rust/library/std/Cargo.toml

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

87 lines
3.1 KiB
TOML
Raw Normal View History

[package]
name = "std"
version = "0.0.0"
license = "MIT OR Apache-2.0"
repository = "https://github.com/rust-lang/rust.git"
description = "The Rust Standard Library"
2021-12-17 20:08:36 +11:00
edition = "2021"
[lib]
crate-type = ["dylib", "rlib"]
[dependencies]
2020-06-11 21:31:49 -05:00
alloc = { path = "../alloc" }
cfg-if = { version = "1.0", features = ['rustc-dep-of-std'] }
2020-06-11 21:31:49 -05:00
panic_unwind = { path = "../panic_unwind", optional = true }
panic_abort = { path = "../panic_abort" }
core = { path = "../core" }
libc = { version = "0.2.138", default-features = false, features = ['rustc-dep-of-std'] }
2022-12-08 15:34:46 +01:00
compiler_builtins = { version = "0.1.85" }
2020-06-11 21:31:49 -05:00
profiler_builtins = { path = "../profiler_builtins", optional = true }
unwind = { path = "../unwind" }
2022-01-17 07:46:11 +00:00
hashbrown = { version = "0.12", default-features = false, features = ['rustc-dep-of-std'] }
std_detect = { path = "../stdarch/crates/std_detect", default-features = false, features = ['rustc-dep-of-std'] }
std: Depend on `backtrace` crate from crates.io This commit removes all in-tree support for generating backtraces in favor of depending on the `backtrace` crate on crates.io. This resolves a very longstanding piece of duplication where the standard library has long contained the ability to generate a backtrace on panics, but the code was later extracted and duplicated on crates.io with the `backtrace` crate. Since that fork each implementation has seen various improvements one way or another, but typically `backtrace`-the-crate has lagged behind libstd in one way or another. The goal here is to remove this duplication of a fairly critical piece of code and ensure that there's only one source of truth for generating backtraces between the standard library and the crate on crates.io. Recently I've been working to bring the `backtrace` crate on crates.io up to speed with the support in the standard library which includes: * Support for `StackWalkEx` on MSVC to recover inline frames with debuginfo. * Using `libbacktrace` by default on MinGW targets. * Supporting `libbacktrace` on OSX as an option. * Ensuring all the requisite support in `backtrace`-the-crate compiles with `#![no_std]`. * Updating the `libbacktrace` implementation in `backtrace`-the-crate to initialize the global state with the correct filename where necessary. After reviewing the code in libstd the `backtrace` crate should be at exact feature parity with libstd today. The backtraces generated should have the same symbols and same number of frames in general, and there's not known divergence from libstd currently. Note that one major difference between libstd's backtrace support and the `backtrace` crate is that on OSX the crates.io crate enables the `coresymbolication` feature by default. This feature, however, uses private internal APIs that aren't published for OSX. While they provide more accurate backtraces this isn't appropriate for libstd distributed as a binary, so libstd's dependency on the `backtrace` crate explicitly disables this feature and forces OSX to use `libbacktrace` as a symbolication strategy. The long-term goal of this refactoring is to eventually move us towards a world where we can drop `libbacktrace` entirely and simply use Gimli and the surrounding crates for backtrace support. That's still aways off but hopefully will much more easily enabled by having the source of truth for backtraces live in crates.io! Procedurally if we go forward with this I'd like to transfer the `backtrace-rs` crate to the rust-lang GitHub organization as well, but I figured I'd hold off on that until we get closer to merging.
