rust/src/librustc/lint/context.rs

1673 lines
57 KiB
Rust
Raw Normal View History

//! Implementation of lint checking.
//!
2018-05-08 16:10:16 +03:00
//! The lint checking is mostly consolidated into one pass which runs
//! after all other analyses. Throughout compilation, lint warnings
//! can be added via the `add_lint` method on the Session structure. This
2019-02-08 14:53:55 +01:00
//! requires a span and an ID of the node that the lint is being added to. The
//! lint isn't actually emitted at that time because it is unknown what the
//! actual lint level at that location is.
//!
2018-05-08 16:10:16 +03:00
//! To actually emit lint warnings/errors, a separate pass is used.
//! A context keeps track of the current state of all lint levels.
//! Upon entering a node of the ast which can modify the lint settings, the
//! previous lint state is pushed onto a stack and the ast is then recursed
2019-02-08 14:53:55 +01:00
//! upon. As the ast is traversed, this keeps track of the current lint level
//! for all lint attributes.
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
use self::TargetLint::*;
use std::slice;
2019-01-31 04:36:37 +01:00
use rustc_data_structures::sync::{ReadGuard, Lock, ParallelIterator, join, par_iter};
2019-01-31 01:36:11 +01:00
use crate::lint::{EarlyLintPass, LateLintPass, EarlyLintPassObject, LateLintPassObject};
2019-02-05 11:20:45 -06:00
use crate::lint::{LintArray, Level, Lint, LintId, LintPass, LintBuffer};
use crate::lint::builtin::BuiltinLintDiagnostics;
use crate::lint::levels::{LintLevelSets, LintLevelsBuilder};
use crate::middle::privacy::AccessLevels;
use rustc_serialize::{Decoder, Decodable, Encoder, Encodable};
2019-02-05 11:20:45 -06:00
use crate::session::{config, early_error, Session};
use crate::ty::{self, print::Printer, subst::Kind, TyCtxt, Ty};
2019-02-05 11:20:45 -06:00
use crate::ty::layout::{LayoutError, LayoutOf, TyLayout};
use crate::util::nodemap::FxHashMap;
use crate::util::common::time;
use std::default::Default as StdDefault;
2015-11-15 17:17:50 +01:00
use syntax::ast;
2018-03-14 20:30:06 -07:00
use syntax::edition;
use syntax_pos::{MultiSpan, Span, symbol::{LocalInternedString, Symbol}};
use errors::DiagnosticBuilder;
2019-02-05 11:20:45 -06:00
use crate::hir;
use crate::hir::def_id::{CrateNum, DefId, LOCAL_CRATE};
2019-02-05 11:20:45 -06:00
use crate::hir::intravisit as hir_visit;
2019-03-03 18:47:54 +01:00
use crate::hir::intravisit::Visitor;
use crate::hir::map::{definitions::DisambiguatedDefPathData, DefPathData};
use syntax::util::lev_distance::find_best_match_for_name;
use syntax::visit as ast_visit;
/// Information about the registered lints.
///
/// This is basically the subset of `Context` that we can
/// build early in the compile pipeline.
pub struct LintStore {
/// Registered lints. The bool is true if the lint was
/// added by a plugin.
lints: Vec<(&'static Lint, bool)>,
/// Trait objects for each lint pass.
2018-07-14 16:40:17 +02:00
/// This is only `None` while performing a lint pass.
pre_expansion_passes: Option<Vec<EarlyLintPassObject>>,
early_passes: Option<Vec<EarlyLintPassObject>>,
late_passes: Lock<Option<Vec<LateLintPassObject>>>,
2019-01-31 04:36:37 +01:00
late_module_passes: Vec<LateLintPassObject>,
/// Lints indexed by name.
by_name: FxHashMap<String, TargetLint>,
2018-09-15 17:32:24 +01:00
/// Map of registered lint groups to what lints they expand to.
lint_groups: FxHashMap<&'static str, LintGroup>,
2017-08-11 20:34:14 +02:00
/// Extra info for future incompatibility lints, describing the
/// issue or RFC that caused the incompatibility.
