rust/src/librustc/middle/const_eval.rs

589 lines
23 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
2014-10-27 17:37:07 -05:00
#![allow(unsigned_negation)]
pub use self::const_val::*;
use metadata::csearch;
use middle::{astencode, def};
use middle::pat_util::def_to_path;
use middle::ty::{self, Ty};
use middle::astconv_util::{ast_ty_to_prim_ty};
2015-01-03 21:42:21 -06:00
use syntax::ast::{self, Expr};
use syntax::codemap::Span;
use syntax::parse::token::InternedString;
2014-09-07 12:09:06 -05:00
use syntax::ptr::P;
use syntax::{ast_map, ast_util, codemap};
use std::num::wrapping::OverflowingOps;
use std::cmp::Ordering;
use std::collections::hash_map::Entry::Vacant;
use std::{i8, i16, i32, i64};
use std::rc::Rc;
2014-09-07 12:09:06 -05:00
fn lookup_const<'a>(tcx: &'a ty::ctxt, e: &Expr) -> Option<&'a Expr> {
let opt_def = tcx.def_map.borrow().get(&e.id).map(|d| d.full_def());
match opt_def {
rustc: Add `const` globals to the language This change is an implementation of [RFC 69][rfc] which adds a third kind of global to the language, `const`. This global is most similar to what the old `static` was, and if you're unsure about what to use then you should use a `const`. The semantics of these three kinds of globals are: * A `const` does not represent a memory location, but only a value. Constants are translated as rvalues, which means that their values are directly inlined at usage location (similar to a #define in C/C++). Constant values are, well, constant, and can not be modified. Any "modification" is actually a modification to a local value on the stack rather than the actual constant itself. Almost all values are allowed inside constants, whether they have interior mutability or not. There are a few minor restrictions listed in the RFC, but they should in general not come up too often. * A `static` now always represents a memory location (unconditionally). Any references to the same `static` are actually a reference to the same memory location. Only values whose types ascribe to `Sync` are allowed in a `static`. This restriction is in place because many threads may access a `static` concurrently. Lifting this restriction (and allowing unsafe access) is a future extension not implemented at this time. * A `static mut` continues to always represent a memory location. All references to a `static mut` continue to be `unsafe`. This is a large breaking change, and many programs will need to be updated accordingly. A summary of the breaking changes is: * Statics may no longer be used in patterns. Statics now always represent a memory location, which can sometimes be modified. To fix code, repurpose the matched-on-`static` to a `const`. static FOO: uint = 4; match n { FOO => { /* ... */ } _ => { /* ... */ } } change this code to: const FOO: uint = 4; match n { FOO => { /* ... */ } _ => { /* ... */ } } * Statics may no longer refer to other statics by value. Due to statics being able to change at runtime, allowing them to reference one another could possibly lead to confusing semantics. If you are in this situation, use a constant initializer instead. Note, however, that statics may reference other statics by address, however. * Statics may no longer be used in constant expressions, such as array lengths. This is due to the same restrictions as listed above. Use a `const` instead. [breaking-change] [rfc]: https://github.com/rust-lang/rfcs/pull/246
2014-10-06 10:17:01 -05:00
Some(def::DefConst(def_id)) => {
lookup_const_by_id(tcx, def_id)
}
Some(def::DefVariant(enum_def, variant_def, _)) => {
lookup_variant_by_id(tcx, enum_def, variant_def)
}
_ => None
}
}
2014-09-07 12:09:06 -05:00
fn lookup_variant_by_id<'a>(tcx: &'a ty::ctxt,
enum_def: ast::DefId,
variant_def: ast::DefId)
2014-09-07 12:09:06 -05:00
-> Option<&'a Expr> {
fn variant_expr<'a>(variants: &'a [P<ast::Variant>], id: ast::NodeId)
-> Option<&'a Expr> {
2015-01-31 11:20:46 -06:00
for variant in variants {
if variant.node.id == id {
2014-09-07 12:09:06 -05:00
return variant.node.disr_expr.as_ref().map(|e| &**e);
}
}
None
}
if ast_util::is_local(enum_def) {
2014-09-07 12:09:06 -05:00
match tcx.map.find(enum_def.node) {
None => None,
Some(ast_map::NodeItem(it)) => match it.node {
ast::ItemEnum(ast::EnumDef { ref variants }, _) => {
variant_expr(&variants[..], variant_def.node)
2014-09-07 12:09:06 -05:00
}
_ => None
},
Some(_) => None
}
} else {
2014-11-06 11:25:16 -06:00
match tcx.extern_const_variants.borrow().get(&variant_def) {
2014-09-07 12:09:06 -05:00
Some(&ast::DUMMY_NODE_ID) => return None,
Some(&expr_id) => {
return Some(tcx.map.expect_expr(expr_id));
}
None => {}
}
2014-09-07 12:09:06 -05:00
let expr_id = match csearch::maybe_get_item_ast(tcx, enum_def,
box |a, b, c, d| astencode::decode_inlined_item(a, b, c, d)) {
csearch::FoundAst::Found(&ast::IIItem(ref item)) => match item.node {
ast::ItemEnum(ast::EnumDef { ref variants }, _) => {
2014-09-07 12:09:06 -05:00
// NOTE this doesn't do the right thing, it compares inlined
// NodeId's to the original variant_def's NodeId, but they
// come from different crates, so they will likely never match.
