rust/src/librustc/middle/traits/specialize/specialization_graph.rs

384 lines
13 KiB
Rust
Raw Normal View History

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::cell;
use std::rc::Rc;
use super::{Overlap, specializes};
use middle::cstore::CrateStore;
use middle::def_id::DefId;
use middle::infer;
use middle::traits;
use middle::ty::{self, ImplOrTraitItem, TraitDef, TypeFoldable};
use syntax::ast::Name;
use util::nodemap::DefIdMap;
/// A per-trait graph of impls in specialization order. At the moment, this
/// graph forms a tree rooted with the trait itself, with all other nodes
/// representing impls, and parent-child relationships representing
/// specializations.
///
/// The graph provides two key services:
///
/// - Construction, which implicitly checks for overlapping impls (i.e., impls
/// that overlap but where neither specializes the other -- an artifact of the
/// simple "chain" rule.
///
/// - Parent extraction. In particular, the graph can give you the *immediate*
/// parents of a given specializing impl, which is needed for extracting
/// default items amongst other thigns. In the simple "chain" rule, every impl
/// has at most one parent.
pub struct Graph {
// all impls have a parent; the "root" impls have as their parent the def_id
// of the trait
parent: DefIdMap<DefId>,
// the "root" impls are found by looking up the trait's def_id.
children: DefIdMap<Vec<DefId>>,
}
impl Graph {
pub fn new() -> Graph {
Graph {
parent: Default::default(),
children: Default::default(),
}
}
/// Insert a local impl into the specialization graph. If an existing impl
/// conflicts with it (has overlap, but neither specializes the other),
/// information about the area of overlap is returned in the `Err`.
pub fn insert<'a, 'tcx>(&mut self,
tcx: &'a ty::ctxt<'tcx>,
impl_def_id: DefId)
-> Result<(), Overlap<'a, 'tcx>> {
assert!(impl_def_id.is_local());
let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap();
let trait_def_id = trait_ref.def_id;
// if the reference itself contains an earlier error (e.g., due to a
// resolution failure), then we just insert the impl at the top level of
// the graph and claim that there's no overlap (in order to supress
// bogus errors).
if trait_ref.references_error() {
debug!("Inserting dummy node for erroneous TraitRef {:?}, \
impl_def_id={:?}, trait_def_id={:?}",
trait_ref, impl_def_id, trait_def_id);
self.parent.insert(impl_def_id, trait_def_id);
self.children.entry(trait_def_id).or_insert(vec![]).push(impl_def_id);
return Ok(());
}
let mut parent = trait_def_id;
// Ugly hack around borrowck limitations. Assigned only in the case
// where we bump downward an existing node in the graph.
let child_to_insert;
'descend: loop {
let mut possible_siblings = self.children.entry(parent).or_insert(vec![]);
for slot in possible_siblings.iter_mut() {
let possible_sibling = *slot;
let infcx = infer::new_infer_ctxt(tcx, &tcx.tables, None);
let overlap = traits::overlapping_impls(&infcx, possible_sibling, impl_def_id);
if let Some(trait_ref) = overlap {
let le = specializes(tcx, impl_def_id, possible_sibling);
let ge = specializes(tcx, possible_sibling, impl_def_id);
if le && !ge {
// the impl specializes possible_sibling
parent = possible_sibling;
continue 'descend;
} else if ge && !le {
// possible_sibling specializes the impl
*slot = impl_def_id;
self.parent.insert(impl_def_id, parent);
self.parent.insert(possible_sibling, impl_def_id);
// we have to defer the insertion, because we can't
// relinquish the borrow of `self.children`
child_to_insert = possible_sibling;
break 'descend;
} else {
// overlap, but no specialization; error out
return Err(Overlap {
with_impl: possible_sibling,
on_trait_ref: trait_ref,
in_context: infcx,
});
}
}
}
// no overlap with any potential siblings, so add as a new sibling
self.parent.insert(impl_def_id, parent);
possible_siblings.push(impl_def_id);
return Ok(());
}
self.children.insert(impl_def_id, vec![child_to_insert]);
Ok(())
}
/// Insert cached metadata mapping from a child impl back to its parent.
pub fn record_impl_from_cstore(&mut self, parent: DefId, child: DefId) {
if self.parent.insert(child, parent).is_some() {
panic!("When recording an impl from the crate store, information about its parent \
was already present.");
}
self.children.entry(parent).or_insert(vec![]).push(child);
}
/// The parent of a given impl, which is the def id of the trait when the
/// impl is a "specialization root".
pub fn parent(&self, child: DefId) -> DefId {
*self.parent.get(&child).unwrap()
}
}
#[derive(Debug, Copy, Clone)]
/// A node in the specialization graph is either an impl or a trait
/// definition; either can serve as a source of item definitions.
/// There is always exactly one trait definition node: the root.
pub enum Node {
Impl(DefId),
Trait(DefId),
}
impl Node {
pub fn is_from_trait(&self) -> bool {
match *self {
Node::Trait(..) => true,
_ => false,
}
}
/// Iterate over the items defined directly by the given (impl or trait) node.
pub fn items<'a, 'tcx>(&self, tcx: &'a ty::ctxt<'tcx>) -> NodeItems<'a, 'tcx> {
match *self {
Node::Impl(impl_def_id) => {
NodeItems::Impl {
tcx: tcx,
items: cell::Ref::map(tcx.impl_items.borrow(),
|impl_items| &impl_items[&impl_def_id]),
idx: 0,
}
}
Node::Trait(trait_def_id) => {
NodeItems::Trait {
items: tcx.trait_items(trait_def_id).clone(),
idx: 0,
}
}
}
}
pub fn def_id(&self) -> DefId {
match *self {
Node::Impl(did) => did,
Node::Trait(did) => did,
}
}
}
/// An iterator over the items defined within a trait or impl.