2019-05-15 07:30:15 -07:00
std: Switch from libbacktrace to gimli This commit is a proof-of-concept for switching the standard library's backtrace symbolication mechanism on most platforms from libbacktrace to gimli. The standard library's support for `RUST_BACKTRACE=1` requires in-process parsing of object files and DWARF debug information to interpret it and print the filename/line number of stack frames as part of a backtrace. Historically this support in the standard library has come from a library called "libbacktrace". The libbacktrace library seems to have been extracted from gcc at some point and is written in C. We've had a lot of issues with libbacktrace over time, unfortunately, though. The library does not appear to be actively maintained since we've had patches sit for months-to-years without comments. We have discovered a good number of soundness issues with the library itself, both when parsing valid DWARF as well as invalid DWARF. This is enough of an issue that the libs team has previously decided that we cannot feed untrusted inputs to libbacktrace. This also doesn't take into account the portability of libbacktrace which has been difficult to manage and maintain over time. While possible there are lots of exceptions and it's the main C dependency of the standard library right now. For years it's been the desire to switch over to a Rust-based solution for symbolicating backtraces. It's been assumed that we'll be using the Gimli family of crates for this purpose, which are targeted at safely and efficiently parsing DWARF debug information. I've been working recently to shore up the Gimli support in the `backtrace` crate. As of a few weeks ago the `backtrace` crate, by default, uses Gimli when loaded from crates.io. This transition has gone well enough that I figured it was time to start talking seriously about this change to the standard library. This commit is a preview of what's probably the best way to integrate the `backtrace` crate into the standard library with the Gimli feature turned on. While today it's used as a crates.io dependency, this commit switches the `backtrace` crate to a submodule of this repository which will need to be updated manually. This is not done lightly, but is thought to be the best solution. The primary reason for this is that the `backtrace` crate needs to do some pretty nontrivial filesystem interactions to locate debug information. Working without `std::fs` is not an option, and while it might be possible to do some sort of trait-based solution when prototyped it was found to be too unergonomic. Using a submodule allows the `backtrace` crate to build as a submodule of the `std` crate itself, enabling it to use `std::fs` and such. Otherwise this adds new dependencies to the standard library. This step requires extra attention because this means that these crates are now going to be included with all Rust programs by default. It's important to note, however, that we're already shipping libbacktrace with all Rust programs by default and it has a bunch of C code implementing all of this internally anyway, so we're basically already switching already-shipping functionality to Rust from C. * `object` - this crate is used to parse object file headers and contents. Very low-level support is used from this crate and almost all of it is disabled. Largely we're just using struct definitions as well as convenience methods internally to read bytes and such. * `addr2line` - this is the main meat of the implementation for symbolication. This crate depends on `gimli` for DWARF parsing and then provides interfaces needed by the `backtrace` crate to turn an address into a filename / line number. This crate is actually pretty small (fits in a single file almost!) and mirrors most of what `dwarf.c` does for libbacktrace. * `miniz_oxide` - the libbacktrace crate transparently handles compressed debug information which is compressed with zlib. This crate is used to decompress compressed debug sections. * `gimli` - not actually used directly, but a dependency of `addr2line`. * `adler32`- not used directly either, but a dependency of `miniz_oxide`. The goal of this change is to improve the safety of backtrace symbolication in the standard library, especially in the face of possibly malformed DWARF debug information. Even to this day we're still seeing segfaults in libbacktrace which could possibly become security vulnerabilities. This change should almost entirely eliminate this possibility whilc also paving the way forward to adding more features like split debug information. Some references for those interested are: * Original addition of libbacktrace - #12602 * OOM with libbacktrace - #24231 * Backtrace failure due to use of uninitialized value - #28447 * Possibility to feed untrusted data to libbacktrace - #21889 * Soundness fix for libbacktrace - #33729 * Crash in libbacktrace - #39468 * Support for macOS, never merged - ianlancetaylor/libbacktrace#2 * Performance issues with libbacktrace - #29293, #37477 * Update procedure is quite complicated due to how many patches we need to carry - #50955 * Libbacktrace doesn't work on MinGW with dynamic libs - #71060 * Segfault in libbacktrace on macOS - #71397 Switching to Rust will not make us immune to all of these issues. The crashes are expected to go away, but correctness and performance may still have bugs arise. The gimli and `backtrace` crates, however, are actively maintained unlike libbacktrace, so this should enable us to at least efficiently apply fixes as situations come up.