variant_expr(&variants[..], variant_def.node).map(|e| e.id)
}
_ => None
},
_ => None
};
2014-09-07 12:09:06 -05:00
tcx.extern_const_variants.borrow_mut().insert(variant_def,
expr_id.unwrap_or(ast::DUMMY_NODE_ID));
expr_id.map(|id| tcx.map.expect_expr(id))
}
}
2014-09-07 12:09:06 -05:00
pub fn lookup_const_by_id<'a>(tcx: &'a ty::ctxt, def_id: ast::DefId)
-> Option<&'a Expr> {
if ast_util::is_local(def_id) {
2014-09-07 12:09:06 -05:00
match tcx.map.find(def_id.node) {
None => None,
Some(ast_map::NodeItem(it)) => match it.node {
ast::ItemConst(_, ref const_expr) => {
2014-09-07 12:09:06 -05:00
Some(&**const_expr)
}
_ => None
},
Some(_) => None
}
} else {
2014-11-06 11:25:16 -06:00
match tcx.extern_const_statics.borrow().get(&def_id) {
2014-09-07 12:09:06 -05:00
Some(&ast::DUMMY_NODE_ID) => return None,
Some(&expr_id) => {
return Some(tcx.map.expect_expr(expr_id));
}
2014-03-20 21:49:20 -05:00
None => {}
}
2014-09-07 12:09:06 -05:00
let expr_id = match csearch::maybe_get_item_ast(tcx, def_id,
box |a, b, c, d| astencode::decode_inlined_item(a, b, c, d)) {
csearch::FoundAst::Found(&ast::IIItem(ref item)) => match item.node {
ast::ItemConst(_, ref const_expr) => Some(const_expr.id),
_ => None
},
_ => None
};
2014-09-07 12:09:06 -05:00
tcx.extern_const_statics.borrow_mut().insert(def_id,
expr_id.unwrap_or(ast::DUMMY_NODE_ID));
expr_id.map(|id| tcx.map.expect_expr(id))
}
}
// FIXME (#33): this doesn't handle big integer/float literals correctly
// (nor does the rest of our literal handling).
