rust/src/libsyntax/util/interner.rs

179 lines
5.3 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// An "interner" is a data structure that associates values with uint tags and
// allows bidirectional lookup; i.e. given a value, one can easily find the
// type, and vice versa.
use core::cmp::Equiv;
use core::hashmap::HashMap;
use syntax::parse::token::StringRef;
pub struct Interner<T> {
priv map: @mut HashMap<T, uint>,
2013-03-07 17:37:22 -06:00
priv vect: @mut ~[T],
}
// when traits can extend traits, we should extend index<uint,T> to get []
pub impl<T:Eq + IterBytes + Hash + Const + Copy> Interner<T> {
fn new() -> Interner<T> {
Interner {
map: @mut HashMap::new(),
2013-03-07 17:37:22 -06:00
vect: @mut ~[],
}
}
fn prefill(init: &[T]) -> Interner<T> {
let rv = Interner::new();
for init.each() |v| { rv.intern(*v); }
rv
}
2011-08-04 12:46:10 -05:00
fn intern(&self, val: T) -> uint {
match self.map.find(&val) {
Some(&idx) => return idx,
None => (),
2012-07-17 13:22:11 -05:00
}
2013-03-15 14:24:24 -05:00
let vect = &mut *self.vect;
let new_idx = vect.len();
self.map.insert(val, new_idx);
2013-03-15 14:24:24 -05:00
vect.push(val);
new_idx
}
fn gensym(&self, val: T) -> uint {
let new_idx = {
let vect = &*self.vect;
vect.len()
};
2012-07-18 18:18:02 -05:00
// leave out of .map to avoid colliding
self.vect.push(val);
new_idx
2012-07-18 18:18:02 -05:00
}
2011-08-04 12:46:10 -05:00
2012-07-17 13:22:11 -05:00
// this isn't "pure" in the traditional sense, because it can go from
// failing to returning a value as items are interned. But for typestate,
// where we first check a pred and then rely on it, ceasing to fail is ok.
fn get(&self, idx: uint) -> T { self.vect[idx] }
fn len(&self) -> uint { let vect = &*self.vect; vect.len() }
fn find_equiv<Q:Hash + IterBytes + Equiv<T>>(&self, val: &Q)
-> Option<uint> {
match self.map.find_equiv(val) {
Some(v) => Some(*v),
None => None,
}
}
2012-09-19 11:41:06 -05:00
}
2013-01-23 19:29:08 -06:00
2013-05-07 14:34:52 -05:00
// A StrInterner differs from Interner<String> in that it accepts
// borrowed pointers rather than @ ones, resulting in less allocation.
pub struct StrInterner {
priv map: @mut HashMap<@~str, uint>,
priv vect: @mut ~[@~str],
}
// when traits can extend traits, we should extend index<uint,T> to get []
pub impl StrInterner {
fn new() -> StrInterner {
StrInterner {
map: @mut HashMap::new(),
vect: @mut ~[],
}
}
fn prefill(init: &[&str]) -> StrInterner {
let rv = StrInterner::new();
for init.each() |v| { rv.intern(*v); }
rv
}
fn intern(&self, val: &str) -> uint {
match self.map.find_equiv(&StringRef(val)) {
Some(&idx) => return idx,
None => (),
}
let new_idx = self.len();
self.map.insert(@val.to_owned(), new_idx);
self.vect.push(@val.to_owned());
new_idx
}
fn gensym(&self, val: &str) -> uint {
let new_idx = self.len();
// leave out of .map to avoid colliding
self.vect.push(@val.to_owned());
new_idx
}
// this isn't "pure" in the traditional sense, because it can go from
// failing to returning a value as items are interned. But for typestate,
// where we first check a pred and then rely on it, ceasing to fail is ok.
fn get(&self, idx: uint) -> @~str { self.vect[idx] }
fn len(&self) -> uint { let vect = &*self.vect; vect.len() }
fn find_equiv<Q:Hash + IterBytes + Equiv<@~str>>(&self, val: &Q)
-> Option<uint> {
match self.map.find_equiv(val) {
Some(v) => Some(*v),
None => None,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_fail]
fn i1 () {
let i : Interner<@~str> = Interner::new();
i.get(13);
}
2013-01-23 19:29:08 -06:00
#[test]
fn i2 () {
let i : Interner<@~str> = Interner::new();
// first one is zero:
assert_eq!(i.intern (@~"dog"), 0);
// re-use gets the same entry:
assert_eq!(i.intern (@~"dog"), 0);
// different string gets a different #:
assert_eq!(i.intern (@~"cat"), 1);
assert_eq!(i.intern (@~"cat"), 1);
// dog is still at zero
assert_eq!(i.intern (@~"dog"), 0);
// gensym gets 3
assert_eq!(i.gensym (@~"zebra" ), 2);
// gensym of same string gets new number :
assert_eq!(i.gensym (@~"zebra" ), 3);
// gensym of *existing* string gets new number:
assert_eq!(i.gensym (@~"dog"), 4);
assert_eq!(i.get(0), @~"dog");
assert_eq!(i.get(1), @~"cat");
assert_eq!(i.get(2), @~"zebra");
assert_eq!(i.get(3), @~"zebra");
assert_eq!(i.get(4), @~"dog");
}
2013-01-23 19:29:08 -06:00
#[test]
fn i3 () {
let i : Interner<@~str> = Interner::prefill([@~"Alan",@~"Bob",@~"Carol"]);
assert_eq!(i.get(0), @~"Alan");
assert_eq!(i.get(1), @~"Bob");
assert_eq!(i.get(2), @~"Carol");
assert_eq!(i.intern(@~"Bob"), 1);
}
2013-04-03 11:41:40 -05:00
}