future_incompatible: FxHashMap<LintId, FutureIncompatibleInfo>,
}
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
/// Lints that are buffered up early on in the `Session` before the
/// `LintLevels` is calculated
#[derive(PartialEq, RustcEncodable, RustcDecodable, Debug)]
pub struct BufferedEarlyLint {
pub lint_id: LintId,
pub ast_id: ast::NodeId,
pub span: MultiSpan,
pub msg: String,
pub diagnostic: BuiltinLintDiagnostics,
2016-10-12 16:38:58 -04:00
}
/// Extra information for a future incompatibility lint. See the call
/// to `register_future_incompatible` in `librustc_lint/lib.rs` for
/// guidelines.
pub struct FutureIncompatibleInfo {
pub id: LintId,
/// e.g., a URL for an issue/PR/RFC or error code
pub reference: &'static str,
2018-03-14 20:30:06 -07:00
/// If this is an edition fixing lint, the edition in which
/// this lint becomes obsolete
2018-03-14 20:30:06 -07:00
pub edition: Option<edition::Edition>,
}
2017-08-15 21:45:21 +02:00
/// The target of the `by_name` map, which accounts for renaming/deprecation.
enum TargetLint {
/// A direct lint target
Id(LintId),
/// Temporary renaming, used for easing migration pain; see #16545
Renamed(String, LintId),
/// Lint with this name existed previously, but has been removed/deprecated.
/// The string argument is the reason for removal.
Removed(String),
}
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
pub enum FindLintError {
NotFound,
2017-03-13 02:12:13 +02:00
Removed,
}
2018-09-15 17:32:24 +01:00
struct LintAlias {
name: &'static str,
/// Whether deprecation warnings should be suppressed for this alias.
silent: bool,
}
struct LintGroup {
lint_ids: Vec<LintId>,
from_plugin: bool,
depr: Option<LintAlias>,
}
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
pub enum CheckLintNameResult<'a> {
Ok(&'a [LintId]),
/// Lint doesn't exist. Potentially contains a suggestion for a correct lint name.
NoLint(Option<Symbol>),
2017-08-17 16:15:40 +02:00
/// The lint is either renamed or removed. This is the warning
/// message, and an optional new name (`None` if removed).
Warning(String, Option<String>),
/// The lint is from a tool. If the Option is None, then either
/// the lint does not exist in the tool or the code was not
/// compiled with the tool and therefore the lint was never
/// added to the `LintStore`. Otherwise the `LintId` will be
/// returned as if it where a rustc lint.
Tool(Result<&'a [LintId], (Option<&'a [LintId]>, String)>),
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
}
impl LintStore {
pub fn new() -> LintStore {
LintStore {
lints: vec![],
2018-07-14 16:40:17 +02:00
pre_expansion_passes: Some(vec![]),
early_passes: Some(vec![]),
late_passes: Lock::new(Some(vec![])),
2019-01-31 04:36:37 +01:00
late_module_passes: vec![],
by_name: Default::default(),
future_incompatible: Default::default(),
lint_groups: Default::default(),
}
}
pub fn get_lints<'t>(&'t self) -> &'t [(&'static Lint, bool)] {
&self.lints
}
pub fn get_lint_groups<'t>(&'t self) -> Vec<(&'static str, Vec<LintId>, bool)> {
self.lint_groups.iter()
2018-09-15 17:32:24 +01:00
.filter(|(_, LintGroup { depr, .. })| {
// Don't display deprecated lint groups.
