Don't emit divide-by-zero panic paths in StepBy::len

I happened to notice today that there's actually two such calls emitted in the assembly: <https://rust.godbolt.org/z/1Wbbd3Ts6>

Since they're impossible, hopefully telling LLVM that will also help optimizations elsewhere.
This commit is contained in:
Scott McMurray 2024-04-06 11:37:57 -07:00
parent 773fb88e13
commit 00bd24766f
2 changed files with 75 additions and 31 deletions

View File

@ -1,6 +1,7 @@
use crate::{ use crate::{
intrinsics, intrinsics,
iter::{from_fn, TrustedLen, TrustedRandomAccess}, iter::{from_fn, TrustedLen, TrustedRandomAccess},
num::NonZeroUsize,
ops::{Range, Try}, ops::{Range, Try},
}; };
@ -22,7 +23,11 @@ pub struct StepBy<I> {
/// Additionally this type-dependent preprocessing means specialized implementations /// Additionally this type-dependent preprocessing means specialized implementations
/// cannot be used interchangeably. /// cannot be used interchangeably.
iter: I, iter: I,
step: usize, /// This field is `step - 1`, aka the correct amount to pass to `nth` when iterating.
/// It MUST NOT be `usize::MAX`, as `unsafe` code depends on being able to add one
/// without the risk of overflow. (This is important so that length calculations
/// don't need to check for division-by-zero, for example.)
step_minus_one: usize,
first_take: bool, first_take: bool,
} }
@ -31,7 +36,16 @@ impl<I> StepBy<I> {
pub(in crate::iter) fn new(iter: I, step: usize) -> StepBy<I> { pub(in crate::iter) fn new(iter: I, step: usize) -> StepBy<I> {
assert!(step != 0); assert!(step != 0);
let iter = <I as SpecRangeSetup<I>>::setup(iter, step); let iter = <I as SpecRangeSetup<I>>::setup(iter, step);
StepBy { iter, step: step - 1, first_take: true } StepBy { iter, step_minus_one: step - 1, first_take: true }
}
/// The `step` that was originally passed to `Iterator::step_by(step)`,
/// aka `self.step_minus_one + 1`.
#[inline]
fn original_step(&self) -> NonZeroUsize {
// SAFETY: By type invariant, `step_minus_one` cannot be `MAX`, which
// means the addition cannot overflow and the result cannot be zero.
unsafe { NonZeroUsize::new_unchecked(intrinsics::unchecked_add(self.step_minus_one, 1)) }
} }
} }
@ -81,8 +95,8 @@ impl<I> StepBy<I>
// The zero-based index starting from the end of the iterator of the // The zero-based index starting from the end of the iterator of the
// last element. Used in the `DoubleEndedIterator` implementation. // last element. Used in the `DoubleEndedIterator` implementation.
fn next_back_index(&self) -> usize { fn next_back_index(&self) -> usize {
let rem = self.iter.len() % (self.step + 1); let rem = self.iter.len() % self.original_step();
if self.first_take { if rem == 0 { self.step } else { rem - 1 } } else { rem } if self.first_take { if rem == 0 { self.step_minus_one } else { rem - 1 } } else { rem }
} }
} }
@ -209,7 +223,7 @@ unsafe impl<I: Iterator> StepByImpl<I> for StepBy<I> {
#[inline] #[inline]
default fn spec_next(&mut self) -> Option<I::Item> { default fn spec_next(&mut self) -> Option<I::Item> {
let step_size = if self.first_take { 0 } else { self.step }; let step_size = if self.first_take { 0 } else { self.step_minus_one };
self.first_take = false; self.first_take = false;
self.iter.nth(step_size) self.iter.nth(step_size)
} }
@ -217,22 +231,22 @@ unsafe impl<I: Iterator> StepByImpl<I> for StepBy<I> {
#[inline] #[inline]
default fn spec_size_hint(&self) -> (usize, Option<usize>) { default fn spec_size_hint(&self) -> (usize, Option<usize>) {
#[inline] #[inline]
fn first_size(step: usize) -> impl Fn(usize) -> usize { fn first_size(step: NonZeroUsize) -> impl Fn(usize) -> usize {
move |n| if n == 0 { 0 } else { 1 + (n - 1) / (step + 1) } move |n| if n == 0 { 0 } else { 1 + (n - 1) / step }
} }
#[inline] #[inline]