#[derive(Clone, PartialEq)]
pub enum const_val {
const_float(f64),
const_int(i64),
const_uint(u64),
const_str(InternedString),
const_binary(Rc<Vec<u8> >),
const_bool(bool)
}
pub fn const_expr_to_pat(tcx: &ty::ctxt, expr: &Expr, span: Span) -> P<ast::Pat> {
let pat = match expr.node {
ast::ExprTup(ref exprs) =>
ast::PatTup(exprs.iter().map(|expr| const_expr_to_pat(tcx, &**expr, span)).collect()),
ast::ExprCall(ref callee, ref args) => {
let def = tcx.def_map.borrow()[callee.id];
if let Vacant(entry) = tcx.def_map.borrow_mut().entry(expr.id) {
entry.insert(def);
}
let path = match def.full_def() {
def::DefStruct(def_id) => def_to_path(tcx, def_id),
def::DefVariant(_, variant_did, _) => def_to_path(tcx, variant_did),
_ => unreachable!()
};
let pats = args.iter().map(|expr| const_expr_to_pat(tcx, &**expr, span)).collect();
ast::PatEnum(path, Some(pats))
}
ast::ExprStruct(ref path, ref fields, None) => {
let field_pats = fields.iter().map(|field| codemap::Spanned {
span: codemap::DUMMY_SP,
node: ast::FieldPat {
ident: field.ident.node,
pat: const_expr_to_pat(tcx, &*field.expr, span),
is_shorthand: false,
},
}).collect();
ast::PatStruct(path.clone(), field_pats, false)
}
ast::ExprVec(ref exprs) => {
let pats = exprs.iter().map(|expr| const_expr_to_pat(tcx, &**expr, span)).collect();
ast::PatVec(pats, None, vec![])
}
ast::ExprPath(_, ref path) => {
let opt_def = tcx.def_map.borrow().get(&expr.id).map(|d| d.full_def());
match opt_def {
Some(def::DefStruct(..)) =>
ast::PatStruct(path.clone(), vec![], false),
Some(def::DefVariant(..)) =>
ast::PatEnum(path.clone(), None),
_ => {
2014-09-07 12:09:06 -05:00
match lookup_const(tcx, expr) {
Some(actual) => return const_expr_to_pat(tcx, actual, span),
_ => unreachable!()
}
}
}
}
_ => ast::PatLit(P(expr.clone()))
};
P(ast::Pat { id: expr.id, node: pat, span: span })
}
2014-03-05 21:07:47 -06:00
pub fn eval_const_expr(tcx: &ty::ctxt, e: &Expr) -> const_val {
match eval_const_expr_partial(tcx, e, None) {
Ok(r) => r,
Err(s) => tcx.sess.span_fatal(e.span, &s[..])
}
}
fn checked_add_int(a: i64, b: i64) -> Result<const_val, String> {
let (ret, oflo) = a.overflowing_add(b);
if !oflo { Ok(const_int(ret)) } else { Err(format!("constant arithmetic overflow")) }
}
fn checked_sub_int(a: i64, b: i64) -> Result<const_val, String> {
let (ret, oflo) = a.overflowing_sub(b);
if !oflo { Ok(const_int(ret)) } else { Err(format!("constant arithmetic overflow")) }
}
fn checked_mul_int(a: i64, b: i64) -> Result<const_val, String> {
let (ret, oflo) = a.overflowing_mul(b);
if !oflo { Ok(const_int(ret)) } else { Err(format!("constant arithmetic overflow")) }
}
fn checked_add_uint(a: u64, b: u64) -> Result<const_val, String> {
let (ret, oflo) = a.overflowing_add(b);
if !oflo { Ok(const_uint(ret)) } else { Err(format!("constant arithmetic overflow")) }
}
fn checked_sub_uint(a: u64, b: u64) -> Result<const_val, String> {
let (ret, oflo) = a.overflowing_sub(b);
if !oflo { Ok(const_uint(ret)) } else { Err(format!("constant arithmetic overflow")) }
}
fn checked_mul_uint(a: u64, b: u64) -> Result<const_val, String> {
let (ret, oflo) = a.overflowing_mul(b);
if !oflo { Ok(const_uint(ret)) } else { Err(format!("constant arithmetic overflow")) }
}
pub fn eval_const_expr_partial<'tcx>(tcx: &ty::ctxt<'tcx>,
e: &Expr,
ty_hint: Option<Ty<'tcx>>)
-> Result<const_val, String> {
fn fromb(b: bool) -> Result<const_val, String> { Ok(const_int(b as i64)) }
let ety = ty_hint.or_else(|| ty::expr_ty_opt(tcx, e));
match e.node {
ast::ExprUnary(ast::UnNeg, ref inner) => {
match eval_const_expr_partial(tcx, &**inner, ety) {
Ok(const_float(f)) => Ok(const_float(-f)),
Ok(const_int(i)) => Ok(const_int(-i)),
Ok(const_uint(i)) => Ok(const_uint(-i)),
Ok(const_str(_)) => Err("negate on string".to_string()),
Ok(const_bool(_)) => Err("negate on boolean".to_string()),
2013-07-02 14:47:32 -05:00
ref err => ((*err).clone())
}
}
ast::ExprUnary(ast::UnNot, ref inner) => {
match eval_const_expr_partial(tcx, &**inner, ety) {
Ok(const_int(i)) => Ok(const_int(!i)),
Ok(const_uint(i)) => Ok(const_uint(!i)),
Ok(const_bool(b)) => Ok(const_bool(!b)),
