Propagate half-open ranges through THIR
This commit is contained in:
parent
8a77b3248f
commit
0ba6c4ab67
@ -851,17 +851,21 @@ pub fn is_full_range(&self, tcx: TyCtxt<'tcx>) -> Option<bool> {
|
||||
//
|
||||
// Also, for performance, it's important to only do the second `try_to_bits` if necessary.
|
||||
let lo_is_min = match self.lo {
|
||||
PatRangeBoundary::NegInfinity => true,
|
||||
PatRangeBoundary::Finite(value) => {
|
||||
let lo = value.try_to_bits(size).unwrap() ^ bias;
|
||||
lo <= min
|
||||
}
|
||||
PatRangeBoundary::PosInfinity => false,
|
||||
};
|
||||
if lo_is_min {
|
||||
let hi_is_max = match self.hi {
|
||||
PatRangeBoundary::NegInfinity => false,
|
||||
PatRangeBoundary::Finite(value) => {
|
||||
let hi = value.try_to_bits(size).unwrap() ^ bias;
|
||||
hi > max || hi == max && self.end == RangeEnd::Included
|
||||
}
|
||||
PatRangeBoundary::PosInfinity => true,
|
||||
};
|
||||
if hi_is_max {
|
||||
return Some(true);
|
||||
@ -920,11 +924,16 @@ pub fn overlaps(
|
||||
|
||||
impl<'tcx> fmt::Display for PatRange<'tcx> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
let PatRangeBoundary::Finite(value) = &self.lo;
|
||||
write!(f, "{value}")?;
|
||||
write!(f, "{}", self.end)?;
|
||||
let PatRangeBoundary::Finite(value) = &self.hi;
|
||||
write!(f, "{value}")?;
|
||||
if let PatRangeBoundary::Finite(value) = &self.lo {
|
||||
write!(f, "{value}")?;
|
||||
}
|
||||
if let PatRangeBoundary::Finite(value) = &self.hi {
|
||||
write!(f, "{}", self.end)?;
|
||||
write!(f, "{value}")?;
|
||||
} else {
|
||||
// `0..` is parsed as an inclusive range, we must display it correctly.
|
||||
write!(f, "..")?;
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
@ -934,38 +943,49 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
#[derive(Copy, Clone, Debug, PartialEq, HashStable, TypeVisitable)]
|
||||
pub enum PatRangeBoundary<'tcx> {
|
||||
Finite(mir::Const<'tcx>),
|
||||
NegInfinity,
|
||||
PosInfinity,
|
||||
}
|
||||
|
||||
impl<'tcx> PatRangeBoundary<'tcx> {
|
||||
#[inline]
|
||||
pub fn lower_bound(ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
|
||||
// Unwrap is ok because the type is known to be numeric.
|
||||
let c = ty.numeric_min_val(tcx).unwrap();
|
||||
let value = mir::Const::from_ty_const(c, tcx);
|
||||
Self::Finite(value)
|
||||
pub fn is_finite(self) -> bool {
|
||||
matches!(self, Self::Finite(..))
|
||||
}
|
||||
#[inline]
|
||||
pub fn upper_bound(ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
|
||||
// Unwrap is ok because the type is known to be numeric.
|
||||
let c = ty.numeric_max_val(tcx).unwrap();
|
||||
let value = mir::Const::from_ty_const(c, tcx);
|
||||
Self::Finite(value)
|
||||
}
|
||||
|
||||
#[inline]
|
||||
pub fn to_const(self, _ty: Ty<'tcx>, _tcx: TyCtxt<'tcx>) -> mir::Const<'tcx> {
|
||||
pub fn as_finite(self) -> Option<mir::Const<'tcx>> {
|
||||
match self {
|
||||
Self::Finite(value) => value,
|
||||
Self::Finite(value) => Some(value),
|
||||
Self::NegInfinity | Self::PosInfinity => None,
|
||||
}
|
||||
}
|
||||
pub fn eval_bits(
|
||||
self,
|
||||
_ty: Ty<'tcx>,
|
||||
tcx: TyCtxt<'tcx>,
|
||||
param_env: ty::ParamEnv<'tcx>,
|
||||
) -> u128 {
|
||||
#[inline]
|
||||
pub fn to_const(self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> mir::Const<'tcx> {
|
||||
match self {
|
||||
Self::Finite(value) => value,
|
||||
Self::NegInfinity => {
|
||||
// Unwrap is ok because the type is known to be numeric.
|
||||
let c = ty.numeric_min_val(tcx).unwrap();
|
||||
mir::Const::from_ty_const(c, tcx)
|
||||
}
|
||||
Self::PosInfinity => {
|
||||
// Unwrap is ok because the type is known to be numeric.
