rust/src/interpreter/terminator/intrinsics.rs

399 lines
17 KiB
Rust
Raw Normal View History

2016-09-20 16:05:30 +02:00
use rustc::hir::def_id::DefId;
use rustc::mir::repr as mir;
use rustc::ty::layout::Layout;
use rustc::ty::subst::Substs;
use rustc::ty::{self, Ty};
2016-09-20 16:05:30 +02:00
use error::{EvalError, EvalResult};
use memory::Pointer;
use interpreter::EvalContext;
use primval::{self, PrimVal};
use interpreter::value::Value;
2016-09-20 16:05:30 +02:00
impl<'a, 'tcx> EvalContext<'a, 'tcx> {
pub(super) fn call_intrinsic(
&mut self,
def_id: DefId,
substs: &'tcx Substs<'tcx>,
args: &[mir::Operand<'tcx>],
dest: Pointer,
dest_ty: Ty<'tcx>,
2016-09-20 16:05:30 +02:00
dest_layout: &'tcx Layout,
) -> EvalResult<'tcx, ()> {
let args_ptrs: EvalResult<Vec<Value>> = args.iter()
.map(|arg| self.eval_operand(arg))
2016-09-20 16:05:30 +02:00
.collect();
let args_ptrs = args_ptrs?;
2016-09-20 16:05:30 +02:00
let pointer_size = self.memory.pointer_size();
let i32 = self.tcx.types.i32;
let isize = self.tcx.types.isize;
let usize = self.tcx.types.usize;
let f32 = self.tcx.types.f32;
let f64 = self.tcx.types.f64;
2016-09-20 16:05:30 +02:00
match &self.tcx.item_name(def_id).as_str()[..] {
"add_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Add, &args[0], &args[1], dest, dest_layout)?,
"sub_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Sub, &args[0], &args[1], dest, dest_layout)?,
"mul_with_overflow" => self.intrinsic_with_overflow(mir::BinOp::Mul, &args[0], &args[1], dest, dest_layout)?,
"arith_offset" => {
let ptr = args_ptrs[0].read_ptr(&self.memory)?;
let offset = self.value_to_primval(args_ptrs[1], isize)?.expect_int("arith_offset second arg not isize");
2016-09-20 16:05:30 +02:00
let new_ptr = ptr.offset(offset as isize);
self.memory.write_ptr(dest, new_ptr)?;
}
"assume" => {
let bool = self.tcx.types.bool;
if !self.value_to_primval(args_ptrs[0], bool)?.expect_bool("assume arg not bool") {
2016-09-20 16:05:30 +02:00
return Err(EvalError::AssumptionNotHeld);
}
}
"breakpoint" => unimplemented!(), // halt miri
"copy" |
"copy_nonoverlapping" => {
// FIXME: check whether overlapping occurs
let elem_ty = substs.type_at(0);
let elem_size = self.type_size(elem_ty);
let elem_align = self.type_align(elem_ty);
let src = args_ptrs[0].read_ptr(&self.memory)?;
let dest = args_ptrs[1].read_ptr(&self.memory)?;
let count = self.value_to_primval(args_ptrs[2], usize)?.expect_uint("arith_offset second arg not isize");
2016-09-20 16:05:30 +02:00
self.memory.copy(src, dest, count as usize * elem_size, elem_align)?;
}
"ctpop" => {
let elem_ty = substs.type_at(0);
let elem_size = self.type_size(elem_ty);
let num = self.value_to_primval(args_ptrs[0], elem_ty)?;
let num = match num {
PrimVal::I8(i) => i.count_ones(),
PrimVal::U8(i) => i.count_ones(),
PrimVal::I16(i) => i.count_ones(),
PrimVal::U16(i) => i.count_ones(),
PrimVal::I32(i) => i.count_ones(),
PrimVal::U32(i) => i.count_ones(),
PrimVal::I64(i) => i.count_ones(),
PrimVal::U64(i) => i.count_ones(),
_ => bug!("ctpop called with non-integer type"),
};
self.memory.write_uint(dest, num.into(), elem_size)?;
}
"bswap" => {
let elem_ty = substs.type_at(0);
let elem_size = self.type_size(elem_ty);
let num = self.value_to_primval(args_ptrs[0], elem_ty)?;