_ => Err("not on float or string".to_string())
}
}
ast::ExprBinary(op, ref a, ref b) => {
let b_ty = match op.node {
ast::BiShl | ast::BiShr => Some(tcx.types.uint),
_ => ety
};
match (eval_const_expr_partial(tcx, &**a, ety),
eval_const_expr_partial(tcx, &**b, b_ty)) {
(Ok(const_float(a)), Ok(const_float(b))) => {
match op.node {
ast::BiAdd => Ok(const_float(a + b)),
ast::BiSub => Ok(const_float(a - b)),
ast::BiMul => Ok(const_float(a * b)),
ast::BiDiv => Ok(const_float(a / b)),
ast::BiRem => Ok(const_float(a % b)),
ast::BiEq => fromb(a == b),
ast::BiLt => fromb(a < b),
ast::BiLe => fromb(a <= b),
ast::BiNe => fromb(a != b),
ast::BiGe => fromb(a >= b),
ast::BiGt => fromb(a > b),
_ => Err("can't do this op on floats".to_string())
}
}
(Ok(const_int(a)), Ok(const_int(b))) => {
2015-02-27 20:21:09 -06:00
let is_a_min_value = || {
let int_ty = match ty::expr_ty_opt(tcx, e).map(|ty| &ty.sty) {
Some(&ty::ty_int(int_ty)) => int_ty,
_ => return false
};
let int_ty = if let ast::TyIs(_) = int_ty {
tcx.sess.target.int_type
} else {
int_ty
};
match int_ty {
ast::TyI8 => (a as i8) == i8::MIN,
ast::TyI16 => (a as i16) == i16::MIN,
ast::TyI32 => (a as i32) == i32::MIN,
ast::TyI64 => (a as i64) == i64::MIN,
ast::TyIs(_) => unreachable!()
}
};
match op.node {
ast::BiAdd => checked_add_int(a, b),
ast::BiSub => checked_sub_int(a, b),
ast::BiMul => checked_mul_int(a, b),
ast::BiDiv => {
if b == 0 {
Err("attempted to divide by zero".to_string())
} else if b == -1 && is_a_min_value() {
Err("attempted to divide with overflow".to_string())
} else {
Ok(const_int(a / b))
}
}
ast::BiRem => {
if b == 0 {
Err("attempted remainder with a divisor of zero".to_string())
} else if b == -1 && is_a_min_value() {
Err("attempted remainder with overflow".to_string())
} else {
Ok(const_int(a % b))
}
}
ast::BiAnd | ast::BiBitAnd => Ok(const_int(a & b)),
ast::BiOr | ast::BiBitOr => Ok(const_int(a | b)),
ast::BiBitXor => Ok(const_int(a ^ b)),
ast::BiShl => Ok(const_int(a << b as uint)),
ast::BiShr => Ok(const_int(a >> b as uint)),
ast::BiEq => fromb(a == b),
ast::BiLt => fromb(a < b),
ast::BiLe => fromb(a <= b),
ast::BiNe => fromb(a != b),
ast::BiGe => fromb(a >= b),
ast::BiGt => fromb(a > b)
}
}
(Ok(const_uint(a)), Ok(const_uint(b))) => {
match op.node {
ast::BiAdd => checked_add_uint(a, b),
ast::BiSub => checked_sub_uint(a, b),
ast::BiMul => checked_mul_uint(a, b),
ast::BiDiv if b == 0 => {
Err("attempted to divide by zero".to_string())
}
ast::BiDiv => Ok(const_uint(a / b)),
ast::BiRem if b == 0 => {
Err("attempted remainder with a divisor of \
zero".to_string())
}
ast::BiRem => Ok(const_uint(a % b)),
ast::BiAnd | ast::BiBitAnd => Ok(const_uint(a & b)),
ast::BiOr | ast::BiBitOr => Ok(const_uint(a | b)),
ast::BiBitXor => Ok(const_uint(a ^ b)),
ast::BiShl => Ok(const_uint(a << b as uint)),
ast::BiShr => Ok(const_uint(a >> b as uint)),
ast::BiEq => fromb(a == b),
ast::BiLt => fromb(a < b),
ast::BiLe => fromb(a <= b),
ast::BiNe => fromb(a != b),
ast::BiGe => fromb(a >= b),
ast::BiGt => fromb(a > b),
}
}
// shifts can have any integral type as their rhs
(Ok(const_int(a)), Ok(const_uint(b))) => {
match op.node {
ast::BiShl => Ok(const_int(a << b as uint)),
ast::BiShr => Ok(const_int(a >> b as uint)),
_ => Err("can't do this op on an int and uint".to_string())
}
}
(Ok(const_uint(a)), Ok(const_int(b))) => {
match op.node {
ast::BiShl => Ok(const_uint(a << b as uint)),
ast::BiShr => Ok(const_uint(a >> b as uint)),
_ => Err("can't do this op on a uint and int".to_string())
}
}
(Ok(const_bool(a)), Ok(const_bool(b))) => {
Ok(const_bool(match op.node {
ast::BiAnd => a && b,
ast::BiOr => a || b,
ast::BiBitXor => a ^ b,
ast::BiBitAnd => a & b,
ast::BiBitOr => a | b,
ast::BiEq => a == b,
ast::BiNe => a != b,
_ => return Err("can't do this op on bools".to_string())
}))
}
_ => Err("bad operands for binary".to_string())
}
}
ast::ExprCast(ref base, ref target_ty) => {
// This tends to get called w/o the type actually having been
// populated in the ctxt, which was causing things to blow up
// (#5900). Fall back to doing a limited lookup to get past it.