depr.is_none()
})
.map(|(k, LintGroup { lint_ids, from_plugin, .. })| {
(*k, lint_ids.clone(), *from_plugin)
})
.collect()
}
pub fn register_early_pass(&mut self,
sess: Option<&Session>,
from_plugin: bool,
register_only: bool,
pass: EarlyLintPassObject) {
self.push_pass(sess, from_plugin, &pass);
if !register_only {
self.early_passes.as_mut().unwrap().push(pass);
}
}
2018-07-14 16:40:17 +02:00
pub fn register_pre_expansion_pass(
&mut self,
sess: Option<&Session>,
from_plugin: bool,
register_only: bool,
2018-07-14 16:40:17 +02:00
pass: EarlyLintPassObject,
) {
self.push_pass(sess, from_plugin, &pass);
if !register_only {
self.pre_expansion_passes.as_mut().unwrap().push(pass);
}
2018-07-14 16:40:17 +02:00
}
pub fn register_late_pass(&mut self,
sess: Option<&Session>,
from_plugin: bool,
2019-01-31 01:36:11 +01:00
register_only: bool,
2018-06-11 08:48:15 +02:00
per_module: bool,
pass: LateLintPassObject) {
self.push_pass(sess, from_plugin, &pass);
2019-01-31 01:36:11 +01:00
if !register_only {
if per_module {
2019-01-31 04:36:37 +01:00
self.late_module_passes.push(pass);
2019-01-31 01:36:11 +01:00
} else {
self.late_passes.lock().as_mut().unwrap().push(pass);
2019-01-31 01:36:11 +01:00
}
2018-06-11 08:48:15 +02:00
}
}
// Helper method for register_early/late_pass
fn push_pass<P: LintPass + ?Sized + 'static>(&mut self,
sess: Option<&Session>,
from_plugin: bool,
pass: &Box<P>) {
2018-06-21 09:04:50 +02:00
for lint in pass.get_lints() {
self.lints.push((lint, from_plugin));
2018-06-21 09:04:50 +02:00
let id = LintId::of(lint);
2014-11-06 12:25:16 -05:00
if self.by_name.insert(lint.name_lower(), Id(id)).is_some() {
let msg = format!("duplicate specification of lint {}", lint.name_lower());
match (sess, from_plugin) {
// We load builtin lints first, so a duplicate is a compiler bug.
// Use early_error when handling -W help with no crate.
(None, _) => early_error(config::ErrorOutputType::default(), &msg[..]),
(Some(_), false) => bug!("{}", msg),
// A duplicate name from a plugin is a user error.
(Some(sess), true) => sess.err(&msg[..]),
}
}
}
}
pub fn register_future_incompatible(&mut self,
sess: Option<&Session>,
lints: Vec<FutureIncompatibleInfo>) {
for edition in edition::ALL_EDITIONS {
2018-03-14 20:30:06 -07:00
let lints = lints.iter().filter(|f| f.edition == Some(*edition)).map(|f| f.id)
.collect::<Vec<_>>();
if !lints.is_empty() {
self.register_group(sess, false, edition.lint_name(), None, lints)
}
}
let mut future_incompatible = Vec::with_capacity(lints.len());
for lint in lints {
future_incompatible.push(lint.id);
self.future_incompatible.insert(lint.id, lint);
}
self.register_group(
sess,
false,
"future_incompatible",
None,
future_incompatible,
);
}
pub fn future_incompatible(&self, id: LintId) -> Option<&FutureIncompatibleInfo> {
self.future_incompatible.get(&id)
}
pub fn register_group_alias(
&mut self,
lint_name: &'static str,
alias: &'static str,
) {
2018-09-15 17:32:24 +01:00
self.lint_groups.insert(alias, LintGroup {
lint_ids: vec![],
from_plugin: false,
depr: Some(LintAlias { name: lint_name, silent: true }),
});
}
pub fn register_group(
&mut self,
sess: Option<&Session>,
from_plugin: bool,
name: &'static str,
deprecated_name: Option<&'static str>,
to: Vec<LintId>,
) {
let new = self
.lint_groups
2018-09-15 17:32:24 +01:00
.insert(name, LintGroup {
lint_ids: to,
from_plugin,
depr: None,
})
.is_none();
if let Some(deprecated) = deprecated_name {
2018-09-15 17:32:24 +01:00
self.lint_groups.insert(deprecated, LintGroup {
lint_ids: vec![],
from_plugin,
depr: Some(LintAlias { name, silent: false }),
});
}
if !new {
let msg = format!("duplicate specification of lint group {}", name);
match (sess, from_plugin) {
// We load builtin lints first, so a duplicate is a compiler bug.
// Use early_error when handling -W help with no crate.
(None, _) => early_error(config::ErrorOutputType::default(), &msg[..]),
(Some(_), false) => bug!("{}", msg),
// A duplicate name from a plugin is a user error.
