rust/clippy_lints/src/only_used_in_recursion.rs

396 lines
15 KiB
Rust
Raw Normal View History

use clippy_utils::diagnostics::span_lint_and_then;
use clippy_utils::{get_expr_use_or_unification_node, get_parent_node, path_def_id, path_to_local, path_to_local_id};
use core::cell::Cell;
use rustc_data_structures::fx::FxHashMap;
use rustc_errors::Applicability;
use rustc_hir::def_id::DefId;
use rustc_hir::hir_id::HirIdMap;
use rustc_hir::{Body, Expr, ExprKind, HirId, ImplItem, ImplItemKind, Node, PatKind, TraitItem, TraitItemKind};
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::ty::{EarlyBinder, GenericArgKind, GenericArgsRef};
use rustc_middle::ty::{self, ConstKind};
use rustc_session::{declare_tool_lint, impl_lint_pass};
use rustc_span::symbol::{kw, Ident};
use rustc_span::Span;
use std::iter;
declare_clippy_lint! {
/// ### What it does
/// Checks for arguments that are only used in recursion with no side-effects.
///
/// ### Why is this bad?
/// It could contain a useless calculation and can make function simpler.
///
/// The arguments can be involved in calculations and assignments but as long as
/// the calculations have no side-effects (function calls or mutating dereference)
/// and the assigned variables are also only in recursion, it is useless.
///
/// ### Known problems
/// Too many code paths in the linting code are currently untested and prone to produce false
/// positives or are prone to have performance implications.
///
/// In some cases, this would not catch all useless arguments.
///
/// ```rust
/// fn foo(a: usize, b: usize) -> usize {
/// let f = |x| x + 1;
///
/// if a == 0 {
/// 1
/// } else {
/// foo(a - 1, f(b))
/// }
/// }
/// ```
///
/// For example, the argument `b` is only used in recursion, but the lint would not catch it.
///
/// List of some examples that can not be caught:
/// - binary operation of non-primitive types
/// - closure usage
/// - some `break` relative operations
/// - struct pattern binding
///
/// Also, when you recurse the function name with path segments, it is not possible to detect.
///
/// ### Example
/// ```rust
/// fn f(a: usize, b: usize) -> usize {
/// if a == 0 {
/// 1
/// } else {
/// f(a - 1, b + 1)
/// }
/// }
/// # fn main() {
/// # print!("{}", f(1, 1));
/// # }
/// ```
/// Use instead:
/// ```rust
/// fn f(a: usize) -> usize {
/// if a == 0 {
/// 1
/// } else {
/// f(a - 1)
/// }
/// }
/// # fn main() {
/// # print!("{}", f(1));
/// # }
/// ```
#[clippy::version = "1.61.0"]
pub ONLY_USED_IN_RECURSION,
complexity,
"arguments that is only used in recursion can be removed"
}
impl_lint_pass!(OnlyUsedInRecursion => [ONLY_USED_IN_RECURSION]);
#[derive(Clone, Copy)]
enum FnKind {
Fn,
TraitFn,
// This is a hack. Ideally we would store a `GenericArgsRef<'tcx>` type here, but a lint pass must be `'static`.
// Substitutions are, however, interned. This allows us to store the pointer as a `usize` when comparing for
// equality.
ImplTraitFn(usize),
}
struct Param {
/// The function this is a parameter for.
fn_id: DefId,
fn_kind: FnKind,
/// The index of this parameter.
idx: usize,
ident: Ident,
/// Whether this parameter should be linted. Set by `Params::flag_for_linting`.
apply_lint: Cell<bool>,
/// All the uses of this parameter.
uses: Vec<Usage>,
}
impl Param {
fn new(fn_id: DefId, fn_kind: FnKind, idx: usize, ident: Ident) -> Self {
Self {
fn_id,
fn_kind,
idx,
ident,
apply_lint: Cell::new(true),
uses: Vec::new(),
}
}
}
#[derive(Debug)]
struct Usage {
span: Span,
idx: usize,
}
impl Usage {
fn new(span: Span, idx: usize) -> Self {
Self { span, idx }
}
}
/// The parameters being checked by the lint, indexed by both the parameter's `HirId` and the
/// `DefId` of the function paired with the parameter's index.
