rust/src/libcore/ops.rs

942 lines
21 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
*
* Overloadable operators
*
* Implementing these traits allows you to get an effect similar to
* overloading operators.
*
* The values for the right hand side of an operator are automatically
* borrowed, so `a + b` is sugar for `a.add(&b)`.
*
* All of these traits are imported by the prelude, so they are available in
* every Rust program.
*
* # Example
*
* This example creates a `Point` struct that implements `Add` and `Sub`, and then
* demonstrates adding and subtracting two `Point`s.
*
* ```rust
* #[deriving(Show)]
* struct Point {
* x: int,
* y: int
* }
*
* impl Add<Point, Point> for Point {
* fn add(&self, other: &Point) -> Point {
* Point {x: self.x + other.x, y: self.y + other.y}
* }
* }
*
* impl Sub<Point, Point> for Point {
* fn sub(&self, other: &Point) -> Point {
* Point {x: self.x - other.x, y: self.y - other.y}
* }
* }
* fn main() {
* println!("{}", Point {x: 1, y: 0} + Point {x: 2, y: 3});
* println!("{}", Point {x: 1, y: 0} - Point {x: 2, y: 3});
* }
* ```
*
* See the documentation for each trait for a minimum implementation that prints
* something to the screen.
*
*/
use kinds::Sized;
/**
*
* The `Drop` trait is used to run some code when a value goes out of scope. This
* is sometimes called a 'destructor'.
*
* # Example
*
* A trivial implementation of `Drop`. The `drop` method is called when `_x` goes
* out of scope, and therefore `main` prints `Dropping!`.
*
* ```rust
* struct HasDrop;
*
* impl Drop for HasDrop {
* fn drop(&mut self) {
* println!("Dropping!");
* }
* }
*
* fn main() {
* let _x = HasDrop;
* }
* ```
*/
#[lang="drop"]
pub trait Drop {
/// The `drop` method, called when the value goes out of scope.
2013-09-16 20:18:07 -05:00
fn drop(&mut self);
}
/**
*
* The `Add` trait is used to specify the functionality of `+`.
*
* # Example
*
* A trivial implementation of `Add`. When `Foo + Foo` happens, it ends up
* calling `add`, and therefore, `main` prints `Adding!`.
*
* ```rust
* struct Foo;
*
* impl Add<Foo, Foo> for Foo {
* fn add(&self, _rhs: &Foo) -> Foo {
* println!("Adding!");
* *self
* }
* }
*
* fn main() {
* Foo + Foo;
* }
* ```
*/
#[lang="add"]
pub trait Add<Sized? RHS,Result> for Sized? {
/// The method for the `+` operator
fn add(&self, rhs: &RHS) -> Result;
}
macro_rules! add_impl(
($($t:ty)*) => ($(
impl Add<$t, $t> for $t {
#[inline]
fn add(&self, other: &$t) -> $t { (*self) + (*other) }
}
)*)
)
add_impl!(uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64)
/**
*
* The `Sub` trait is used to specify the functionality of `-`.
*
* # Example
*
* A trivial implementation of `Sub`. When `Foo - Foo` happens, it ends up
* calling `sub`, and therefore, `main` prints `Subtracting!`.
*
* ```rust
* struct Foo;
*
* impl Sub<Foo, Foo> for Foo {
* fn sub(&self, _rhs: &Foo) -> Foo {
* println!("Subtracting!");
* *self
* }
* }
*
* fn main() {
* Foo - Foo;
* }
* ```
*/
#[lang="sub"]
pub trait Sub<Sized? RHS, Result> for Sized? {
/// The method for the `-` operator
fn sub(&self, rhs: &RHS) -> Result;
}
macro_rules! sub_impl(
($($t:ty)*) => ($(
impl Sub<$t, $t> for $t {
#[inline]
fn sub(&self, other: &$t) -> $t { (*self) - (*other) }
}
)*)
)
sub_impl!(uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64)
/**
*
* The `Mul` trait is used to specify the functionality of `*`.
*
* # Example
*
* A trivial implementation of `Mul`. When `Foo * Foo` happens, it ends up
* calling `mul`, and therefore, `main` prints `Multiplying!`.