(Some(sess), true) => sess.err(&msg[..]),
}
}
}
pub fn register_renamed(&mut self, old_name: &str, new_name: &str) {
let target = match self.by_name.get(new_name) {
Some(&Id(lint_id)) => lint_id.clone(),
2016-03-26 19:59:04 +01:00
_ => bug!("invalid lint renaming of {} to {}", old_name, new_name)
};
self.by_name.insert(old_name.to_string(), Renamed(new_name.to_string(), target));
}
pub fn register_removed(&mut self, name: &str, reason: &str) {
self.by_name.insert(name.into(), Removed(reason.into()));
}
2018-09-15 17:05:52 +01:00
pub fn find_lints(&self, mut lint_name: &str) -> Result<Vec<LintId>, FindLintError> {
match self.by_name.get(lint_name) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
Some(&Id(lint_id)) => Ok(vec![lint_id]),
Some(&Renamed(_, lint_id)) => {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
Ok(vec![lint_id])
},
Some(&Removed(_)) => {
Err(FindLintError::Removed)
},
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
None => {
2018-09-15 17:05:52 +01:00
loop {
return match self.lint_groups.get(lint_name) {
2018-09-15 17:32:24 +01:00
Some(LintGroup {lint_ids, depr, .. }) => {
if let Some(LintAlias { name, .. }) = depr {
2018-09-15 17:05:52 +01:00
lint_name = name;
continue;
}
2018-09-15 17:32:24 +01:00
Ok(lint_ids.clone())
2018-09-15 17:05:52 +01:00
}
None => Err(FindLintError::Removed)
};
}
}
}
}
2017-08-17 16:21:55 +02:00
/// Checks the validity of lint names derived from the command line
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
pub fn check_lint_name_cmdline(&self,
sess: &Session,
lint_name: &str,
level: Level) {
let db = match self.check_lint_name(lint_name, None) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
CheckLintNameResult::Ok(_) => None,
CheckLintNameResult::Warning(ref msg, _) => {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
Some(sess.struct_warn(msg))
},
CheckLintNameResult::NoLint(suggestion) => {
let mut err = struct_err!(sess, E0602, "unknown lint: `{}`", lint_name);
if let Some(suggestion) = suggestion {
err.help(&format!("did you mean: `{}`", suggestion));
}
Some(err)
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
}
2018-09-01 17:43:14 +02:00
CheckLintNameResult::Tool(result) => match result {
Err((Some(_), new_name)) => Some(sess.struct_warn(&format!(
2018-09-01 21:45:44 +05:30
"lint name `{}` is deprecated \
2018-09-01 17:43:14 +02:00
and does not have an effect anymore. \
Use: {}",
lint_name, new_name
))),
_ => None,
},
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
};
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
if let Some(mut db) = db {
let msg = format!("requested on the command line with `{} {}`",
match level {
Level::Allow => "-A",
Level::Warn => "-W",
Level::Deny => "-D",
Level::Forbid => "-F",
},
lint_name);
db.note(&msg);
db.emit();
}
}
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
/// Checks the name of a lint for its existence, and whether it was
/// renamed or removed. Generates a DiagnosticBuilder containing a
/// warning for renamed and removed lints. This is over both lint
/// names from attributes and those passed on the command line. Since
/// it emits non-fatal warnings and there are *two* lint passes that
/// inspect attributes, this is only run from the late pass to avoid
/// printing duplicate warnings.
pub fn check_lint_name(
&self,
lint_name: &str,
tool_name: Option<LocalInternedString>,
) -> CheckLintNameResult<'_> {
let complete_name = if let Some(tool_name) = tool_name {
format!("{}::{}", tool_name, lint_name)
} else {
lint_name.to_string()
};
// If the lint was scoped with `tool::` check if the tool lint exists
if let Some(_) = tool_name {
match self.by_name.get(&complete_name) {
None => match self.lint_groups.get(&*complete_name) {
None => return CheckLintNameResult::Tool(Err((None, String::new()))),
2018-09-15 17:32:24 +01:00
Some(LintGroup { lint_ids, .. }) => {
return CheckLintNameResult::Tool(Ok(&lint_ids));
}
},
Some(&Id(ref id)) => return CheckLintNameResult::Tool(Ok(slice::from_ref(id))),
// If the lint was registered as removed or renamed by the lint tool, we don't need
// to treat tool_lints and rustc lints different and can use the code below.