|
||||
let c = ty.numeric_max_val(tcx).unwrap();
|
||||
mir::Const::from_ty_const(c, tcx)
|
||||
}
|
||||
}
|
||||
}
|
||||
pub fn eval_bits(self, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> u128 {
|
||||
match self {
|
||||
Self::Finite(value) => value.eval_bits(tcx, param_env),
|
||||
Self::NegInfinity => {
|
||||
// Unwrap is ok because the type is known to be numeric.
|
||||
ty.numeric_min_and_max_as_bits(tcx).unwrap().0
|
||||
}
|
||||
Self::PosInfinity => {
|
||||
// Unwrap is ok because the type is known to be numeric.
|
||||
ty.numeric_min_and_max_as_bits(tcx).unwrap().1
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -979,6 +999,12 @@ pub fn compare_with(
|
||||
) -> Option<Ordering> {
|
||||
use PatRangeBoundary::*;
|
||||
match (self, other) {
|
||||
// When comparing with infinities, we must remember that `0u8..` and `0u8..=255`
|
||||
// describe the same range. These two shortcuts are ok, but for the rest we must check
|
||||
// bit values.
|
||||
(PosInfinity, PosInfinity) => return Some(Ordering::Equal),
|
||||
(NegInfinity, NegInfinity) => return Some(Ordering::Equal),
|
||||
|
||||
// This code is hot when compiling matches with many ranges. So we
|
||||
// special-case extraction of evaluated scalars for speed, for types where
|
||||
// raw data comparisons are appropriate. E.g. `unicode-normalization` has
|
||||
|
@ -187,24 +187,25 @@ fn lower_pattern_range(
|
||||
let (lo, lo_ascr, lo_inline) = self.lower_pattern_range_endpoint(lo_expr)?;
|
||||
let (hi, hi_ascr, hi_inline) = self.lower_pattern_range_endpoint(hi_expr)?;
|
||||
|
||||
let lo = lo.unwrap_or_else(|| PatRangeBoundary::lower_bound(ty, self.tcx));
|
||||
let hi = hi.unwrap_or_else(|| PatRangeBoundary::upper_bound(ty, self.tcx));
|
||||
let lo = lo.unwrap_or(PatRangeBoundary::NegInfinity);
|
||||
let hi = hi.unwrap_or(PatRangeBoundary::PosInfinity);
|
||||
|
||||
let cmp = lo.compare_with(hi, ty, self.tcx, self.param_env);
|
||||
let mut kind = match (end, cmp) {
|
||||
let mut kind = PatKind::Range(Box::new(PatRange { lo, hi, end, ty }));
|
||||
match (end, cmp) {
|
||||
// `x..y` where `x < y`.
|
||||
// Non-empty because the range includes at least `x`.
|
||||
(RangeEnd::Excluded, Some(Ordering::Less)) => {
|
||||
PatKind::Range(Box::new(PatRange { lo, hi, end, ty }))
|
||||
}
|
||||
// `x..=y` where `x == y`.
|
||||
(RangeEnd::Included, Some(Ordering::Equal)) => {
|
||||
PatKind::Constant { value: lo.to_const(ty, self.tcx) }
|
||||
}
|
||||
(RangeEnd::Excluded, Some(Ordering::Less)) => {}
|
||||
// `x..=y` where `x < y`.
|
||||
(RangeEnd::Included, Some(Ordering::Less)) => {
|
||||
PatKind::Range(Box::new(PatRange { lo, hi, end, ty }))
|
||||
(RangeEnd::Included, Some(Ordering::Less)) => {}
|
||||
// `x..=y` where `x == y` and `x` and `y` are finite.
|
||||
(RangeEnd::Included, Some(Ordering::Equal)) if lo.is_finite() && hi.is_finite() => {
|
||||
kind = PatKind::Constant { value: lo.as_finite().unwrap() };
|
||||
}
|
||||
// `..=x` where `x == ty::MIN`.
|
||||
(RangeEnd::Included, Some(Ordering::Equal)) if !lo.is_finite() => {}
|
||||
// `x..` where `x == ty::MAX` (yes, `x..` gives `RangeEnd::Included` since it is meant
|
||||
// to include `ty::MAX`).
|
||||
(RangeEnd::Included, Some(Ordering::Equal)) if !hi.is_finite() => {}
|
||||
// `x..y` where `x >= y`, or `x..=y` where `x > y`. The range is empty => error.
|
||||
_ => {
|
||||
// Emit a more appropriate message if there was overflow.
|
||||
@ -223,7 +224,7 @@ fn lower_pattern_range(
|
||||
};
|
||||
return Err(e);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// If we are handling a range with associated constants (e.g.
|
||||
// `Foo::<'a>::A..=Foo::B`), we need to put the ascriptions for the associated
|
||||
|
Loading…
Reference in New Issue
Block a user