rust/src/libstd/rt/test.rs

422 lines
13 KiB
Rust
Raw Normal View History

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use uint;
use option::{Some, None};
use cell::Cell;
use clone::Clone;
use container::Container;
use iterator::IteratorUtil;
use vec::{OwnedVector, MutableVector};
use result::{Result, Ok, Err};
use unstable::run_in_bare_thread;
use super::io::net::ip::{IpAddr, Ipv4};
2013-06-14 01:31:19 -05:00
use rt::comm::oneshot;
2013-05-19 03:04:01 -05:00
use rt::task::Task;
use rt::thread::Thread;
use rt::local::Local;
use rt::sched::{Scheduler, Coroutine};
use rt::sleeper_list::SleeperList;
use rt::work_queue::WorkQueue;
pub fn new_test_uv_sched() -> Scheduler {
use rt::uv::uvio::UvEventLoop;
use rt::work_queue::WorkQueue;
2013-05-28 21:53:55 -05:00
use rt::sleeper_list::SleeperList;
let mut sched = Scheduler::new(~UvEventLoop::new(), WorkQueue::new(), SleeperList::new());
// Don't wait for the Shutdown message
sched.no_sleep = true;
return sched;
}
/// Creates a new scheduler in a new thread and runs a task in it,
/// then waits for the scheduler to exit. Failure of the task
/// will abort the process.
pub fn run_in_newsched_task(f: ~fn()) {
use super::sched::*;
use unstable::run_in_bare_thread;
let f = Cell::new(f);
do run_in_bare_thread {
let mut sched = ~new_test_uv_sched();
2013-06-14 01:31:19 -05:00
let mut new_task = ~Task::new_root();
let on_exit: ~fn(bool) = |exit_status| rtassert!(exit_status);
new_task.on_exit = Some(on_exit);
2013-05-19 03:04:01 -05:00
let task = ~Coroutine::with_task(&mut sched.stack_pool,
2013-06-14 01:31:19 -05:00
new_task,
2013-05-19 03:04:01 -05:00
f.take());
sched.enqueue_task(task);
sched.run();
}
}
/// Create more than one scheduler and run a function in a task
/// in one of the schedulers. The schedulers will stay alive
/// until the function `f` returns.
pub fn run_in_mt_newsched_task(f: ~fn()) {
use os;
use from_str::FromStr;
use rt::uv::uvio::UvEventLoop;
use rt::sched::Shutdown;
use rt::util;
let f_cell = Cell::new(f);
do run_in_bare_thread {
let nthreads = match os::getenv("RUST_TEST_THREADS") {
Some(nstr) => FromStr::from_str(nstr).get(),
2013-06-23 16:15:39 -05:00
None => {
// Using more threads than cores in test code
// to force the OS to preempt them frequently.
// Assuming that this help stress test concurrent types.
util::num_cpus() * 2
}
};
let sleepers = SleeperList::new();
let work_queue = WorkQueue::new();
let mut handles = ~[];
let mut scheds = ~[];
for uint::range(0, nthreads) |_| {
let loop_ = ~UvEventLoop::new();
let mut sched = ~Scheduler::new(loop_, work_queue.clone(), sleepers.clone());
let handle = sched.make_handle();
handles.push(handle);
scheds.push(sched);
}
let f_cell = Cell::new(f_cell.take());
let handles = Cell::new(handles);
2013-06-14 01:31:19 -05:00
let mut new_task = ~Task::new_root();
let on_exit: ~fn(bool) = |exit_status| {
let mut handles = handles.take();
// Tell schedulers to exit
for handles.mut_iter().advance |handle| {
handle.send(Shutdown);
}
2013-06-14 01:31:19 -05:00
rtassert!(exit_status);
};
new_task.on_exit = Some(on_exit);
let main_task = ~Coroutine::with_task(&mut scheds[0].stack_pool,
new_task, f_cell.take());
scheds[0].enqueue_task(main_task);
let mut threads = ~[];
while !scheds.is_empty() {
let sched = scheds.pop();
let sched_cell = Cell::new(sched);
let thread = do Thread::start {
let sched = sched_cell.take();
sched.run();
};
threads.push(thread);
}
// Wait for schedulers
let _threads = threads;
}
}
// THIS IS AWFUL. Copy-pasted the above initialization function but
// with a number of hacks to make it spawn tasks on a variety of
// schedulers with a variety of homes using the new spawn.