fn other_size(step: usize) -> impl Fn(usize) -> usize { fn other_size(step: NonZeroUsize) -> impl Fn(usize) -> usize {
move |n| n / (step + 1) move |n| n / step
} }
let (low, high) = self.iter.size_hint(); let (low, high) = self.iter.size_hint();
if self.first_take { if self.first_take {
let f = first_size(self.step); let f = first_size(self.original_step());
(f(low), high.map(f)) (f(low), high.map(f))
} else { } else {
let f = other_size(self.step); let f = other_size(self.original_step());
(f(low), high.map(f)) (f(low), high.map(f))
} }
} }
@ -247,10 +261,9 @@ fn other_size(step: usize) -> impl Fn(usize) -> usize {
} }
n -= 1; n -= 1;
} }
// n and self.step are indices, we need to add 1 to get the amount of elements // n and self.step_minus_one are indices, we need to add 1 to get the amount of elements
// When calling `.nth`, we need to subtract 1 again to convert back to an index // When calling `.nth`, we need to subtract 1 again to convert back to an index
// step + 1 can't overflow because `.step_by` sets `self.step` to `step - 1` let mut step = self.original_step().get();
let mut step = self.step + 1;
// n + 1 could overflow // n + 1 could overflow
// thus, if n is usize::MAX, instead of adding one, we call .nth(step) // thus, if n is usize::MAX, instead of adding one, we call .nth(step)
if n == usize::MAX { if n == usize::MAX {
@ -288,8 +301,11 @@ fn other_size(step: usize) -> impl Fn(usize) -> usize {
R: Try<Output = Acc>, R: Try<Output = Acc>,
{ {
#[inline] #[inline]
fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item> + '_ { fn nth<I: Iterator>(
move || iter.nth(step) iter: &mut I,
step_minus_one: usize,
) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth(step_minus_one)
} }
if self.first_take { if self.first_take {
@ -299,7 +315,7 @@ fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item
Some(x) => acc = f(acc, x)?, Some(x) => acc = f(acc, x)?,
} }
} }
from_fn(nth(&mut self.iter, self.step)).try_fold(acc, f) from_fn(nth(&mut self.iter, self.step_minus_one)).try_fold(acc, f)
} }
default fn spec_fold<Acc, F>(mut self, mut acc: Acc, mut f: F) -> Acc default fn spec_fold<Acc, F>(mut self, mut acc: Acc, mut f: F) -> Acc
@ -307,8 +323,11 @@ fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item
F: FnMut(Acc, Self::Item) -> Acc, F: FnMut(Acc, Self::Item) -> Acc,
{ {
#[inline] #[inline]
fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item> + '_ { fn nth<I: Iterator>(
move || iter.nth(step) iter: &mut I,
step_minus_one: usize,
) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth(step_minus_one)
} }
if self.first_take { if self.first_take {
@ -318,7 +337,7 @@ fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item
Some(x) => acc = f(acc, x), Some(x) => acc = f(acc, x),
} }
} }
from_fn(nth(&mut self.iter, self.step)).fold(acc, f) from_fn(nth(&mut self.iter, self.step_minus_one)).fold(acc, f)
} }
} }
@ -336,7 +355,7 @@ unsafe impl<I: DoubleEndedIterator + ExactSizeIterator> StepByBackImpl<I> for St
// is out of bounds because the length of `self.iter` does not exceed // is out of bounds because the length of `self.iter` does not exceed
// `usize::MAX` (because `I: ExactSizeIterator`) and `nth_back` is // `usize::MAX` (because `I: ExactSizeIterator`) and `nth_back` is
// zero-indexed // zero-indexed
let n = n.saturating_mul(self.step + 1).saturating_add(self.next_back_index()); let n = n.saturating_mul(self.original_step().get()).saturating_add(self.next_back_index());
self.iter.nth_back(n) self.iter.nth_back(n)
} }
@ -348,16 +367,16 @@ unsafe impl<I: DoubleEndedIterator + ExactSizeIterator> StepByBackImpl<I> for St
#[inline] #[inline]
fn nth_back<I: DoubleEndedIterator>( fn nth_back<I: DoubleEndedIterator>(
iter: &mut I, iter: &mut I,