let ety = ety.or_else(|| ast_ty_to_prim_ty(tcx, &**target_ty))
.unwrap_or_else(|| {
tcx.sess.span_fatal(target_ty.span,
"target type not found for const cast")
});
// Prefer known type to noop, but always have a type hint.
let base_hint = ty::expr_ty_opt(tcx, &**base).unwrap_or(ety);
let val = try!(eval_const_expr_partial(tcx, &**base, Some(base_hint)));
cast_const(val, ety)
}
ast::ExprPath(..) => {
let opt_def = tcx.def_map.borrow().get(&e.id).map(|d| d.full_def());
let (const_expr, const_ty) = match opt_def {
Some(def::DefConst(def_id)) => {
if ast_util::is_local(def_id) {
match tcx.map.find(def_id.node) {
Some(ast_map::NodeItem(it)) => match it.node {
ast::ItemConst(ref ty, ref expr) => {
(Some(&**expr), Some(&**ty))
}
_ => (None, None)
},
_ => (None, None)
}
} else {
(lookup_const_by_id(tcx, def_id), None)
}
}
Some(def::DefVariant(enum_def, variant_def, _)) => {
(lookup_variant_by_id(tcx, enum_def, variant_def), None)
}
_ => (None, None)
};
let const_expr = match const_expr {
Some(actual_e) => actual_e,
None => return Err("non-constant path in constant expr".to_string())
};
let ety = ety.or_else(|| const_ty.and_then(|ty| ast_ty_to_prim_ty(tcx, ty)));
eval_const_expr_partial(tcx, const_expr, ety)
}
ast::ExprLit(ref lit) => {
Ok(lit_to_const(&**lit, ety))
}
ast::ExprParen(ref e) => eval_const_expr_partial(tcx, &**e, ety),
ast::ExprBlock(ref block) => {
match block.expr {
Some(ref expr) => eval_const_expr_partial(tcx, &**expr, ety),
None => Ok(const_int(0i64))
}
}
ast::ExprTupField(ref base, index) => {
// Get the base tuple if it is constant
if let Some(&ast::ExprTup(ref fields)) = lookup_const(tcx, &**base).map(|s| &s.node) {
// Check that the given index is within bounds and evaluate its value
if fields.len() > index.node {
return eval_const_expr_partial(tcx, &*fields[index.node], None)
} else {
return Err("tuple index out of bounds".to_string())
}
}
Err("non-constant struct in constant expr".to_string())
}
ast::ExprField(ref base, field_name) => {
// Get the base expression if it is a struct and it is constant
if let Some(&ast::ExprStruct(_, ref fields, _)) = lookup_const(tcx, &**base)
.map(|s| &s.node) {
// Check that the given field exists and evaluate it
if let Some(f) = fields.iter().find(|f|
f.ident.node.as_str() == field_name.node.as_str()) {
return eval_const_expr_partial(tcx, &*f.expr, None)
} else {
return Err("nonexistent struct field".to_string())
}
}
Err("non-constant struct in constant expr".to_string())
}
_ => Err("unsupported constant expr".to_string())
}
}
fn cast_const(val: const_val, ty: Ty) -> Result<const_val, String> {
macro_rules! define_casts {
($($ty_pat:pat => (
$intermediate_ty:ty,
$const_type:ident,
$target_ty:ty
)),*) => (match ty.sty {
$($ty_pat => {
match val {
const_bool(b) => Ok($const_type(b as $intermediate_ty as $target_ty)),
