rust/src/librustc_trans/mir/operand.rs

201 lines
7.1 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm::ValueRef;
use rustc::ty::Ty;
use rustc::mir::repr as mir;
use base;
use common::{self, Block, BlockAndBuilder};
use datum;
use value::Value;
use glue;
use std::fmt;
use super::lvalue::load_fat_ptr;
use super::{MirContext, TempRef, drop};
2015-11-13 00:12:50 +02:00
/// The representation of a Rust value. The enum variant is in fact
/// uniquely determined by the value's type, but is kept as a
/// safety check.
#[derive(Copy, Clone)]
pub enum OperandValue {
/// A reference to the actual operand. The data is guaranteed
/// to be valid for the operand's lifetime.
Ref(ValueRef),
/// A single LLVM value.
2015-11-13 00:12:50 +02:00
Immediate(ValueRef),
/// A fat pointer. The first ValueRef is the data and the second
/// is the extra.
FatPtr(ValueRef, ValueRef)
}
2015-11-13 00:12:50 +02:00
/// An `OperandRef` is an "SSA" reference to a Rust value, along with
/// its type.
///
/// NOTE: unless you know a value's type exactly, you should not
/// generate LLVM opcodes acting on it and instead act via methods,
/// to avoid nasty edge cases. In particular, using `Builder.store`
/// directly is sure to cause problems -- use `MirContext.store_operand`
/// instead.
#[derive(Copy, Clone)]
pub struct OperandRef<'tcx> {
2015-11-13 00:12:50 +02:00
// The value.
pub val: OperandValue,
// The type of value being returned.
pub ty: Ty<'tcx>
}
impl<'tcx> fmt::Debug for OperandRef<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.val {
OperandValue::Ref(r) => {
write!(f, "OperandRef(Ref({:?}) @ {:?})",
Value(r), self.ty)
}
2015-11-13 00:12:50 +02:00
OperandValue::Immediate(i) => {
write!(f, "OperandRef(Immediate({:?}) @ {:?})",
Value(i), self.ty)
}
OperandValue::FatPtr(a, d) => {
write!(f, "OperandRef(FatPtr({:?}, {:?}) @ {:?})",
Value(a), Value(d), self.ty)
}
}
}
}
impl<'tcx> OperandRef<'tcx> {
/// Asserts that this operand refers to a scalar and returns
/// a reference to its value.
pub fn immediate(self) -> ValueRef {
match self.val {
OperandValue::Immediate(s) => s,
_ => bug!()
}
}
}
impl<'bcx, 'tcx> MirContext<'bcx, 'tcx> {
pub fn trans_load(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
llval: ValueRef,
ty: Ty<'tcx>)
-> OperandRef<'tcx>
{
debug!("trans_load: {:?} @ {:?}", Value(llval), ty);
let val = match datum::appropriate_rvalue_mode(bcx.ccx(), ty) {
datum::ByValue => {
OperandValue::Immediate(base::load_ty_builder(bcx, llval, ty))
}
datum::ByRef if common::type_is_fat_ptr(bcx.tcx(), ty) => {
let (lldata, llextra) = load_fat_ptr(bcx, llval);
OperandValue::FatPtr(lldata, llextra)
}
datum::ByRef => OperandValue::Ref(llval)
};
OperandRef { val: val, ty: ty }
}
pub fn trans_operand(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
operand: &mir::Operand<'tcx>)
-> OperandRef<'tcx>
{
debug!("trans_operand(operand={:?})", operand);
match *operand {
mir::Operand::Consume(ref lvalue) => {
// watch out for temporaries that do not have an
// alloca; they are handled somewhat differently
if let &mir::Lvalue::Temp(index) = lvalue {
match self.temps[index as usize] {
TempRef::Operand(Some(o)) => {
return o;
}
TempRef::Operand(None) => {
bug!("use of {:?} before def", lvalue);
}
TempRef::Lvalue(..) => {
// use path below
}
}
}
// for most lvalues, to consume them we just load them
// out from their home
let tr_lvalue = self.trans_lvalue(bcx, lvalue);
let ty = tr_lvalue.ty.to_ty(bcx.tcx());
self.trans_load(bcx, tr_lvalue.llval, ty)
}
mir::Operand::Constant(ref constant) => {
self.trans_constant(bcx, constant)
}
}
}
pub fn store_operand(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
lldest: ValueRef,
operand: OperandRef<'tcx>)
{
debug!("store_operand: operand={:?}", operand);
bcx.with_block(|bcx| self.store_operand_direct(bcx, lldest, operand))
}
pub fn store_operand_direct(&mut self,
bcx: Block<'bcx, 'tcx>,
lldest: ValueRef,
operand: OperandRef<'tcx>)
{
// Avoid generating stores of zero-sized values, because the only way to have a zero-sized
// value is through `undef`, and store itself is useless.
if common::type_is_zero_size(bcx.ccx(), operand.ty) {
return;
}
match operand.val {
OperandValue::Ref(r) => base::memcpy_ty(bcx, lldest, r, operand.ty),
2015-11-13 00:12:50 +02:00
OperandValue::Immediate(s) => base::store_ty(bcx, s, lldest, operand.ty),
OperandValue::FatPtr(data, extra) => {
base::store_fat_ptr(bcx, data, extra, lldest, operand.ty);
}
}
}
pub fn set_operand_dropped(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
operand: &mir::Operand<'tcx>) {
match *operand {
mir::Operand::Constant(_) => return,
mir::Operand::Consume(ref lvalue) => {
if let mir::Lvalue::Temp(idx) = *lvalue {
if let TempRef::Operand(..) = self.temps[idx as usize] {
// All lvalues which have an associated drop are promoted to an alloca
// beforehand. If this is an operand, it is safe to say this is never
// dropped and theres no reason for us to zero this out at all.
return
}
}
let lvalue = self.trans_lvalue(bcx, lvalue);
let ty = lvalue.ty.to_ty(bcx.tcx());
2016-02-25 16:56:11 -05:00
if !glue::type_needs_drop(bcx.tcx(), ty) {
return
} else {
drop::drop_fill(bcx, lvalue.llval, ty);
}
}
}
}
}