2020-05-13 14:22:37 -07:00
# Dependencies of the `backtrace` crate
addr2line = { version = "0.17.0", optional = true, default-features = false }
2021-08-11 00:05:25 +03:00
rustc-demangle = { version = "0.1.21", features = ['rustc-dep-of-std'] }
miniz_oxide = { version = "0.5.0", optional = true, default-features = false }
std: Switch from libbacktrace to gimli This commit is a proof-of-concept for switching the standard library's backtrace symbolication mechanism on most platforms from libbacktrace to gimli. The standard library's support for `RUST_BACKTRACE=1` requires in-process parsing of object files and DWARF debug information to interpret it and print the filename/line number of stack frames as part of a backtrace. Historically this support in the standard library has come from a library called "libbacktrace". The libbacktrace library seems to have been extracted from gcc at some point and is written in C. We've had a lot of issues with libbacktrace over time, unfortunately, though. The library does not appear to be actively maintained since we've had patches sit for months-to-years without comments. We have discovered a good number of soundness issues with the library itself, both when parsing valid DWARF as well as invalid DWARF. This is enough of an issue that the libs team has previously decided that we cannot feed untrusted inputs to libbacktrace. This also doesn't take into account the portability of libbacktrace which has been difficult to manage and maintain over time. While possible there are lots of exceptions and it's the main C dependency of the standard library right now. For years it's been the desire to switch over to a Rust-based solution for symbolicating backtraces. It's been assumed that we'll be using the Gimli family of crates for this purpose, which are targeted at safely and efficiently parsing DWARF debug information. I've been working recently to shore up the Gimli support in the `backtrace` crate. As of a few weeks ago the `backtrace` crate, by default, uses Gimli when loaded from crates.io. This transition has gone well enough that I figured it was time to start talking seriously about this change to the standard library. This commit is a preview of what's probably the best way to integrate the `backtrace` crate into the standard library with the Gimli feature turned on. While today it's used as a crates.io dependency, this commit switches the `backtrace` crate to a submodule of this repository which will need to be updated manually. This is not done lightly, but is thought to be the best solution. The primary reason for this is that the `backtrace` crate needs to do some pretty nontrivial filesystem interactions to locate debug information. Working without `std::fs` is not an option, and while it might be possible to do some sort of trait-based solution when prototyped it was found to be too unergonomic. Using a submodule allows the `backtrace` crate to build as a submodule of the `std` crate itself, enabling it to use `std::fs` and such. Otherwise this adds new dependencies to the standard library. This step requires extra attention because this means that these crates are now going to be included with all Rust programs by default. It's important to note, however, that we're already shipping libbacktrace with all Rust programs by default and it has a bunch of C code implementing all of this internally anyway, so we're basically already switching already-shipping functionality to Rust from C. * `object` - this crate is used to parse object file headers and contents. Very low-level support is used from this crate and almost all of it is disabled. Largely we're just using struct definitions as well as convenience methods internally to read bytes and such. * `addr2line` - this is the main meat of the implementation for symbolication. This crate depends on `gimli` for DWARF parsing and then provides interfaces needed by the `backtrace` crate to turn an address into a filename / line number. This crate is actually pretty small (fits in a single file almost!) and mirrors most of what `dwarf.c` does for libbacktrace. * `miniz_oxide` - the libbacktrace crate transparently handles compressed debug information which is compressed with zlib. This crate is used to decompress compressed debug sections. * `gimli` - not actually used directly, but a dependency of `addr2line`. * `adler32`- not used directly either, but a dependency of `miniz_oxide`. The goal of this change is to improve the safety of backtrace symbolication in the standard library, especially in the face of possibly malformed DWARF debug information. Even to this day we're still seeing segfaults in libbacktrace which could possibly become security vulnerabilities. This change should almost entirely eliminate this possibility whilc also paving the way forward to adding more features like split debug information. Some references for those interested are: * Original addition of libbacktrace - #12602 * OOM with libbacktrace - #24231 * Backtrace failure due to use of uninitialized value - #28447 * Possibility to feed untrusted data to libbacktrace - #21889 * Soundness fix for libbacktrace - #33729 * Crash in libbacktrace - #39468 * Support for macOS, never merged - ianlancetaylor/libbacktrace#2 * Performance issues with libbacktrace - #29293, #37477 * Update procedure is quite complicated due to how many patches we need to carry - #50955 * Libbacktrace doesn't work on MinGW with dynamic libs - #71060 * Segfault in libbacktrace on macOS - #71397 Switching to Rust will not make us immune to all of these issues. The crashes are expected to go away, but correctness and performance may still have bugs arise. The gimli and `backtrace` crates, however, are actively maintained unlike libbacktrace, so this should enable us to at least efficiently apply fixes as situations come up.