pub fn run_in_mt_newsched_task_random_homed() {
use libc;
use os;
use from_str::FromStr;
use rt::uv::uvio::UvEventLoop;
use rt::sched::Shutdown;
do run_in_bare_thread {
let nthreads = match os::getenv("RUST_TEST_THREADS") {
Some(nstr) => FromStr::from_str(nstr).get(),
None => unsafe {
// Using more threads than cores in test code to force
// the OS to preempt them frequently. Assuming that
// this help stress test concurrent types.
rust_get_num_cpus() * 2
}
};
let sleepers = SleeperList::new();
let work_queue = WorkQueue::new();
let mut handles = ~[];
let mut scheds = ~[];
// create a few special schedulers, those with even indicies
// will be pinned-only
for uint::range(0, nthreads) |i| {
let special = (i % 2) == 0;
let loop_ = ~UvEventLoop::new();
let mut sched = ~Scheduler::new_special(
loop_, work_queue.clone(), sleepers.clone(), special);
let handle = sched.make_handle();
handles.push(handle);
scheds.push(sched);
}
// Schedule a pile o tasks
let n = 5*stress_factor();
for uint::range(0,n) |_i| {
rtdebug!("creating task: %u", _i);
let hf: ~fn() = || { assert!(true) };
spawntask_homed(&mut scheds, hf);
}
// Now we want another pile o tasks that do not ever run on a
// special scheduler, because they are normal tasks. Because
// we can we put these in the "main" task.
let n = 5*stress_factor();
let f: ~fn() = || {
for uint::range(0,n) |_| {
let f: ~fn() = || {
// Borrow the scheduler we run on and check if it is
// privileged.
do Local::borrow::<Scheduler,()> |sched| {
assert!(sched.run_anything);
};
};
spawntask_random(f);
};
};
let f_cell = Cell::new(f);
let handles = Cell::new(handles);
rtdebug!("creating main task");
let main_task = ~do Coroutine::new_root(&mut scheds[0].stack_pool) {
f_cell.take()();
let mut handles = handles.take();
// Tell schedulers to exit
for handles.mut_iter().advance |handle| {
handle.send(Shutdown);
}
};
rtdebug!("queuing main task")
scheds[0].enqueue_task(main_task);
let mut threads = ~[];
while !scheds.is_empty() {
let sched = scheds.pop();
let sched_cell = Cell::new(sched);
let thread = do Thread::start {
let sched = sched_cell.take();
rtdebug!("running sched: %u", sched.sched_id());
sched.run();
};
threads.push(thread);
}
rtdebug!("waiting on scheduler threads");
// Wait for schedulers
let _threads = threads;
}
extern {
fn rust_get_num_cpus() -> libc::uintptr_t;
}
}
/// Test tasks will abort on failure instead of unwinding
pub fn spawntask(f: ~fn()) {
use super::sched::*;
rtdebug!("spawntask taking the scheduler from TLS")
let task = do Local::borrow::<Task, ~Task>() |running_task| {
~running_task.new_child()
};
let mut sched = Local::take::<Scheduler>();
2013-05-19 03:04:01 -05:00
let task = ~Coroutine::with_task(&mut sched.stack_pool,
task, f);
rtdebug!("spawntask scheduling the new task");
sched.schedule_task(task);
}
/// Create a new task and run it right now. Aborts on failure
pub fn spawntask_immediately(f: ~fn()) {
use super::sched::*;
let task = do Local::borrow::<Task, ~Task>() |running_task| {
~running_task.new_child()
};
let mut sched = Local::take::<Scheduler>();
2013-05-19 03:04:01 -05:00
let task = ~Coroutine::with_task(&mut sched.stack_pool,
task, f);
do sched.switch_running_tasks_and_then(task) |sched, task| {
sched.enqueue_task(task);
}
}
2013-05-06 16:28:16 -05:00
/// Create a new task and run it right now. Aborts on failure
pub fn spawntask_later(f: ~fn()) {
use super::sched::*;
let task = do Local::borrow::<Task, ~Task>() |running_task| {
~running_task.new_child()
};
let mut sched = Local::take::<Scheduler>();
2013-05-19 03:04:01 -05:00
let task = ~Coroutine::with_task(&mut sched.stack_pool,
task, f);
2013-05-06 16:28:16 -05:00
sched.enqueue_task(task);
Local::put(sched);
2013-05-06 16:28:16 -05:00
}
/// Spawn a task and either run it immediately or run it later
pub fn spawntask_random(f: ~fn()) {
use super::sched::*;
use rand::{Rand, rng};
let task = do Local::borrow::<Task, ~Task>() |running_task| {
~running_task.new_child()
};
2013-05-06 16:28:16 -05:00
let mut sched = Local::take::<Scheduler>();
2013-05-19 03:04:01 -05:00
let task = ~Coroutine::with_task(&mut sched.stack_pool,
task, f);
2013-05-06 16:28:16 -05:00
let mut rng = rng();
let run_now: bool = Rand::rand(&mut rng);
2013-05-06 16:28:16 -05:00
if run_now {
do sched.switch_running_tasks_and_then(task) |sched, task| {
sched.enqueue_task(task);
2013-05-06 16:28:16 -05:00
}
} else {
sched.enqueue_task(task);
Local::put(sched);
2013-05-06 16:28:16 -05:00
}
}
/// Spawn a task, with the current scheduler as home, and queue it to
/// run later.