_ => {}
}
}
match self.by_name.get(&complete_name) {
Some(&Renamed(ref new_name, _)) => CheckLintNameResult::Warning(
format!(
"lint `{}` has been renamed to `{}`",
complete_name, new_name
),
Some(new_name.to_owned()),
),
Some(&Removed(ref reason)) => CheckLintNameResult::Warning(
format!("lint `{}` has been removed: `{}`", complete_name, reason),
None,
),
None => match self.lint_groups.get(&*complete_name) {
// If neither the lint, nor the lint group exists check if there is a `clippy::`
// variant of this lint
None => self.check_tool_name_for_backwards_compat(&complete_name, "clippy"),
2018-09-15 17:32:24 +01:00
Some(LintGroup { lint_ids, depr, .. }) => {
// Check if the lint group name is deprecated
2018-09-15 17:32:24 +01:00
if let Some(LintAlias { name, silent }) = depr {
let LintGroup { lint_ids, .. } = self.lint_groups.get(name).unwrap();
return if *silent {
CheckLintNameResult::Ok(&lint_ids)
} else {
CheckLintNameResult::Tool(Err((
2018-09-15 17:32:24 +01:00
Some(&lint_ids),
name.to_string(),
)))
};
}
2018-09-15 17:32:24 +01:00
CheckLintNameResult::Ok(&lint_ids)
}
},
Some(&Id(ref id)) => CheckLintNameResult::Ok(slice::from_ref(id)),
}
}
fn check_tool_name_for_backwards_compat(
&self,
lint_name: &str,
tool_name: &str,
) -> CheckLintNameResult<'_> {
let complete_name = format!("{}::{}", tool_name, lint_name);
match self.by_name.get(&complete_name) {
None => match self.lint_groups.get(&*complete_name) {
// Now we are sure, that this lint exists nowhere
None => {
let symbols = self.by_name.keys()
.map(|name| Symbol::intern(&name))
.collect::<Vec<_>>();
let suggestion =
find_best_match_for_name(symbols.iter(), &lint_name.to_lowercase(), None);
CheckLintNameResult::NoLint(suggestion)
}
2018-09-15 17:32:24 +01:00
Some(LintGroup { lint_ids, depr, .. }) => {
// Reaching this would be weird, but let's cover this case anyway
2018-09-15 17:32:24 +01:00
if let Some(LintAlias { name, silent }) = depr {
let LintGroup { lint_ids, .. } = self.lint_groups.get(name).unwrap();
return if *silent {
CheckLintNameResult::Tool(Err((Some(&lint_ids), complete_name)))
} else {
CheckLintNameResult::Tool(Err((
2018-09-15 17:32:24 +01:00
Some(&lint_ids),
name.to_string(),
)))
};
}
2018-09-15 17:32:24 +01:00
CheckLintNameResult::Tool(Err((Some(&lint_ids), complete_name)))
}
},
Some(&Id(ref id)) => {
CheckLintNameResult::Tool(Err((Some(slice::from_ref(id)), complete_name)))
}
_ => CheckLintNameResult::NoLint(None),
}
}
}
/// Context for lint checking after type checking.
pub struct LateContext<'a, 'tcx> {
/// Type context we're checking in.
2019-06-14 00:48:52 +03:00
pub tcx: TyCtxt<'tcx>,
/// Side-tables for the body we are in.
2018-06-11 08:48:15 +02:00
// FIXME: Make this lazy to avoid running the TypeckTables query?
2017-01-25 16:24:00 -05:00
pub tables: &'a ty::TypeckTables<'tcx>,
/// Parameter environment for the item we are in.
pub param_env: ty::ParamEnv<'tcx>,
/// Items accessible from the crate being checked.
pub access_levels: &'a AccessLevels,
/// The store of registered lints and the lint levels.
lint_store: ReadGuard<'a, LintStore>,
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
2019-02-06 14:16:11 +01:00
last_node_with_lint_attrs: hir::HirId,
2017-10-28 17:19:07 -04:00
/// Generic type parameters in scope for the item we are in.
pub generics: Option<&'tcx hir::Generics>,
2018-06-11 08:48:15 +02:00
/// We are only looking at one module
only_module: bool,
}
pub struct LateContextAndPass<'a, 'tcx, T: LateLintPass<'a, 'tcx>> {
2019-01-31 01:36:11 +01:00
context: LateContext<'a, 'tcx>,
pass: T,
}
/// Context for lint checking of the AST, after expansion, before lowering to
/// HIR.
pub struct EarlyContext<'a> {
/// Type context we're checking in.
pub sess: &'a Session,
/// The crate being checked.
pub krate: &'a ast::Crate,
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
builder: LintLevelsBuilder<'a>,
/// The store of registered lints and the lint levels.