*
* ```rust
* struct Foo;
*
* impl Mul<Foo, Foo> for Foo {
* fn mul(&self, _rhs: &Foo) -> Foo {
* println!("Multiplying!");
* *self
* }
* }
*
* fn main() {
* Foo * Foo;
* }
* ```
*/
#[lang="mul"]
pub trait Mul<Sized? RHS, Result> for Sized? {
/// The method for the `*` operator
fn mul(&self, rhs: &RHS) -> Result;
}
macro_rules! mul_impl(
($($t:ty)*) => ($(
impl Mul<$t, $t> for $t {
#[inline]
fn mul(&self, other: &$t) -> $t { (*self) * (*other) }
}
)*)
)
mul_impl!(uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64)
/**
*
* The `Div` trait is used to specify the functionality of `/`.
*
* # Example
*
* A trivial implementation of `Div`. When `Foo / Foo` happens, it ends up
* calling `div`, and therefore, `main` prints `Dividing!`.
*
* ```
* struct Foo;
*
* impl Div<Foo, Foo> for Foo {
* fn div(&self, _rhs: &Foo) -> Foo {
* println!("Dividing!");
* *self
* }
* }
*
* fn main() {
* Foo / Foo;
* }
* ```
*/
#[lang="div"]
pub trait Div<Sized? RHS, Result> for Sized? {
/// The method for the `/` operator
fn div(&self, rhs: &RHS) -> Result;
}
macro_rules! div_impl(
($($t:ty)*) => ($(
impl Div<$t, $t> for $t {
#[inline]
fn div(&self, other: &$t) -> $t { (*self) / (*other) }
}
)*)
)
div_impl!(uint u8 u16 u32 u64 int i8 i16 i32 i64 f32 f64)
/**
*
* The `Rem` trait is used to specify the functionality of `%`.
*
* # Example
*
* A trivial implementation of `Rem`. When `Foo % Foo` happens, it ends up
* calling `rem`, and therefore, `main` prints `Remainder-ing!`.
*
* ```
* struct Foo;
*
* impl Rem<Foo, Foo> for Foo {
* fn rem(&self, _rhs: &Foo) -> Foo {
* println!("Remainder-ing!");
* *self
* }
* }
*
* fn main() {
* Foo % Foo;
* }
* ```
*/
#[lang="rem"]
pub trait Rem<Sized? RHS, Result> for Sized? {
/// The method for the `%` operator
fn rem(&self, rhs: &RHS) -> Result;
}
macro_rules! rem_impl(
($($t:ty)*) => ($(
impl Rem<$t, $t> for $t {
#[inline]
fn rem(&self, other: &$t) -> $t { (*self) % (*other) }
}
)*)
)
macro_rules! rem_float_impl(
($t:ty, $fmod:ident) => {
impl Rem<$t, $t> for $t {
#[inline]
fn rem(&self, other: &$t) -> $t {
extern { fn $fmod(a: $t, b: $t) -> $t; }
unsafe { $fmod(*self, *other) }
}
}
}
)
rem_impl!(uint u8 u16 u32 u64 int i8 i16 i32 i64)
rem_float_impl!(f32, fmodf)
rem_float_impl!(f64, fmod)
/**
*
* The `Neg` trait is used to specify the functionality of unary `-`.
*
* # Example
*
* A trivial implementation of `Neg`. When `-Foo` happens, it ends up calling
* `neg`, and therefore, `main` prints `Negating!`.
*
* ```
* struct Foo;
*
* impl Neg<Foo> for Foo {
* fn neg(&self) -> Foo {
* println!("Negating!");
* *self
* }
* }
*
* fn main() {
* -Foo;
* }
* ```
*/
2012-07-25 21:03:55 -05:00
#[lang="neg"]
pub trait Neg<Result> for Sized? {
/// The method for the unary `-` operator
fn neg(&self) -> Result;
2012-07-25 21:03:55 -05:00
}
macro_rules! neg_impl(
($($t:ty)*) => ($(
impl Neg<$t> for $t {
#[inline]
fn neg(&self) -> $t { -*self }
}
)*)
)
macro_rules! neg_uint_impl(
($t:ty, $t_signed:ty) => {
impl Neg<$t> for $t {
#[inline]
fn neg(&self) -> $t { -(*self as $t_signed) as $t }
}
}
)
neg_impl!(int i8 i16 i32 i64 f32 f64)
neg_uint_impl!(uint, int)
neg_uint_impl!(u8, i8)
neg_uint_impl!(u16, i16)
neg_uint_impl!(u32, i32)
neg_uint_impl!(u64, i64)
/**
*
* The `Not` trait is used to specify the functionality of unary `!`.