2020-05-13 14:22:37 -07:00
[dependencies.object]
version = "0.29.0"
std: Switch from libbacktrace to gimli This commit is a proof-of-concept for switching the standard library's backtrace symbolication mechanism on most platforms from libbacktrace to gimli. The standard library's support for `RUST_BACKTRACE=1` requires in-process parsing of object files and DWARF debug information to interpret it and print the filename/line number of stack frames as part of a backtrace. Historically this support in the standard library has come from a library called "libbacktrace". The libbacktrace library seems to have been extracted from gcc at some point and is written in C. We've had a lot of issues with libbacktrace over time, unfortunately, though. The library does not appear to be actively maintained since we've had patches sit for months-to-years without comments. We have discovered a good number of soundness issues with the library itself, both when parsing valid DWARF as well as invalid DWARF. This is enough of an issue that the libs team has previously decided that we cannot feed untrusted inputs to libbacktrace. This also doesn't take into account the portability of libbacktrace which has been difficult to manage and maintain over time. While possible there are lots of exceptions and it's the main C dependency of the standard library right now. For years it's been the desire to switch over to a Rust-based solution for symbolicating backtraces. It's been assumed that we'll be using the Gimli family of crates for this purpose, which are targeted at safely and efficiently parsing DWARF debug information. I've been working recently to shore up the Gimli support in the `backtrace` crate. As of a few weeks ago the `backtrace` crate, by default, uses Gimli when loaded from crates.io. This transition has gone well enough that I figured it was time to start talking seriously about this change to the standard library. This commit is a preview of what's probably the best way to integrate the `backtrace` crate into the standard library with the Gimli feature turned on. While today it's used as a crates.io dependency, this commit switches the `backtrace` crate to a submodule of this repository which will need to be updated manually. This is not done lightly, but is thought to be the best solution. The primary reason for this is that the `backtrace` crate needs to do some pretty nontrivial filesystem interactions to locate debug information. Working without `std::fs` is not an option, and while it might be possible to do some sort of trait-based solution when prototyped it was found to be too unergonomic. Using a submodule allows the `backtrace` crate to build as a submodule of the `std` crate itself, enabling it to use `std::fs` and such. Otherwise this adds new dependencies to the standard library. This step requires extra attention because this means that these crates are now going to be included with all Rust programs by default. It's important to note, however, that we're already shipping libbacktrace with all Rust programs by default and it has a bunch of C code implementing all of this internally anyway, so we're basically already switching already-shipping functionality to Rust from C. * `object` - this crate is used to parse object file headers and contents. Very low-level support is used from this crate and almost all of it is disabled. Largely we're just using struct definitions as well as convenience methods internally to read bytes and such. * `addr2line` - this is the main meat of the implementation for symbolication. This crate depends on `gimli` for DWARF parsing and then provides interfaces needed by the `backtrace` crate to turn an address into a filename / line number. This crate is actually pretty small (fits in a single file almost!) and mirrors most of what `dwarf.c` does for libbacktrace. * `miniz_oxide` - the libbacktrace crate transparently handles compressed debug information which is compressed with zlib. This crate is used to decompress compressed debug sections. * `gimli` - not actually used directly, but a dependency of `addr2line`. * `adler32`- not used directly either, but a dependency of `miniz_oxide`. The goal of this change is to improve the safety of backtrace symbolication in the standard library, especially in the face of possibly malformed DWARF debug information. Even to this day we're still seeing segfaults in libbacktrace which could possibly become security vulnerabilities. This change should almost entirely eliminate this possibility whilc also paving the way forward to adding more features like split debug information. Some references for those interested are: * Original addition of libbacktrace - #12602 * OOM with libbacktrace - #24231 * Backtrace failure due to use of uninitialized value - #28447 * Possibility to feed untrusted data to libbacktrace - #21889 * Soundness fix for libbacktrace - #33729 * Crash in libbacktrace - #39468 * Support for macOS, never merged - ianlancetaylor/libbacktrace#2 * Performance issues with libbacktrace - #29293, #37477 * Update procedure is quite complicated due to how many patches we need to carry - #50955 * Libbacktrace doesn't work on MinGW with dynamic libs - #71060 * Segfault in libbacktrace on macOS - #71397 Switching to Rust will not make us immune to all of these issues. The crashes are expected to go away, but correctness and performance may still have bugs arise. The gimli and `backtrace` crates, however, are actively maintained unlike libbacktrace, so this should enable us to at least efficiently apply fixes as situations come up.