let num = match num {
PrimVal::I8(i) => i.swap_bytes() as u64,
PrimVal::U8(i) => i.swap_bytes() as u64,
PrimVal::I16(i) => i.swap_bytes() as u64,
PrimVal::U16(i) => i.swap_bytes() as u64,
PrimVal::I32(i) => i.swap_bytes() as u64,
PrimVal::U32(i) => i.swap_bytes() as u64,
PrimVal::I64(i) => i.swap_bytes() as u64,
PrimVal::U64(i) => i.swap_bytes(),
_ => bug!("bswap called with non-integer type"),
};
self.memory.write_uint(dest, num, elem_size)?;
}
"cttz" => {
let elem_ty = substs.type_at(0);
let elem_size = self.type_size(elem_ty);
let num = self.value_to_primval(args_ptrs[0], elem_ty)?;
let num = match num {
PrimVal::I8(i) => i.trailing_zeros(),
PrimVal::U8(i) => i.trailing_zeros(),
PrimVal::I16(i) => i.trailing_zeros(),
PrimVal::U16(i) => i.trailing_zeros(),
PrimVal::I32(i) => i.trailing_zeros(),
PrimVal::U32(i) => i.trailing_zeros(),
PrimVal::I64(i) => i.trailing_zeros(),
PrimVal::U64(i) => i.trailing_zeros(),
_ => bug!("cttz called with non-integer type"),
};
2016-09-20 16:05:30 +02:00
self.memory.write_uint(dest, num.into(), elem_size)?;
}
"ctlz" => {
let elem_ty = substs.type_at(0);
let elem_size = self.type_size(elem_ty);
let num = self.value_to_primval(args_ptrs[0], elem_ty)?;
let num = match num {
PrimVal::I8(i) => i.leading_zeros(),
PrimVal::U8(i) => i.leading_zeros(),
PrimVal::I16(i) => i.leading_zeros(),
PrimVal::U16(i) => i.leading_zeros(),
PrimVal::I32(i) => i.leading_zeros(),
PrimVal::U32(i) => i.leading_zeros(),
PrimVal::I64(i) => i.leading_zeros(),
PrimVal::U64(i) => i.leading_zeros(),
_ => bug!("ctlz called with non-integer type"),
};
2016-09-20 16:05:30 +02:00
self.memory.write_uint(dest, num.into(), elem_size)?;
}
"discriminant_value" => {
let ty = substs.type_at(0);
let adt_ptr = args_ptrs[0].read_ptr(&self.memory)?;
2016-09-20 16:05:30 +02:00
let discr_val = self.read_discriminant_value(adt_ptr, ty)?;
self.memory.write_uint(dest, discr_val, 8)?;
}
"fabsf32" => {
let f = self.value_to_primval(args_ptrs[2], f32)?.expect_f32("fabsf32 read non f32");
2016-09-20 16:05:30 +02:00
self.memory.write_f32(dest, f.abs())?;
}
"fabsf64" => {
let f = self.value_to_primval(args_ptrs[2], f64)?.expect_f64("fabsf64 read non f64");
2016-09-20 16:05:30 +02:00
self.memory.write_f64(dest, f.abs())?;
}
"fadd_fast" => {
let ty = substs.type_at(0);
let a = self.value_to_primval(args_ptrs[0], ty)?;
let b = self.value_to_primval(args_ptrs[0], ty)?;
2016-09-20 16:05:30 +02:00
let result = primval::binary_op(mir::BinOp::Add, a, b)?;
self.memory.write_primval(dest, result.0)?;
}
"likely" |
"unlikely" |
"forget" => {}
"init" => self.memory.write_repeat(dest, 0, dest_layout.size(&self.tcx.data_layout).bytes() as usize)?,
"min_align_of" => {
let elem_ty = substs.type_at(0);
let elem_align = self.type_align(elem_ty);
self.memory.write_uint(dest, elem_align as u64, pointer_size)?;
}
"pref_align_of" => {
let ty = substs.type_at(0);
let layout = self.type_layout(ty);
let align = layout.align(&self.tcx.data_layout).pref();
self.memory.write_uint(dest, align, pointer_size)?;
}
"move_val_init" => {
let ty = substs.type_at(0);
let ptr = args_ptrs[0].read_ptr(&self.memory)?;
self.write_value(args_ptrs[1], ptr, ty)?;
2016-09-20 16:05:30 +02:00
}
"needs_drop" => {
