1,20 @@
// compile-flags: -Ztrait-solver=next
// check-pass
trait A {
type A: B;
}
trait B {
type B: C;
}
trait C {}
fn needs_c<T: C>() {}
fn test<T: A>() {
needs_c::<<T::A as B>::B>();
}
fn main() {}