2020-05-13 14:22:37 -07:00
optional = true
default-features = false
features = ['read_core', 'elf', 'macho', 'pe', 'unaligned', 'archive']
[dev-dependencies]
2019-08-22 12:28:03 +02:00
rand = "0.7"
2021-10-28 16:28:21 -07:00
[target.'cfg(any(all(target_family = "wasm", not(target_os = "emscripten")), all(target_vendor = "fortanix", target_env = "sgx")))'.dependencies]
dlmalloc = { version = "0.2.3", features = ['rustc-dep-of-std'] }
[target.x86_64-fortanix-unknown-sgx.dependencies]
fortanix-sgx-abi = { version = "0.5.0", features = ['rustc-dep-of-std'] }
[target.'cfg(target_os = "hermit")'.dependencies]
hermit-abi = { version = "0.2.6", features = ['rustc-dep-of-std'] }
2019-09-03 14:37:53 +00:00
[target.wasm32-wasi.dependencies]
wasi = { version = "0.11.0", features = ['rustc-dep-of-std'], default-features = false }
2019-09-03 14:37:53 +00:00
[features]
2019-09-14 12:12:32 +02:00
backtrace = [
std: Switch from libbacktrace to gimli This commit is a proof-of-concept for switching the standard library's backtrace symbolication mechanism on most platforms from libbacktrace to gimli. The standard library's support for `RUST_BACKTRACE=1` requires in-process parsing of object files and DWARF debug information to interpret it and print the filename/line number of stack frames as part of a backtrace. Historically this support in the standard library has come from a library called "libbacktrace". The libbacktrace library seems to have been extracted from gcc at some point and is written in C. We've had a lot of issues with libbacktrace over time, unfortunately, though. The library does not appear to be actively maintained since we've had patches sit for months-to-years without comments. We have discovered a good number of soundness issues with the library itself, both when parsing valid DWARF as well as invalid DWARF. This is enough of an issue that the libs team has previously decided that we cannot feed untrusted inputs to libbacktrace. This also doesn't take into account the portability of libbacktrace which has been difficult to manage and maintain over time. While possible there are lots of exceptions and it's the main C dependency of the standard library right now. For years it's been the desire to switch over to a Rust-based solution for symbolicating backtraces. It's been assumed that we'll be using the Gimli family of crates for this purpose, which are targeted at safely and efficiently parsing DWARF debug information. I've been working recently to shore up the Gimli support in the `backtrace` crate. As of a few weeks ago the `backtrace` crate, by default, uses Gimli when loaded from crates.io. This transition has gone well enough that I figured it was time to start talking seriously about this change to the standard library. This commit is a preview of what's probably the best way to integrate the `backtrace` crate into the standard library with the Gimli feature turned on. While today it's used as a crates.io dependency, this commit switches the `backtrace` crate to a submodule of this repository which will need to be updated manually. This is not done lightly, but is thought to be the best solution. The primary reason for this is that the `backtrace` crate needs to do some pretty nontrivial filesystem interactions to locate debug information. Working without `std::fs` is not an option, and while it might be possible to do some sort of trait-based solution when prototyped it was found to be too unergonomic. Using a submodule allows the `backtrace` crate to build as a submodule of the `std` crate itself, enabling it to use `std::fs` and such. Otherwise this adds new dependencies to the standard library. This step requires extra attention because this means that these crates are now going to be included with all Rust programs by default. It's important to note, however, that we're already shipping libbacktrace with all Rust programs by default and it has a bunch of C code implementing all of this internally anyway, so we're basically already switching already-shipping functionality to Rust from C. * `object` - this crate is used to parse object file headers and contents. Very low-level support is used from this crate and almost all of it is disabled. Largely we're just using struct definitions as well as convenience methods internally to read bytes and such. * `addr2line` - this is the main meat of the implementation for symbolication. This crate depends on `gimli` for DWARF parsing and then provides interfaces needed by the `backtrace` crate to turn an address into a filename / line number. This crate is actually pretty small (fits in a single file almost!) and mirrors most of what `dwarf.c` does for libbacktrace. * `miniz_oxide` - the libbacktrace crate transparently handles compressed debug information which is compressed with zlib. This crate is used to decompress compressed debug sections. * `gimli` - not actually used directly, but a dependency of `addr2line`. * `adler32`- not used directly either, but a dependency of `miniz_oxide`. The goal of this change is to improve the safety of backtrace symbolication in the standard library, especially in the face of possibly malformed DWARF debug information. Even to this day we're still seeing segfaults in libbacktrace which could possibly become security vulnerabilities. This change should almost entirely eliminate this possibility whilc also paving the way forward to adding more features like split debug information. Some references for those interested are: * Original addition of libbacktrace - #12602 * OOM with libbacktrace - #24231 * Backtrace failure due to use of uninitialized value - #28447 * Possibility to feed untrusted data to libbacktrace - #21889 * Soundness fix for libbacktrace - #33729 * Crash in libbacktrace - #39468 * Support for macOS, never merged - ianlancetaylor/libbacktrace#2 * Performance issues with libbacktrace - #29293, #37477 * Update procedure is quite complicated due to how many patches we need to carry - #50955 * Libbacktrace doesn't work on MinGW with dynamic libs - #71060 * Segfault in libbacktrace on macOS - #71397 Switching to Rust will not make us immune to all of these issues. The crashes are expected to go away, but correctness and performance may still have bugs arise. The gimli and `backtrace` crates, however, are actively maintained unlike libbacktrace, so this should enable us to at least efficiently apply fixes as situations come up.