step: usize, step_minus_one: usize,
) -> impl FnMut() -> Option<I::Item> + '_ { ) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth_back(step) move || iter.nth_back(step_minus_one)
} }
match self.next_back() { match self.next_back() {
None => try { init }, None => try { init },
Some(x) => { Some(x) => {
let acc = f(init, x)?; let acc = f(init, x)?;
from_fn(nth_back(&mut self.iter, self.step)).try_fold(acc, f) from_fn(nth_back(&mut self.iter, self.step_minus_one)).try_fold(acc, f)
} }
} }
} }
@ -371,16 +390,16 @@ fn nth_back<I: DoubleEndedIterator>(
#[inline] #[inline]
fn nth_back<I: DoubleEndedIterator>( fn nth_back<I: DoubleEndedIterator>(
iter: &mut I, iter: &mut I,
step: usize, step_minus_one: usize,
) -> impl FnMut() -> Option<I::Item> + '_ { ) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth_back(step) move || iter.nth_back(step_minus_one)
} }
match self.next_back() { match self.next_back() {
None => init, None => init,
Some(x) => { Some(x) => {
let acc = f(init, x); let acc = f(init, x);
from_fn(nth_back(&mut self.iter, self.step)).fold(acc, f) from_fn(nth_back(&mut self.iter, self.step_minus_one)).fold(acc, f)
} }
} }
} }
@ -424,8 +443,7 @@ unsafe impl StepByImpl<Range<$t>> for StepBy<Range<$t>> {
fn spec_next(&mut self) -> Option<$t> { fn spec_next(&mut self) -> Option<$t> {
// if a step size larger than the type has been specified fall back to // if a step size larger than the type has been specified fall back to
// t::MAX, in which case remaining will be at most 1. // t::MAX, in which case remaining will be at most 1.
// The `+ 1` can't overflow since the constructor substracted 1 from the original value. let step = <$t>::try_from(self.original_step().get()).unwrap_or(<$t>::MAX);
let step = <$t>::try_from(self.step + 1).unwrap_or(<$t>::MAX);
let remaining = self.iter.end; let remaining = self.iter.end;
if remaining > 0 { if remaining > 0 {
let val = self.iter.start; let val = self.iter.start;
@ -474,7 +492,7 @@ fn spec_fold<Acc, F>(self, init: Acc, mut f: F) -> Acc
{ {
// if a step size larger than the type has been specified fall back to // if a step size larger than the type has been specified fall back to
// t::MAX, in which case remaining will be at most 1. // t::MAX, in which case remaining will be at most 1.
let step = <$t>::try_from(self.step + 1).unwrap_or(<$t>::MAX); let step = <$t>::try_from(self.original_step().get()).unwrap_or(<$t>::MAX);
let remaining = self.iter.end; let remaining = self.iter.end;
let mut acc = init; let mut acc = init;
let mut val = self.iter.start; let mut val = self.iter.start;
@ -500,7 +518,7 @@ unsafe impl StepByBackImpl<Range<$t>> for StepBy<Range<$t>> {
fn spec_next_back(&mut self) -> Option<Self::Item> fn spec_next_back(&mut self) -> Option<Self::Item>
where Range<$t>: DoubleEndedIterator + ExactSizeIterator, where Range<$t>: DoubleEndedIterator + ExactSizeIterator,
{ {
let step = (self.step + 1) as $t; let step = self.original_step().get() as $t;
let remaining = self.iter.end; let remaining = self.iter.end;
if remaining > 0 { if remaining > 0 {
let start = self.iter.start; let start = self.iter.start;

View File

@ -0,0 +1,26 @@
//@ compile-flags: -O
#![crate_type = "lib"]
use std::iter::StepBy;
use std::slice::Iter;
// The constructor for `StepBy` ensures we can never end up needing to do zero
// checks on denominators, so check that the code isn't emitting panic paths.
// CHECK-LABEL: @step_by_len_std
#[no_mangle]
pub fn step_by_len_std(x: &StepBy<Iter<i32>>) -> usize {
// CHECK-NOT: div_by_zero
// CHECK: udiv
// CHECK-NOT: div_by_zero
x.len()
}
// CHECK-LABEL: @step_by_len_naive
#[no_mangle]
pub fn step_by_len_naive(x: Iter<i32>, step_minus_one: usize) -> usize {
// CHECK: udiv
// CHECK: call{{.+}}div_by_zero
x.len() / (step_minus_one + 1)
}