let ty = substs.type_at(0);
self.memory.write_bool(dest, self.tcx.type_needs_drop_given_env(ty, &self.tcx.empty_parameter_environment()))?;
}
"offset" => {
let pointee_ty = substs.type_at(0);
let pointee_size = self.type_size(pointee_ty) as isize;
let offset = self.value_to_primval(args_ptrs[1], isize)?.expect_int("offset second arg not isize");
2016-09-20 16:05:30 +02:00
let ptr = args_ptrs[0].read_ptr(&self.memory)?;
2016-09-22 15:47:16 +02:00
let result_ptr = ptr.offset(offset as isize * pointee_size);
self.memory.write_ptr(dest, result_ptr)?;
2016-09-20 16:05:30 +02:00
}
"overflowing_sub" => {
self.intrinsic_overflowing(mir::BinOp::Sub, &args[0], &args[1], dest)?;
}
"overflowing_mul" => {
self.intrinsic_overflowing(mir::BinOp::Mul, &args[0], &args[1], dest)?;
}
"overflowing_add" => {
self.intrinsic_overflowing(mir::BinOp::Add, &args[0], &args[1], dest)?;
}
"powif32" => {
let f = self.value_to_primval(args_ptrs[0], f32)?.expect_f32("powif32 first arg not f32");
let i = self.value_to_primval(args_ptrs[1], i32)?.expect_int("powif32 second arg not i32");
2016-09-20 16:05:30 +02:00
self.memory.write_f32(dest, f.powi(i as i32))?;
}
"powif64" => {
let f = self.value_to_primval(args_ptrs[0], f64)?.expect_f64("powif64 first arg not f64");
let i = self.value_to_primval(args_ptrs[1], i32)?.expect_int("powif64 second arg not i32");
self.memory.write_f64(dest, f.powi(i as i32))?;
2016-09-20 16:05:30 +02:00
}
"sqrtf32" => {
let f = self.value_to_primval(args_ptrs[0], f32)?.expect_f32("sqrtf32 first arg not f32");
2016-09-20 16:05:30 +02:00
self.memory.write_f32(dest, f.sqrt())?;
}
"sqrtf64" => {
let f = self.value_to_primval(args_ptrs[0], f64)?.expect_f64("sqrtf64 first arg not f64");
2016-09-20 16:05:30 +02:00
self.memory.write_f64(dest, f.sqrt())?;
}
"size_of" => {
let ty = substs.type_at(0);
let size = self.type_size(ty) as u64;
self.memory.write_uint(dest, size, pointer_size)?;
}
"size_of_val" => {
let ty = substs.type_at(0);
let (size, _) = self.size_and_align_of_dst(ty, args_ptrs[0])?;
self.memory.write_uint(dest, size, pointer_size)?;
2016-09-20 16:05:30 +02:00
}
"type_name" => {
let ty = substs.type_at(0);
let ty_name = ty.to_string();
let s = self.str_to_value(&ty_name)?;
self.write_value(s, dest, dest_ty)?;
2016-09-23 10:38:30 +02:00
}
2016-09-20 16:05:30 +02:00
"type_id" => {
let ty = substs.type_at(0);
let n = self.tcx.type_id_hash(ty);
self.memory.write_uint(dest, n, 8)?;
}
"transmute" => {
let ty = substs.type_at(0);
self.write_value(args_ptrs[0], dest, ty)?;
2016-09-20 16:05:30 +02:00
}
"try" => unimplemented!(),
"uninit" => self.memory.mark_definedness(dest, dest_layout.size(&self.tcx.data_layout).bytes() as usize, false)?,
"volatile_load" => {
let ty = substs.type_at(0);
let ptr = args_ptrs[0].read_ptr(&self.memory)?;
2016-09-20 16:05:30 +02:00
self.move_(ptr, dest, ty)?;
}
"volatile_store" => {
let ty = substs.type_at(0);
let dest = args_ptrs[0].read_ptr(&self.memory)?;
self.write_value(args_ptrs[1], dest, ty)?;
2016-09-20 16:05:30 +02:00
}
name => return Err(EvalError::Unimplemented(format!("unimplemented intrinsic: {}", name))),
}
// Since we pushed no stack frame, the main loop will act
// as if the call just completed and it's returning to the
// current frame.