2020-05-13 14:22:37 -07:00
"gimli-symbolize",
'addr2line/rustc-dep-of-std',
'object/rustc-dep-of-std',
'miniz_oxide/rustc-dep-of-std',
]
std: Switch from libbacktrace to gimli This commit is a proof-of-concept for switching the standard library's backtrace symbolication mechanism on most platforms from libbacktrace to gimli. The standard library's support for `RUST_BACKTRACE=1` requires in-process parsing of object files and DWARF debug information to interpret it and print the filename/line number of stack frames as part of a backtrace. Historically this support in the standard library has come from a library called "libbacktrace". The libbacktrace library seems to have been extracted from gcc at some point and is written in C. We've had a lot of issues with libbacktrace over time, unfortunately, though. The library does not appear to be actively maintained since we've had patches sit for months-to-years without comments. We have discovered a good number of soundness issues with the library itself, both when parsing valid DWARF as well as invalid DWARF. This is enough of an issue that the libs team has previously decided that we cannot feed untrusted inputs to libbacktrace. This also doesn't take into account the portability of libbacktrace which has been difficult to manage and maintain over time. While possible there are lots of exceptions and it's the main C dependency of the standard library right now. For years it's been the desire to switch over to a Rust-based solution for symbolicating backtraces. It's been assumed that we'll be using the Gimli family of crates for this purpose, which are targeted at safely and efficiently parsing DWARF debug information. I've been working recently to shore up the Gimli support in the `backtrace` crate. As of a few weeks ago the `backtrace` crate, by default, uses Gimli when loaded from crates.io. This transition has gone well enough that I figured it was time to start talking seriously about this change to the standard library. This commit is a preview of what's probably the best way to integrate the `backtrace` crate into the standard library with the Gimli feature turned on. While today it's used as a crates.io dependency, this commit switches the `backtrace` crate to a submodule of this repository which will need to be updated manually. This is not done lightly, but is thought to be the best solution. The primary reason for this is that the `backtrace` crate needs to do some pretty nontrivial filesystem interactions to locate debug information. Working without `std::fs` is not an option, and while it might be possible to do some sort of trait-based solution when prototyped it was found to be too unergonomic. Using a submodule allows the `backtrace` crate to build as a submodule of the `std` crate itself, enabling it to use `std::fs` and such. Otherwise this adds new dependencies to the standard library. This step requires extra attention because this means that these crates are now going to be included with all Rust programs by default. It's important to note, however, that we're already shipping libbacktrace with all Rust programs by default and it has a bunch of C code implementing all of this internally anyway, so we're basically already switching already-shipping functionality to Rust from C. * `object` - this crate is used to parse object file headers and contents. Very low-level support is used from this crate and almost all of it is disabled. Largely we're just using struct definitions as well as convenience methods internally to read bytes and such. * `addr2line` - this is the main meat of the implementation for symbolication. This crate depends on `gimli` for DWARF parsing and then provides interfaces needed by the `backtrace` crate to turn an address into a filename / line number. This crate is actually pretty small (fits in a single file almost!) and mirrors most of what `dwarf.c` does for libbacktrace. * `miniz_oxide` - the libbacktrace crate transparently handles compressed debug information which is compressed with zlib. This crate is used to decompress compressed debug sections. * `gimli` - not actually used directly, but a dependency of `addr2line`. * `adler32`- not used directly either, but a dependency of `miniz_oxide`. The goal of this change is to improve the safety of backtrace symbolication in the standard library, especially in the face of possibly malformed DWARF debug information. Even to this day we're still seeing segfaults in libbacktrace which could possibly become security vulnerabilities. This change should almost entirely eliminate this possibility whilc also paving the way forward to adding more features like split debug information. Some references for those interested are: * Original addition of libbacktrace - #12602 * OOM with libbacktrace - #24231 * Backtrace failure due to use of uninitialized value - #28447 * Possibility to feed untrusted data to libbacktrace - #21889 * Soundness fix for libbacktrace - #33729 * Crash in libbacktrace - #39468 * Support for macOS, never merged - ianlancetaylor/libbacktrace#2 * Performance issues with libbacktrace - #29293, #37477 * Update procedure is quite complicated due to how many patches we need to carry - #50955 * Libbacktrace doesn't work on MinGW with dynamic libs - #71060 * Segfault in libbacktrace on macOS - #71397 Switching to Rust will not make us immune to all of these issues. The crashes are expected to go away, but correctness and performance may still have bugs arise. The gimli and `backtrace` crates, however, are actively maintained unlike libbacktrace, so this should enable us to at least efficiently apply fixes as situations come up.