pub enum NodeItems<'a, 'tcx: 'a> {
Impl {
tcx: &'a ty::ctxt<'tcx>,
items: cell::Ref<'a, Vec<ty::ImplOrTraitItemId>>,
idx: usize,
},
Trait {
items: Rc<Vec<ImplOrTraitItem<'tcx>>>,
idx: usize,
},
}
impl<'a, 'tcx> Iterator for NodeItems<'a, 'tcx> {
type Item = ImplOrTraitItem<'tcx>;
fn next(&mut self) -> Option<ImplOrTraitItem<'tcx>> {
match *self {
NodeItems::Impl { tcx, ref items, ref mut idx } => {
let items_table = tcx.impl_or_trait_items.borrow();
if *idx < items.len() {
let item_def_id = items[*idx].def_id();
let item = items_table[&item_def_id].clone();
*idx += 1;
Some(item)
} else {
None
}
}
NodeItems::Trait { ref items, ref mut idx } => {
if *idx < items.len() {
let item = items[*idx].clone();
*idx += 1;
Some(item)
} else {
None
}
}
}
}
}
pub struct Ancestors<'a, 'tcx: 'a> {
trait_def: &'a TraitDef<'tcx>,
current_source: Option<Node>,
}
impl<'a, 'tcx> Iterator for Ancestors<'a, 'tcx> {
type Item = Node;
fn next(&mut self) -> Option<Node> {
let cur = self.current_source.take();
if let Some(Node::Impl(cur_impl)) = cur {
let parent = self.trait_def.specialization_graph.borrow().parent(cur_impl);
if parent == self.trait_def.def_id() {
self.current_source = Some(Node::Trait(parent));
} else {
self.current_source = Some(Node::Impl(parent));
}
}
cur
}
}
pub struct NodeItem<T> {
pub node: Node,
pub item: T,
}
impl<T> NodeItem<T> {
pub fn map<U, F: FnOnce(T) -> U>(self, f: F) -> NodeItem<U> {
NodeItem {
node: self.node,
item: f(self.item),
}
}
}
pub struct TypeDefs<'a, 'tcx: 'a> {
// generally only invoked once or twice, so the box doesn't hurt
iter: Box<Iterator<Item = NodeItem<Rc<ty::AssociatedType<'tcx>>>> + 'a>,
}
impl<'a, 'tcx> Iterator for TypeDefs<'a, 'tcx> {
type Item = NodeItem<Rc<ty::AssociatedType<'tcx>>>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
pub struct FnDefs<'a, 'tcx: 'a> {
// generally only invoked once or twice, so the box doesn't hurt
iter: Box<Iterator<Item = NodeItem<Rc<ty::Method<'tcx>>>> + 'a>,
}
impl<'a, 'tcx> Iterator for FnDefs<'a, 'tcx> {
type Item = NodeItem<Rc<ty::Method<'tcx>>>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
pub struct ConstDefs<'a, 'tcx: 'a> {
// generally only invoked once or twice, so the box doesn't hurt
iter: Box<Iterator<Item = NodeItem<Rc<ty::AssociatedConst<'tcx>>>> + 'a>,
}
impl<'a, 'tcx> Iterator for ConstDefs<'a, 'tcx> {
type Item = NodeItem<Rc<ty::AssociatedConst<'tcx>>>;
fn next(&mut self) -> Option<Self::Item> {
self.iter.next()
}
}
impl<'a, 'tcx> Ancestors<'a, 'tcx> {
/// Seach the items from the given ancestors, returning each type definition
/// with the given name.
pub fn type_defs(self, tcx: &'a ty::ctxt<'tcx>, name: Name) -> TypeDefs<'a, 'tcx> {
let iter = self.flat_map(move |node| {
node.items(tcx)
.filter_map(move |item| {
if let ty::TypeTraitItem(assoc_ty) = item {
if assoc_ty.name == name {
return Some(NodeItem {
node: node,
item: assoc_ty,
});
}
}
None
})
});
TypeDefs { iter: Box::new(iter) }
}
/// Seach the items from the given ancestors, returning each fn definition
/// with the given name.
pub fn fn_defs(self, tcx: &'a ty::ctxt<'tcx>, name: Name) -> FnDefs<'a, 'tcx> {
let iter = self.flat_map(move |node| {
node.items(tcx)
.filter_map(move |item| {
if let ty::MethodTraitItem(method) = item {
if method.name == name {
return Some(NodeItem {
node: node,
item: method,
});
}
}
None
})
});
FnDefs { iter: Box::new(iter) }
}
/// Seach the items from the given ancestors, returning each const
/// definition with the given name.
pub fn const_defs(self, tcx: &'a ty::ctxt<'tcx>, name: Name) -> ConstDefs<'a, 'tcx> {
let iter = self.flat_map(move |node| {
node.items(tcx)
.filter_map(move |item| {
if let ty::ConstTraitItem(konst) = item {
if konst.name == name {
return Some(NodeItem {
node: node,
item: konst,
});
}
}
None
})
});
ConstDefs { iter: Box::new(iter) }
}
}
/// Walk up the specialization ancestors of a given impl, starting with that
/// impl itself.
pub fn ancestors<'a, 'tcx>(trait_def: &'a TraitDef<'tcx>,
start_from_impl: DefId)
-> Ancestors<'a, 'tcx> {
Ancestors {
trait_def: trait_def,
current_source: Some(Node::Impl(start_from_impl)),
}
}