lint_store: ReadGuard<'a, LintStore>,
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
buffered: LintBuffer,
}
pub struct EarlyContextAndPass<'a, T: EarlyLintPass> {
context: EarlyContext<'a>,
pass: T,
}
2018-07-14 16:40:17 +02:00
pub trait LintPassObject: Sized {}
2018-07-14 16:40:17 +02:00
impl LintPassObject for EarlyLintPassObject {}
2018-07-14 16:40:17 +02:00
impl LintPassObject for LateLintPassObject {}
2019-06-11 12:21:38 +03:00
pub trait LintContext: Sized {
type PassObject: LintPassObject;
fn sess(&self) -> &Session;
fn lints(&self) -> &LintStore;
fn lookup_and_emit<S: Into<MultiSpan>>(&self,
lint: &'static Lint,
span: Option<S>,
msg: &str) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.lookup(lint, span, msg).emit();
}
fn lookup_and_emit_with_diagnostics<S: Into<MultiSpan>>(&self,
lint: &'static Lint,
span: Option<S>,
msg: &str,
diagnostic: BuiltinLintDiagnostics) {
let mut db = self.lookup(lint, span, msg);
diagnostic.run(self.sess(), &mut db);
db.emit();
}
2016-10-12 17:00:30 -04:00
fn lookup<S: Into<MultiSpan>>(&self,
lint: &'static Lint,
span: Option<S>,
msg: &str)
-> DiagnosticBuilder<'_>;
2015-12-21 10:00:43 +13:00
/// Emit a lint at the appropriate level, for a particular span.
fn span_lint<S: Into<MultiSpan>>(&self, lint: &'static Lint, span: S, msg: &str) {
self.lookup_and_emit(lint, Some(span), msg);
}
2016-10-12 17:00:30 -04:00
fn struct_span_lint<S: Into<MultiSpan>>(&self,
lint: &'static Lint,
span: S,
msg: &str)
-> DiagnosticBuilder<'_> {
2015-12-21 10:00:43 +13:00
self.lookup(lint, Some(span), msg)
}
/// Emit a lint and note at the appropriate level, for a particular span.
fn span_lint_note(&self, lint: &'static Lint, span: Span, msg: &str,
note_span: Span, note: &str) {
2015-12-23 19:27:20 +13:00
let mut err = self.lookup(lint, Some(span), msg);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
if note_span == span {
err.note(note);
} else {
err.span_note(note_span, note);
}
2015-12-21 10:00:43 +13:00
err.emit();
}
/// Emit a lint and help at the appropriate level, for a particular span.
fn span_lint_help(&self, lint: &'static Lint, span: Span,
msg: &str, help: &str) {
2015-12-23 19:27:20 +13:00
let mut err = self.lookup(lint, Some(span), msg);
self.span_lint(lint, span, msg);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
err.span_help(span, help);
2015-12-21 10:00:43 +13:00
err.emit();
}
/// Emit a lint at the appropriate level, with no associated span.
fn lint(&self, lint: &'static Lint, msg: &str) {
self.lookup_and_emit(lint, None as Option<Span>, msg);
}
}
impl<'a> EarlyContext<'a> {
2018-07-14 16:40:17 +02:00
fn new(
sess: &'a Session,
krate: &'a ast::Crate,
buffered: LintBuffer,
) -> EarlyContext<'a> {
EarlyContext {
sess,
krate,
lint_store: sess.lint_store.borrow(),
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
builder: LintLevelSets::builder(sess),
2018-07-14 16:40:17 +02:00
buffered,
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
}
}
}
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
2019-01-31 01:36:11 +01:00
macro_rules! lint_callback { ($cx:expr, $f:ident, $($args:expr),*) => ({
$cx.pass.$f(&$cx.context, $($args),*);
}) }
macro_rules! run_early_pass { ($cx:expr, $f:ident, $($args:expr),*) => ({
$cx.pass.$f(&$cx.context, $($args),*);
}) }
impl<'a, T: EarlyLintPass> EarlyContextAndPass<'a, T> {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
fn check_id(&mut self, id: ast::NodeId) {
for early_lint in self.context.buffered.take(id) {
self.context.lookup_and_emit_with_diagnostics(
early_lint.lint_id.lint,
Some(early_lint.span.clone()),
&early_lint.msg,
early_lint.diagnostic
);
}
}
/// Merge the lints specified by any lint attributes into the
/// current lint context, call the provided function, then reset the
/// lints in effect to their previous state.