const_uint(u) => Ok($const_type(u as $intermediate_ty as $target_ty)),
const_int(i) => Ok($const_type(i as $intermediate_ty as $target_ty)),
const_float(f) => Ok($const_type(f as $intermediate_ty as $target_ty)),
_ => Err(concat!("can't cast this type to ",
stringify!($const_type)).to_string())
}
},)*
_ => Err("can't cast this type".to_string())
})
}
define_casts!{
ty::ty_int(ast::TyIs(_)) => (int, const_int, i64),
ty::ty_int(ast::TyI8) => (i8, const_int, i64),
ty::ty_int(ast::TyI16) => (i16, const_int, i64),
ty::ty_int(ast::TyI32) => (i32, const_int, i64),
ty::ty_int(ast::TyI64) => (i64, const_int, i64),
ty::ty_uint(ast::TyUs(_)) => (uint, const_uint, u64),
ty::ty_uint(ast::TyU8) => (u8, const_uint, u64),
ty::ty_uint(ast::TyU16) => (u16, const_uint, u64),
ty::ty_uint(ast::TyU32) => (u32, const_uint, u64),
ty::ty_uint(ast::TyU64) => (u64, const_uint, u64),
ty::ty_float(ast::TyF32) => (f32, const_float, f64),
ty::ty_float(ast::TyF64) => (f64, const_float, f64)
}
}
fn lit_to_const(lit: &ast::Lit, ty_hint: Option<Ty>) -> const_val {
2012-08-06 14:34:08 -05:00
match lit.node {
ast::LitStr(ref s, _) => const_str((*s).clone()),
ast::LitBinary(ref data) => {
const_binary(data.clone())
}
ast::LitByte(n) => const_uint(n as u64),
ast::LitChar(n) => const_uint(n as u64),
ast::LitInt(n, ast::SignedIntLit(_, ast::Plus)) => const_int(n as i64),
ast::LitInt(n, ast::UnsuffixedIntLit(ast::Plus)) => {
match ty_hint.map(|ty| &ty.sty) {
Some(&ty::ty_uint(_)) => const_uint(n),
_ => const_int(n as i64)
}
}
ast::LitInt(n, ast::SignedIntLit(_, ast::Minus)) |
ast::LitInt(n, ast::UnsuffixedIntLit(ast::Minus)) => const_int(-(n as i64)),
ast::LitInt(n, ast::UnsignedIntLit(_)) => const_uint(n),
ast::LitFloat(ref n, _) |
ast::LitFloatUnsuffixed(ref n) => {
2015-02-03 17:03:39 -06:00
const_float(n.parse::<f64>().unwrap() as f64)
}
ast::LitBool(b) => const_bool(b)
}
}
pub fn compare_const_vals(a: &const_val, b: &const_val) -> Option<Ordering> {
Some(match (a, b) {
(&const_int(a), &const_int(b)) => a.cmp(&b),
(&const_uint(a), &const_uint(b)) => a.cmp(&b),
(&const_float(a), &const_float(b)) => {
// This is pretty bad but it is the existing behavior.
if a == b {
Ordering::Equal
} else if a < b {
Ordering::Less
} else {
Ordering::Greater
}
}
(&const_str(ref a), &const_str(ref b)) => a.cmp(b),
(&const_bool(a), &const_bool(b)) => a.cmp(&b),
(&const_binary(ref a), &const_binary(ref b)) => a.cmp(b),
_ => return None
})
}
pub fn compare_lit_exprs<'tcx>(tcx: &ty::ctxt<'tcx>,
a: &Expr,
b: &Expr,
ty_hint: Option<Ty<'tcx>>)
-> Option<Ordering> {
let a = match eval_const_expr_partial(tcx, a, ty_hint) {
Ok(a) => a,
Err(s) => {
tcx.sess.span_err(a.span, &s[..]);
return None;
}
};
let b = match eval_const_expr_partial(tcx, b, ty_hint) {
Ok(b) => b,
Err(s) => {
tcx.sess.span_err(b.span, &s[..]);
return None;
}
};
compare_const_vals(&a, &b)
}