*
* # Example
*
* A trivial implementation of `Not`. When `!Foo` happens, it ends up calling
* `not`, and therefore, `main` prints `Not-ing!`.
*
* ```
* struct Foo;
*
* impl Not<Foo> for Foo {
* fn not(&self) -> Foo {
* println!("Not-ing!");
* *self
* }
* }
*
* fn main() {
* !Foo;
* }
* ```
*/
#[lang="not"]
pub trait Not<Result> for Sized? {
/// The method for the unary `!` operator
fn not(&self) -> Result;
}
macro_rules! not_impl(
($($t:ty)*) => ($(
impl Not<$t> for $t {
#[inline]
fn not(&self) -> $t { !*self }
}
)*)
)
not_impl!(bool uint u8 u16 u32 u64 int i8 i16 i32 i64)
/**
*
* The `BitAnd` trait is used to specify the functionality of `&`.
*
* # Example
*
* A trivial implementation of `BitAnd`. When `Foo & Foo` happens, it ends up
* calling `bitand`, and therefore, `main` prints `Bitwise And-ing!`.
*
* ```
* struct Foo;
*
* impl BitAnd<Foo, Foo> for Foo {
* fn bitand(&self, _rhs: &Foo) -> Foo {
* println!("Bitwise And-ing!");
* *self
* }
* }
*
* fn main() {
* Foo & Foo;
* }
* ```
*/
#[lang="bitand"]
pub trait BitAnd<Sized? RHS, Result> for Sized? {
/// The method for the `&` operator
fn bitand(&self, rhs: &RHS) -> Result;
}
macro_rules! bitand_impl(
($($t:ty)*) => ($(
impl BitAnd<$t, $t> for $t {
#[inline]
fn bitand(&self, rhs: &$t) -> $t { (*self) & (*rhs) }
}
)*)
)
bitand_impl!(bool uint u8 u16 u32 u64 int i8 i16 i32 i64)
/**
*
* The `BitOr` trait is used to specify the functionality of `|`.
*
* # Example
*
* A trivial implementation of `BitOr`. When `Foo | Foo` happens, it ends up
* calling `bitor`, and therefore, `main` prints `Bitwise Or-ing!`.
*
* ```
* struct Foo;
*
* impl BitOr<Foo, Foo> for Foo {
* fn bitor(&self, _rhs: &Foo) -> Foo {
* println!("Bitwise Or-ing!");
* *self
* }
* }
*
* fn main() {
* Foo | Foo;
* }
* ```
*/
#[lang="bitor"]
pub trait BitOr<Sized? RHS, Result> for Sized? {
/// The method for the `|` operator
fn bitor(&self, rhs: &RHS) -> Result;
}
macro_rules! bitor_impl(
($($t:ty)*) => ($(
impl BitOr<$t,$t> for $t {
#[inline]
fn bitor(&self, rhs: &$t) -> $t { (*self) | (*rhs) }
}
)*)
)
bitor_impl!(bool uint u8 u16 u32 u64 int i8 i16 i32 i64)
/**
*
* The `BitXor` trait is used to specify the functionality of `^`.
*
* # Example
*
* A trivial implementation of `BitXor`. When `Foo ^ Foo` happens, it ends up
2013-12-14 23:26:09 -06:00
* calling `bitxor`, and therefore, `main` prints `Bitwise Xor-ing!`.
*
* ```
* struct Foo;
*
* impl BitXor<Foo, Foo> for Foo {
* fn bitxor(&self, _rhs: &Foo) -> Foo {
* println!("Bitwise Xor-ing!");
* *self
* }
* }
*
* fn main() {
* Foo ^ Foo;
* }
* ```
*/
#[lang="bitxor"]
pub trait BitXor<Sized? RHS, Result> for Sized? {
/// The method for the `^` operator
fn bitxor(&self, rhs: &RHS) -> Result;
}
macro_rules! bitxor_impl(
($($t:ty)*) => ($(
impl BitXor<$t, $t> for $t {
#[inline]
fn bitxor(&self, other: &$t) -> $t { (*self) ^ (*other) }
}
)*)
)
bitxor_impl!(bool uint u8 u16 u32 u64 int i8 i16 i32 i64)
/**
*
* The `Shl` trait is used to specify the functionality of `<<`.