2020-05-13 14:22:37 -07:00
gimli-symbolize = []
panic-unwind = ["panic_unwind"]
profiler = ["profiler_builtins"]
compiler-builtins-c = ["alloc/compiler-builtins-c"]
compiler-builtins-mem = ["alloc/compiler-builtins-mem"]
2020-12-10 04:48:08 +09:00
compiler-builtins-no-asm = ["alloc/compiler-builtins-no-asm"]
compiler-builtins-mangled-names = ["alloc/compiler-builtins-mangled-names"]
llvm-libunwind = ["unwind/llvm-libunwind"]
system-llvm-libunwind = ["unwind/system-llvm-libunwind"]
std: Implement TLS for wasm32-unknown-unknown This adds an implementation of thread local storage for the `wasm32-unknown-unknown` target when the `atomics` feature is implemented. This, however, comes with a notable caveat of that it requires a new feature of the standard library, `wasm-bindgen-threads`, to be enabled. Thread local storage for wasm (when `atomics` are enabled and there's actually more than one thread) is powered by the assumption that an external entity can fill in some information for us. It's not currently clear who will fill in this information nor whose responsibility it should be long-term. In the meantime there's a strategy being gamed out in the `wasm-bindgen` project specifically, and the hope is that we can continue to test and iterate on the standard library without committing to a particular strategy yet. As to the details of `wasm-bindgen`'s strategy, LLVM doesn't currently have the ability to emit custom `global` values (thread locals in a `WebAssembly.Module`) so we leverage the `wasm-bindgen` CLI tool to do it for us. To that end we have a few intrinsics, assuming two global values: * `__wbindgen_current_id` - gets the current thread id as a 32-bit integer. It's `wasm-bindgen`'s responsibility to initialize this per-thread and then inform libstd of the id. Currently `wasm-bindgen` performs this initialization as part of the `start` function. * `__wbindgen_tcb_{get,set}` - in addition to a thread id it's assumed that there's a global available for simply storing a pointer's worth of information (a thread control block, which currently only contains thread local storage). This would ideally be a native `global` injected by LLVM, but we don't have a great way to support that right now. To reiterate, this is all intended to be unstable and purely intended for testing out Rust on the web with threads. The story is very likely to change in the future and we want to make sure that we're able to do that!
2018-10-09 23:10:25 -07:00
# Make panics and failed asserts immediately abort without formatting any message
panic_immediate_abort = ["core/panic_immediate_abort"]
2019-07-15 13:53:44 +02:00
# Enable std_detect default features for stdarch/crates/std_detect:
# https://github.com/rust-lang/stdarch/blob/master/crates/std_detect/Cargo.toml
std_detect_file_io = ["std_detect/std_detect_file_io"]
std_detect_dlsym_getauxval = ["std_detect/std_detect_dlsym_getauxval"]
std_detect_env_override = ["std_detect/std_detect_env_override"]
2019-03-12 10:58:30 -07:00
[package.metadata.fortanix-sgx]
# Maximum possible number of threads when testing
threads = 125
# Maximum heap size
heap_size = 0x8000000
2020-06-08 09:09:21 -07:00
[[bench]]
name = "stdbenches"
path = "benches/lib.rs"
test = true