rust/src/libcore/num/f64.rs

225 lines
6.3 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Operations and constants for 64-bits floats (`f64` type)
use cmp::{Eq, Ord};
use default::Default;
use intrinsics;
use num::{Zero, One, Bounded, Signed, Num, Primitive};
use ops::{Add, Sub, Mul, Div, Rem, Neg};
// FIXME(#5527): These constants should be deprecated once associated
// constants are implemented in favour of referencing the respective
// members of `Bounded` and `Float`.
pub static RADIX: uint = 2u;
pub static MANTISSA_DIGITS: uint = 53u;
pub static DIGITS: uint = 15u;
pub static EPSILON: f64 = 2.2204460492503131e-16_f64;
/// Smallest finite f64 value
pub static MIN_VALUE: f64 = -1.7976931348623157e+308_f64;
/// Smallest positive, normalized f64 value
pub static MIN_POS_VALUE: f64 = 2.2250738585072014e-308_f64;
/// Largest finite f64 value
pub static MAX_VALUE: f64 = 1.7976931348623157e+308_f64;
pub static MIN_EXP: int = -1021;
pub static MAX_EXP: int = 1024;
pub static MIN_10_EXP: int = -307;
pub static MAX_10_EXP: int = 308;
pub static NAN: f64 = 0.0_f64/0.0_f64;
pub static INFINITY: f64 = 1.0_f64/0.0_f64;
pub static NEG_INFINITY: f64 = -1.0_f64/0.0_f64;
/// Various useful constants.
pub mod consts {
// FIXME: replace with mathematical constants from cmath.
// FIXME(#5527): These constants should be deprecated once associated
// constants are implemented in favour of referencing the respective members
// of `Float`.
/// Archimedes' constant
pub static PI: f64 = 3.14159265358979323846264338327950288_f64;
/// pi * 2.0
pub static PI_2: f64 = 6.28318530717958647692528676655900576_f64;
/// pi/2.0
pub static FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64;
/// pi/3.0
pub static FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64;
/// pi/4.0
pub static FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64;
/// pi/6.0
pub static FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64;
/// pi/8.0
pub static FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64;
/// 1.0/pi
pub static FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64;
/// 2.0/pi
pub static FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64;
/// 2.0/sqrt(pi)
pub static FRAC_2_SQRTPI: f64 = 1.12837916709551257389615890312154517_f64;
/// sqrt(2.0)
pub static SQRT2: f64 = 1.41421356237309504880168872420969808_f64;
/// 1.0/sqrt(2.0)
pub static FRAC_1_SQRT2: f64 = 0.707106781186547524400844362104849039_f64;
/// Euler's number
pub static E: f64 = 2.71828182845904523536028747135266250_f64;
/// log2(e)
pub static LOG2_E: f64 = 1.44269504088896340735992468100189214_f64;
/// log10(e)
pub static LOG10_E: f64 = 0.434294481903251827651128918916605082_f64;
/// ln(2.0)
pub static LN_2: f64 = 0.693147180559945309417232121458176568_f64;
/// ln(10.0)
pub static LN_10: f64 = 2.30258509299404568401799145468436421_f64;
}
impl Ord for f64 {
#[inline]
fn lt(&self, other: &f64) -> bool { (*self) < (*other) }
#[inline]
fn le(&self, other: &f64) -> bool { (*self) <= (*other) }
#[inline]
fn ge(&self, other: &f64) -> bool { (*self) >= (*other) }
#[inline]
fn gt(&self, other: &f64) -> bool { (*self) > (*other) }
}
impl Eq for f64 {
#[inline]
fn eq(&self, other: &f64) -> bool { (*self) == (*other) }
}
impl Default for f64 {
#[inline]
fn default() -> f64 { 0.0 }
}
impl Primitive for f64 {}
impl Num for f64 {}
impl Zero for f64 {
#[inline]
fn zero() -> f64 { 0.0 }
/// Returns true if the number is equal to either `0.0` or `-0.0`
#[inline]
fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 }
}
impl One for f64 {
#[inline]
fn one() -> f64 { 1.0 }
}
#[cfg(not(test))]
impl Add<f64,f64> for f64 {
#[inline]
fn add(&self, other: &f64) -> f64 { *self + *other }
}
#[cfg(not(test))]
impl Sub<f64,f64> for f64 {
#[inline]
fn sub(&self, other: &f64) -> f64 { *self - *other }
}
#[cfg(not(test))]
impl Mul<f64,f64> for f64 {
#[inline]
fn mul(&self, other: &f64) -> f64 { *self * *other }
}
#[cfg(not(test))]
impl Div<f64,f64> for f64 {
#[inline]
fn div(&self, other: &f64) -> f64 { *self / *other }
}
#[cfg(not(test))]
impl Rem<f64,f64> for f64 {
#[inline]
fn rem(&self, other: &f64) -> f64 {
extern { fn fmod(a: f64, b: f64) -> f64; }
unsafe { fmod(*self, *other) }
}
}
#[cfg(not(test))]
impl Neg<f64> for f64 {
#[inline]
fn neg(&self) -> f64 { -*self }
}
impl Signed for f64 {
/// Computes the absolute value. Returns `NAN` if the number is `NAN`.
#[inline]
fn abs(&self) -> f64 {
unsafe { intrinsics::fabsf64(*self) }
}
/// The positive difference of two numbers. Returns `0.0` if the number is less than or
/// equal to `other`, otherwise the difference between`self` and `other` is returned.
#[inline]
fn abs_sub(&self, other: &f64) -> f64 {
extern { fn fdim(a: f64, b: f64) -> f64; }
unsafe { fdim(*self, *other) }
}
/// # Returns
///
/// - `1.0` if the number is positive, `+0.0` or `INFINITY`
/// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
/// - `NAN` if the number is NaN
#[inline]
fn signum(&self) -> f64 {
if self != self { NAN } else {
unsafe { intrinsics::copysignf64(1.0, *self) }
}
}
/// Returns `true` if the number is positive, including `+0.0` and `INFINITY`
#[inline]
fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == INFINITY }
/// Returns `true` if the number is negative, including `-0.0` and `NEG_INFINITY`
#[inline]
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == NEG_INFINITY }
}
impl Bounded for f64 {
// NOTE: this is the smallest non-infinite f32 value, *not* MIN_VALUE
#[inline]
fn min_value() -> f64 { -MAX_VALUE }
#[inline]
fn max_value() -> f64 { MAX_VALUE }
}