*
* # Example
*
* A trivial implementation of `Shl`. When `Foo << Foo` happens, it ends up
* calling `shl`, and therefore, `main` prints `Shifting left!`.
*
* ```
* struct Foo;
*
* impl Shl<Foo, Foo> for Foo {
* fn shl(&self, _rhs: &Foo) -> Foo {
* println!("Shifting left!");
* *self
* }
* }
*
* fn main() {
* Foo << Foo;
* }
* ```
*/
#[lang="shl"]
pub trait Shl<Sized? RHS, Result> for Sized? {
/// The method for the `<<` operator
fn shl(&self, rhs: &RHS) -> Result;
}
macro_rules! shl_impl(
($($t:ty)*) => ($(
impl Shl<uint, $t> for $t {
#[inline]
fn shl(&self, other: &uint) -> $t {
(*self) << (*other)
}
}
)*)
)
shl_impl!(uint u8 u16 u32 u64 int i8 i16 i32 i64)
/**
*
* The `Shr` trait is used to specify the functionality of `>>`.
*
* # Example
*
* A trivial implementation of `Shr`. When `Foo >> Foo` happens, it ends up
* calling `shr`, and therefore, `main` prints `Shifting right!`.
*
* ```
* struct Foo;
*
* impl Shr<Foo, Foo> for Foo {
* fn shr(&self, _rhs: &Foo) -> Foo {
* println!("Shifting right!");
* *self
* }
* }
*
* fn main() {
* Foo >> Foo;
* }
* ```
*/
#[lang="shr"]
pub trait Shr<Sized? RHS, Result> for Sized? {
/// The method for the `>>` operator
fn shr(&self, rhs: &RHS) -> Result;
}
macro_rules! shr_impl(
($($t:ty)*) => ($(
impl Shr<uint, $t> for $t {
#[inline]
fn shr(&self, other: &uint) -> $t { (*self) >> (*other) }
}
)*)
)
shr_impl!(uint u8 u16 u32 u64 int i8 i16 i32 i64)
/**
*
* The `Index` trait is used to specify the functionality of indexing operations
* like `arr[idx]` when used in an immutable context.
*
* # Example
*
* A trivial implementation of `Index`. When `Foo[Foo]` happens, it ends up
* calling `index`, and therefore, `main` prints `Indexing!`.
*
* ```
* struct Foo;
*
* impl Index<Foo, Foo> for Foo {
* fn index<'a>(&'a self, _index: &Foo) -> &'a Foo {
* println!("Indexing!");
* self
* }
* }
*
* fn main() {
* Foo[Foo];
* }
* ```
*/
#[lang="index"]
2014-11-16 21:44:19 -06:00
pub trait Index<Sized? Index, Sized? Result> for Sized? {
/// The method for the indexing (`Foo[Bar]`) operation
fn index<'a>(&'a self, index: &Index) -> &'a Result;
}
/**
*
* The `IndexMut` trait is used to specify the functionality of indexing
* operations like `arr[idx]`, when used in a mutable context.
*
* # Example
*
* A trivial implementation of `IndexMut`. When `Foo[Foo]` happens, it ends up
* calling `index_mut`, and therefore, `main` prints `Indexing!`.
*
* ```
* struct Foo;
*
* impl IndexMut<Foo, Foo> for Foo {
* fn index_mut<'a>(&'a mut self, _index: &Foo) -> &'a mut Foo {
* println!("Indexing!");
* self
* }
* }
*
* fn main() {
* &mut Foo[Foo];
* }
* ```
*/
#[lang="index_mut"]
pub trait IndexMut<Sized? Index, Sized? Result> for Sized? {
/// The method for the indexing (`Foo[Bar]`) operation
fn index_mut<'a>(&'a mut self, index: &Index) -> &'a mut Result;
}
/**
*
* The `Slice` trait is used to specify the functionality of slicing operations
* like `arr[from..to]` when used in an immutable context.
*
* # Example
*
* A trivial implementation of `Slice`. When `Foo[..Foo]` happens, it ends up
* calling `slice_to`, and therefore, `main` prints `Slicing!`.