fn with_lint_attrs<F>(&mut self,
id: ast::NodeId,
attrs: &'a [ast::Attribute],
f: F)
where F: FnOnce(&mut Self)
{
let push = self.context.builder.push(attrs);
self.check_id(id);
self.enter_attrs(attrs);
f(self);
self.exit_attrs(attrs);
self.context.builder.pop(push);
}
fn enter_attrs(&mut self, attrs: &'a [ast::Attribute]) {
debug!("early context: enter_attrs({:?})", attrs);
run_early_pass!(self, enter_lint_attrs, attrs);
}
fn exit_attrs(&mut self, attrs: &'a [ast::Attribute]) {
debug!("early context: exit_attrs({:?})", attrs);
run_early_pass!(self, exit_lint_attrs, attrs);
}
}
2019-06-11 12:21:38 +03:00
impl LintContext for LateContext<'_, '_> {
type PassObject = LateLintPassObject;
2019-02-08 14:53:55 +01:00
/// Gets the overall compiler `Session` object.
fn sess(&self) -> &Session {
&self.tcx.sess
}
fn lints(&self) -> &LintStore {
&*self.lint_store
}
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
fn lookup<S: Into<MultiSpan>>(&self,
lint: &'static Lint,
span: Option<S>,
msg: &str)
-> DiagnosticBuilder<'_> {
2019-02-06 14:16:11 +01:00
let hir_id = self.last_node_with_lint_attrs;
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
match span {
2019-02-06 14:16:11 +01:00
Some(s) => self.tcx.struct_span_lint_hir(lint, hir_id, s, msg),
None => {
2019-02-26 11:48:34 +01:00
self.tcx.struct_lint_node(lint, hir_id, msg)
2019-02-06 14:16:11 +01:00
},
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
}
}
}
2019-06-11 12:21:38 +03:00
impl LintContext for EarlyContext<'_> {
type PassObject = EarlyLintPassObject;
2019-02-08 14:53:55 +01:00
/// Gets the overall compiler `Session` object.
fn sess(&self) -> &Session {
&self.sess
}
fn lints(&self) -> &LintStore {
&*self.lint_store
}
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
fn lookup<S: Into<MultiSpan>>(&self,
lint: &'static Lint,
span: Option<S>,
msg: &str)
-> DiagnosticBuilder<'_> {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.builder.struct_lint(lint, span.map(|s| s.into()), msg)
}
}
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
impl<'a, 'tcx> LateContext<'a, 'tcx> {
2019-01-31 01:36:11 +01:00
pub fn current_lint_root(&self) -> hir::HirId {
self.last_node_with_lint_attrs
}
/// Check if a `DefId`'s path matches the given absolute type path usage.
///
/// # Examples
///
/// ```rust,ignore (no context or def id available)
2019-05-14 15:58:22 +02:00
/// if cx.match_def_path(def_id, &[sym::core, sym::option, sym::Option]) {
/// // The given `def_id` is that of an `Option` type
/// }
/// ```
2019-05-14 15:58:22 +02:00
pub fn match_def_path(&self, def_id: DefId, path: &[Symbol]) -> bool {
let names = self.get_def_path(def_id);
2019-05-14 15:58:22 +02:00
names.len() == path.len() && names.into_iter().zip(path.iter()).all(|(a, &b)| a == b)
}
2019-05-14 15:58:22 +02:00
/// Gets the absolute path of `def_id` as a vector of `Symbol`.