Ok(())
}
fn size_and_align_of_dst(
&self,
ty: ty::Ty<'tcx>,
value: Value,
) -> EvalResult<'tcx, (u64, u64)> {
let pointer_size = self.memory.pointer_size();
if self.type_is_sized(ty) {
Ok((self.type_size(ty) as u64, self.type_align(ty) as u64))
} else {
match ty.sty {
ty::TyAdt(def, substs) => {
// First get the size of all statically known fields.
// Don't use type_of::sizing_type_of because that expects t to be sized,
// and it also rounds up to alignment, which we want to avoid,
// as the unsized field's alignment could be smaller.
assert!(!ty.is_simd());
let layout = self.type_layout(ty);
debug!("DST {} layout: {:?}", ty, layout);
// Returns size in bytes of all fields except the last one
// (we will be recursing on the last one).
fn local_prefix_bytes(variant: &ty::layout::Struct) -> u64 {
let fields = variant.offset_after_field.len();
if fields > 1 {
variant.offset_after_field[fields - 2].bytes()
} else {
0
}
}
let (sized_size, sized_align) = match *layout {
ty::layout::Layout::Univariant { ref variant, .. } => {
(local_prefix_bytes(variant), variant.align.abi())
}
_ => {
bug!("size_and_align_of_dst: expcted Univariant for `{}`, found {:#?}",
ty, layout);
}
};
debug!("DST {} statically sized prefix size: {} align: {}",
ty, sized_size, sized_align);
// Recurse to get the size of the dynamically sized field (must be
// the last field).
let last_field = def.struct_variant().fields.last().unwrap();
let field_ty = self.field_ty(substs, last_field);
let (unsized_size, unsized_align) = self.size_and_align_of_dst(field_ty, value)?;
// FIXME (#26403, #27023): We should be adding padding
// to `sized_size` (to accommodate the `unsized_align`
// required of the unsized field that follows) before
// summing it with `sized_size`. (Note that since #26403
// is unfixed, we do not yet add the necessary padding
// here. But this is where the add would go.)
// Return the sum of sizes and max of aligns.
let size = sized_size + unsized_size;
// Choose max of two known alignments (combined value must
// be aligned according to more restrictive of the two).
let align = ::std::cmp::max(sized_align, unsized_align);
// Issue #27023: must add any necessary padding to `size`
// (to make it a multiple of `align`) before returning it.
//
// Namely, the returned size should be, in C notation:
//
// `size + ((size & (align-1)) ? align : 0)`
//
// emulated via the semi-standard fast bit trick:
//
// `(size + (align-1)) & -align`
if size & (align - 1) != 0 {
Ok((size + align, align))
} else {
Ok((size, align))
}
}
ty::TyTrait(..) => {
let vtable = value.expect_vtable(&self.memory)?;
// the second entry in the vtable is the dynamic size of the object.
let size = self.memory.read_usize(vtable.offset(pointer_size as isize))?;
let align = self.memory.read_usize(vtable.offset(pointer_size as isize * 2))?;
Ok((size, align))
}
ty::TySlice(_) | ty::TyStr => {
let elem_ty = ty.sequence_element_type(self.tcx);
let elem_size = self.type_size(elem_ty) as u64;
let len = value.expect_slice_len(&self.memory)?;
let align = self.type_align(elem_ty);
Ok((len * elem_size, align as u64))
}
_ => bug!("size_of_val::<{:?}>", ty),
}
}
}
/// Returns the normalized type of a struct field
fn field_ty(
&self,
param_substs: &Substs<'tcx>,
f: ty::FieldDef<'tcx>,
)-> ty::Ty<'tcx> {
self.tcx.normalize_associated_type(&f.ty(self.tcx, param_substs))
}
2016-09-20 16:05:30 +02:00
}