*
* ```ignore
* struct Foo;
*
* impl Slice<Foo, Foo> for Foo {
* fn as_slice_<'a>(&'a self) -> &'a Foo {
* println!("Slicing!");
* self
* }
* fn slice_from_or_fail<'a>(&'a self, _from: &Foo) -> &'a Foo {
* println!("Slicing!");
* self
* }
* fn slice_to_or_fail<'a>(&'a self, _to: &Foo) -> &'a Foo {
* println!("Slicing!");
* self
* }
* fn slice_or_fail<'a>(&'a self, _from: &Foo, _to: &Foo) -> &'a Foo {
* println!("Slicing!");
* self
* }
* }
*
* fn main() {
* Foo[..Foo];
* }
* ```
*/
2014-10-04 17:59:10 -05:00
#[lang="slice"]
pub trait Slice<Sized? Idx, Sized? Result> for Sized? {
2014-10-04 17:59:10 -05:00
/// The method for the slicing operation foo[]
fn as_slice_<'a>(&'a self) -> &'a Result;
/// The method for the slicing operation foo[from..]
fn slice_from_or_fail<'a>(&'a self, from: &Idx) -> &'a Result;
/// The method for the slicing operation foo[..to]
fn slice_to_or_fail<'a>(&'a self, to: &Idx) -> &'a Result;
/// The method for the slicing operation foo[from..to]
fn slice_or_fail<'a>(&'a self, from: &Idx, to: &Idx) -> &'a Result;
}
/**
*
* The `SliceMut` trait is used to specify the functionality of slicing
* operations like `arr[from..to]`, when used in a mutable context.
*
* # Example
*
* A trivial implementation of `SliceMut`. When `Foo[Foo..]` happens, it ends up
* calling `slice_from_mut`, and therefore, `main` prints `Slicing!`.
*
* ```ignore
* struct Foo;
*
* impl SliceMut<Foo, Foo> for Foo {
* fn as_mut_slice_<'a>(&'a mut self) -> &'a mut Foo {
* println!("Slicing!");
* self
* }
* fn slice_from_or_fail_mut<'a>(&'a mut self, _from: &Foo) -> &'a mut Foo {
* println!("Slicing!");
* self
* }
* fn slice_to_or_fail_mut<'a>(&'a mut self, _to: &Foo) -> &'a mut Foo {
* println!("Slicing!");
* self
* }
* fn slice_or_fail_mut<'a>(&'a mut self, _from: &Foo, _to: &Foo) -> &'a mut Foo {
* println!("Slicing!");
* self
* }
* }
*
* pub fn main() {
* Foo[mut Foo..];
* }
* ```
*/
2014-10-04 17:59:10 -05:00
#[lang="slice_mut"]
pub trait SliceMut<Sized? Idx, Sized? Result> for Sized? {
2014-10-04 17:59:10 -05:00
/// The method for the slicing operation foo[]
fn as_mut_slice_<'a>(&'a mut self) -> &'a mut Result;
/// The method for the slicing operation foo[from..]
fn slice_from_or_fail_mut<'a>(&'a mut self, from: &Idx) -> &'a mut Result;
/// The method for the slicing operation foo[..to]
fn slice_to_or_fail_mut<'a>(&'a mut self, to: &Idx) -> &'a mut Result;
/// The method for the slicing operation foo[from..to]
fn slice_or_fail_mut<'a>(&'a mut self, from: &Idx, to: &Idx) -> &'a mut Result;
}
/**
*
* The `Deref` trait is used to specify the functionality of dereferencing
* operations like `*v`.
*
* # Example
*
* A struct with a single field which is accessible via dereferencing the
* struct.
*
* ```
* struct DerefExample<T> {
* value: T
* }
*
* impl<T> Deref<T> for DerefExample<T> {
* fn deref<'a>(&'a self) -> &'a T {
* &self.value
* }
* }
*
* fn main() {
* let x = DerefExample { value: 'a' };
* assert_eq!('a', *x);
* }
* ```
*/
2014-02-26 15:02:35 -06:00
#[lang="deref"]
pub trait Deref<Sized? Result> for Sized? {
/// The method called to dereference a value
2014-02-26 15:02:35 -06:00
fn deref<'a>(&'a self) -> &'a Result;
}
impl<'a, Sized? T> Deref<T> for &'a T {
fn deref(&self) -> &T { *self }
}
impl<'a, Sized? T> Deref<T> for &'a mut T {
fn deref(&self) -> &T { *self }
}
/**
*
* The `DerefMut` trait is used to specify the functionality of dereferencing
* mutably like `*v = 1;`
*
* # Example
*
* A struct with a single field which is modifiable via dereferencing the
* struct.