#[derive(Default)]
struct Params {
params: Vec<Param>,
by_id: HirIdMap<usize>,
by_fn: FxHashMap<(DefId, usize), usize>,
}
impl Params {
fn insert(&mut self, param: Param, id: HirId) {
let idx = self.params.len();
self.by_id.insert(id, idx);
self.by_fn.insert((param.fn_id, param.idx), idx);
self.params.push(param);
}
fn remove_by_id(&mut self, id: HirId) {
if let Some(param) = self.get_by_id_mut(id) {
param.uses = Vec::new();
let key = (param.fn_id, param.idx);
self.by_fn.remove(&key);
self.by_id.remove(&id);
}
}
fn get_by_id_mut(&mut self, id: HirId) -> Option<&mut Param> {
self.params.get_mut(*self.by_id.get(&id)?)
}
fn get_by_fn(&self, id: DefId, idx: usize) -> Option<&Param> {
self.params.get(*self.by_fn.get(&(id, idx))?)
}
fn clear(&mut self) {
self.params.clear();
self.by_id.clear();
self.by_fn.clear();
}
/// Sets the `apply_lint` flag on each parameter.
fn flag_for_linting(&mut self) {
// Stores the list of parameters currently being resolved. Needed to avoid cycles.
let mut eval_stack = Vec::new();
for param in &self.params {
self.try_disable_lint_for_param(param, &mut eval_stack);
}
}
// Use by calling `flag_for_linting`.
fn try_disable_lint_for_param(&self, param: &Param, eval_stack: &mut Vec<usize>) -> bool {
if !param.apply_lint.get() {
true
} else if param.uses.is_empty() {
// Don't lint on unused parameters.
param.apply_lint.set(false);
true
} else if eval_stack.contains(&param.idx) {
// Already on the evaluation stack. Returning false will continue to evaluate other dependencies.
false
} else {
eval_stack.push(param.idx);
// Check all cases when used at a different parameter index.
// Needed to catch cases like: `fn f(x: u32, y: u32) { f(y, x) }`
for usage in param.uses.iter().filter(|u| u.idx != param.idx) {
if self
.get_by_fn(param.fn_id, usage.idx)
// If the parameter can't be found, then it's used for more than just recursion.
.map_or(true, |p| self.try_disable_lint_for_param(p, eval_stack))
{
param.apply_lint.set(false);
eval_stack.pop();
return true;
}
}
eval_stack.pop();
false
}
}
}
#[derive(Default)]
pub struct OnlyUsedInRecursion {
/// Track the top-level body entered. Needed to delay reporting when entering nested bodies.
entered_body: Option<HirId>,
params: Params,
}
impl<'tcx> LateLintPass<'tcx> for OnlyUsedInRecursion {
fn check_body(&mut self, cx: &LateContext<'tcx>, body: &'tcx Body<'tcx>) {
if body.value.span.from_expansion() {
return;
}
// `skip_params` is either `0` or `1` to skip the `self` parameter in trait functions.
// It can't be renamed, and it can't be removed without removing it from multiple functions.
let (fn_id, fn_kind, skip_params) = match get_parent_node(cx.tcx, body.value.hir_id) {
Some(Node::Item(i)) => (i.owner_id.to_def_id(), FnKind::Fn, 0),
Some(Node::TraitItem(&TraitItem {
kind: TraitItemKind::Fn(ref sig, _),
owner_id,
..
})) => (
owner_id.to_def_id(),
FnKind::TraitFn,
usize::from(sig.decl.implicit_self.has_implicit_self()),
),
Some(Node::ImplItem(&ImplItem {
kind: ImplItemKind::Fn(ref sig, _),
owner_id,
..