pub fn spawntask_homed(scheds: &mut ~[~Scheduler], f: ~fn()) {
use super::sched::*;
use rand::{rng, RngUtil};
let mut rng = rng();
let task = {
let sched = &mut scheds[rng.gen_int_range(0,scheds.len() as int)];
let handle = sched.make_handle();
let home_id = handle.sched_id;
// now that we know where this is going, build a new function
// that can assert it is in the right place
let af: ~fn() = || {
do Local::borrow::<Scheduler,()>() |sched| {
rtdebug!("home_id: %u, runtime loc: %u",
home_id,
sched.sched_id());
assert!(home_id == sched.sched_id());
};
f()
};
~Coroutine::with_task_homed(&mut sched.stack_pool,
~Task::new_root(),
af,
Sched(handle))
};
let dest_sched = &mut scheds[rng.gen_int_range(0,scheds.len() as int)];
// enqueue it for future execution
dest_sched.enqueue_task(task);
}
2013-05-06 16:28:16 -05:00
/// Spawn a task and wait for it to finish, returning whether it completed successfully or failed
pub fn spawntask_try(f: ~fn()) -> Result<(), ()> {
use cell::Cell;
use super::sched::*;
2013-06-14 01:31:19 -05:00
let (port, chan) = oneshot();
let chan = Cell::new(chan);
2013-06-14 01:31:19 -05:00
let mut new_task = ~Task::new_root();
let on_exit: ~fn(bool) = |exit_status| chan.take().send(exit_status);
new_task.on_exit = Some(on_exit);
let mut sched = Local::take::<Scheduler>();
let new_task = ~Coroutine::with_task(&mut sched.stack_pool,
new_task, f);
do sched.switch_running_tasks_and_then(new_task) |sched, old_task| {
sched.enqueue_task(old_task);
}
2013-06-14 01:31:19 -05:00
let exit_status = port.recv();
if exit_status { Ok(()) } else { Err(()) }
}
// Spawn a new task in a new scheduler and return a thread handle.
pub fn spawntask_thread(f: ~fn()) -> Thread {
use rt::sched::*;
let task = do Local::borrow::<Task, ~Task>() |running_task| {
~running_task.new_child()
};
let task = Cell::new(task);
let f = Cell::new(f);
let thread = do Thread::start {
let mut sched = ~new_test_uv_sched();
2013-05-19 03:04:01 -05:00
let task = ~Coroutine::with_task(&mut sched.stack_pool,
task.take(),
2013-05-19 03:04:01 -05:00
f.take());
sched.enqueue_task(task);
sched.run();
};
return thread;
}
/// Get a port number, starting at 9600, for use in tests
pub fn next_test_port() -> u16 {
unsafe {
return rust_dbg_next_port() as u16;
}
extern {
fn rust_dbg_next_port() -> ::libc::uintptr_t;
}
}
/// Get a unique localhost:port pair starting at 9600
pub fn next_test_ip4() -> IpAddr {
Ipv4(127, 0, 0, 1, next_test_port())
}
/// Get a constant that represents the number of times to repeat stress tests. Default 1.
pub fn stress_factor() -> uint {
use os::getenv;
match getenv("RUST_RT_STRESS") {
Some(val) => uint::from_str(val).get(),
None => 1
}
}