*
* ```
* struct DerefMutExample<T> {
* value: T
* }
*
* impl<T> Deref<T> for DerefMutExample<T> {
* fn deref<'a>(&'a self) -> &'a T {
* &self.value
* }
* }
*
* impl<T> DerefMut<T> for DerefMutExample<T> {
* fn deref_mut<'a>(&'a mut self) -> &'a mut T {
* &mut self.value
* }
* }
*
* fn main() {
* let mut x = DerefMutExample { value: 'a' };
* *x = 'b';
* assert_eq!('b', *x);
* }
* ```
*/
2014-02-26 15:02:35 -06:00
#[lang="deref_mut"]
pub trait DerefMut<Sized? Result>: Deref<Result> {
/// The method called to mutably dereference a value
2014-02-26 15:02:35 -06:00
fn deref_mut<'a>(&'a mut self) -> &'a mut Result;
}
impl<'a, Sized? T> DerefMut<T> for &'a mut T {
fn deref_mut(&mut self) -> &mut T { *self }
}
/// A version of the call operator that takes an immutable receiver.
#[lang="fn"]
pub trait Fn<Args,Result> for Sized? {
/// This is called when the call operator is used.
2014-11-01 12:51:16 -05:00
extern "rust-call" fn call(&self, args: Args) -> Result;
}
/// A version of the call operator that takes a mutable receiver.
#[lang="fn_mut"]
pub trait FnMut<Args,Result> for Sized? {
/// This is called when the call operator is used.
2014-11-01 12:51:16 -05:00
extern "rust-call" fn call_mut(&mut self, args: Args) -> Result;
}
/// A version of the call operator that takes a by-value receiver.
#[lang="fn_once"]
pub trait FnOnce<Args,Result> for Sized? {
/// This is called when the call operator is used.
2014-11-01 12:51:16 -05:00
extern "rust-call" fn call_once(self, args: Args) -> Result;
}
impl<F,A,R> FnMut<A,R> for F
where F : Fn<A,R>
{
extern "rust-call" fn call_mut(&mut self, args: A) -> R {
self.call(args)
}
}
impl<F,A,R> FnOnce<A,R> for F
where F : FnMut<A,R>
{
extern "rust-call" fn call_once(mut self, args: A) -> R {
self.call_mut(args)
}
}
impl<Result> Fn<(),Result> for extern "Rust" fn() -> Result {
#[allow(non_snake_case)]
extern "rust-call" fn call(&self, _args: ()) -> Result {
(*self)()
}
}
impl<Result,A0> Fn<(A0,),Result> for extern "Rust" fn(A0) -> Result {
#[allow(non_snake_case)]
extern "rust-call" fn call(&self, args: (A0,)) -> Result {
let (a0,) = args;
(*self)(a0)
}
}
macro_rules! def_fn(
($($args:ident)*) => (
impl<Result$(,$args)*>
Fn<($($args,)*),Result>
for extern "Rust" fn($($args: $args,)*) -> Result {
#[allow(non_snake_case)]
extern "rust-call" fn call(&self, args: ($($args,)*)) -> Result {
let ($($args,)*) = args;
(*self)($($args,)*)
}
}
)
)
def_fn!(A0 A1)
def_fn!(A0 A1 A2)
def_fn!(A0 A1 A2 A3)
def_fn!(A0 A1 A2 A3 A4)
def_fn!(A0 A1 A2 A3 A4 A5)
def_fn!(A0 A1 A2 A3 A4 A5 A6)
def_fn!(A0 A1 A2 A3 A4 A5 A6 A7)
def_fn!(A0 A1 A2 A3 A4 A5 A6 A7 A8)
def_fn!(A0 A1 A2 A3 A4 A5 A6 A7 A8 A9)
def_fn!(A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10)
def_fn!(A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11)
def_fn!(A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12)
def_fn!(A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13)
def_fn!(A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14)
def_fn!(A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15)