})) => {
#[allow(trivial_casts)]
if let Some(Node::Item(item)) = get_parent_node(cx.tcx, owner_id.into())
&& let Some(trait_ref) = cx.tcx.impl_trait_ref(item.owner_id).map(EarlyBinder::instantiate_identity)
&& let Some(trait_item_id) = cx.tcx.associated_item(owner_id).trait_item_def_id
{
(
trait_item_id,
FnKind::ImplTraitFn(cx.tcx.erase_regions(trait_ref.args) as *const _ as usize),
usize::from(sig.decl.implicit_self.has_implicit_self()),
)
} else {
(owner_id.to_def_id(), FnKind::Fn, 0)
}
},
_ => return,
};
body.params
.iter()
.enumerate()
.skip(skip_params)
.filter_map(|(idx, p)| match p.pat.kind {
PatKind::Binding(_, id, ident, None) if !ident.as_str().starts_with('_') => {
Some((id, Param::new(fn_id, fn_kind, idx, ident)))
},
_ => None,
})
.for_each(|(id, param)| self.params.insert(param, id));
if self.entered_body.is_none() {
self.entered_body = Some(body.value.hir_id);
}
}
fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx Expr<'tcx>) {
if let Some(id) = path_to_local(e)
&& let Some(param) = self.params.get_by_id_mut(id)
{
let typeck = cx.typeck_results();
let span = e.span;
let mut e = e;
loop {
match get_expr_use_or_unification_node(cx.tcx, e) {
None | Some((Node::Stmt(_), _)) => return,
Some((Node::Expr(parent), child_id)) => match parent.kind {
// Recursive call. Track which index the parameter is used in.
ExprKind::Call(callee, args)
if path_def_id(cx, callee).map_or(false, |id| {
id == param.fn_id
&& has_matching_args(param.fn_kind, typeck.node_args(callee.hir_id))
}) =>
{
if let Some(idx) = args.iter().position(|arg| arg.hir_id == child_id) {
param.uses.push(Usage::new(span, idx));
}
return;
},
ExprKind::MethodCall(_, receiver, args, _)
if typeck.type_dependent_def_id(parent.hir_id).map_or(false, |id| {
id == param.fn_id
&& has_matching_args(param.fn_kind, typeck.node_args(parent.hir_id))
}) =>
{
if let Some(idx) = iter::once(receiver).chain(args).position(|arg| arg.hir_id == child_id) {
param.uses.push(Usage::new(span, idx));
}
return;
},
// Assignment to a parameter is fine.
ExprKind::Assign(lhs, _, _) | ExprKind::AssignOp(_, lhs, _) if lhs.hir_id == child_id => {
return;
},
// Parameter update e.g. `x = x + 1`
ExprKind::Assign(lhs, rhs, _) | ExprKind::AssignOp(_, lhs, rhs)
if rhs.hir_id == child_id && path_to_local_id(lhs, id) =>
{
return;
},
// Side-effect free expressions. Walk to the parent expression.
ExprKind::Binary(_, lhs, rhs)
if typeck.expr_ty(lhs).is_primitive() && typeck.expr_ty(rhs).is_primitive() =>
{
e = parent;
continue;
},
ExprKind::Unary(_, arg) if typeck.expr_ty(arg).is_primitive() => {
e = parent;
continue;
},
ExprKind::AddrOf(..) | ExprKind::Cast(..) => {
e = parent;
continue;
},
// Only allow field accesses without auto-deref
ExprKind::Field(..) if typeck.adjustments().get(child_id).is_none() => {
e = parent;
continue
}
_ => (),
},
_ => (),
}
self.params.remove_by_id(id);
return;
}
}
}
fn check_body_post(&mut self, cx: &LateContext<'tcx>, body: &'tcx Body<'tcx>) {
if self.entered_body == Some(body.value.hir_id) {
self.entered_body = None;
self.params.flag_for_linting();
for param in &self.params.params {
if param.apply_lint.get() {
span_lint_and_then(
cx,
ONLY_USED_IN_RECURSION,
param.ident.span,
"parameter is only used in recursion",
|diag| {
if param.ident.name != kw::SelfLower {
diag.span_suggestion(
param.ident.span,
"if this is intentional, prefix it with an underscore",
format!("_{}", param.ident.name),
Applicability::MaybeIncorrect,
);
}
diag.span_note(
param.uses.iter().map(|x| x.span).collect::<Vec<_>>(),
"parameter used here",
);
},
);
}
}
self.params.clear();
}
}
}
fn has_matching_args(kind: FnKind, args: GenericArgsRef<'_>) -> bool {
match kind {
FnKind::Fn => true,
FnKind::TraitFn => args.iter().enumerate().all(|(idx, subst)| match subst.unpack() {
GenericArgKind::Lifetime(_) => true,
GenericArgKind::Type(ty) => matches!(*ty.kind(), ty::Param(ty) if ty.index as usize == idx),
GenericArgKind::Const(c) => matches!(c.kind(), ConstKind::Param(c) if c.index as usize == idx),
}),
#[allow(trivial_casts)]
FnKind::ImplTraitFn(expected_args) => args as *const _ as usize == expected_args,
}
}