///
/// # Examples
///
/// ```rust,ignore (no context or def id available)
/// let def_path = cx.get_def_path(def_id);
2019-05-14 15:58:22 +02:00
/// if let &[sym::core, sym::option, sym::Option] = &def_path[..] {
/// // The given `def_id` is that of an `Option` type
/// }
/// ```
2019-05-14 15:58:22 +02:00
pub fn get_def_path(&self, def_id: DefId) -> Vec<Symbol> {
pub struct AbsolutePathPrinter<'tcx> {
2019-06-14 00:48:52 +03:00
pub tcx: TyCtxt<'tcx>,
}
2019-06-14 00:48:52 +03:00
impl<'tcx> Printer<'tcx> for AbsolutePathPrinter<'tcx> {
type Error = !;
2019-05-14 15:58:22 +02:00
type Path = Vec<Symbol>;
type Region = ();
type Type = ();
type DynExistential = ();
type Const = ();
2019-06-14 00:48:52 +03:00
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn print_region(self, _region: ty::Region<'_>) -> Result<Self::Region, Self::Error> {
Ok(())
}
fn print_type(self, _ty: Ty<'tcx>) -> Result<Self::Type, Self::Error> {
Ok(())
}
fn print_dyn_existential(
self,
_predicates: &'tcx ty::List<ty::ExistentialPredicate<'tcx>>,
) -> Result<Self::DynExistential, Self::Error> {
Ok(())
}
fn print_const(
self,
_ct: &'tcx ty::Const<'tcx>,
) -> Result<Self::Const, Self::Error> {
Ok(())
}
fn path_crate(self, cnum: CrateNum) -> Result<Self::Path, Self::Error> {
2019-05-14 15:58:22 +02:00
Ok(vec![self.tcx.original_crate_name(cnum)])
}
fn path_qualified(
self,
self_ty: Ty<'tcx>,
trait_ref: Option<ty::TraitRef<'tcx>>,
2019-05-14 15:58:22 +02:00
) -> Result<Self::Path, Self::Error> {
if trait_ref.is_none() {
if let ty::Adt(def, substs) = self_ty.sty {
return self.print_def_path(def.did, substs);
}
}
// This shouldn't ever be needed, but just in case:
Ok(vec![match trait_ref {
2019-05-14 15:58:22 +02:00
Some(trait_ref) => Symbol::intern(&format!("{:?}", trait_ref)),
None => Symbol::intern(&format!("<{}>", self_ty)),
}])
}
fn path_append_impl(
self,
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
_disambiguated_data: &DisambiguatedDefPathData,
self_ty: Ty<'tcx>,
trait_ref: Option<ty::TraitRef<'tcx>>,
2019-05-14 15:58:22 +02:00
) -> Result<Self::Path, Self::Error> {
let mut path = print_prefix(self)?;
// This shouldn't ever be needed, but just in case:
path.push(match trait_ref {
Some(trait_ref) => {
2019-05-14 15:58:22 +02:00
Symbol::intern(&format!("<impl {} for {}>", trait_ref,
self_ty))
},
2019-05-14 15:58:22 +02:00
None => Symbol::intern(&format!("<impl {}>", self_ty)),
});
Ok(path)
}
fn path_append(
self,
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
disambiguated_data: &DisambiguatedDefPathData,
2019-05-14 15:58:22 +02:00
) -> Result<Self::Path, Self::Error> {
let mut path = print_prefix(self)?;
// Skip `::{{constructor}}` on tuple/unit structs.
match disambiguated_data.data {
DefPathData::Ctor => return Ok(path),
_ => {}
}
2019-05-14 15:58:22 +02:00
path.push(disambiguated_data.data.as_interned_str().as_symbol());
Ok(path)
}
fn path_generic_args(
self,
print_prefix: impl FnOnce(Self) -> Result<Self::Path, Self::Error>,
_args: &[Kind<'tcx>],
2019-05-14 15:58:22 +02:00
) -> Result<Self::Path, Self::Error> {
print_prefix(self)
}
}
AbsolutePathPrinter { tcx: self.tcx }
.print_def_path(def_id, &[])
.unwrap()
}
2019-01-31 01:36:11 +01:00
}
impl<'a, 'tcx> LayoutOf for LateContext<'a, 'tcx> {
type Ty = Ty<'tcx>;
type TyLayout = Result<TyLayout<'tcx>, LayoutError<'tcx>>;
fn layout_of(&self, ty: Ty<'tcx>) -> Self::TyLayout {
self.tcx.layout_of(self.param_env.and(ty))
}
}
impl<'a, 'tcx, T: LateLintPass<'a, 'tcx>> LateContextAndPass<'a, 'tcx, T> {
/// Merge the lints specified by any lint attributes into the
/// current lint context, call the provided function, then reset the
/// lints in effect to their previous state.
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
fn with_lint_attrs<F>(&mut self,
2019-02-06 14:16:11 +01:00
id: hir::HirId,
attrs: &'tcx [ast::Attribute],
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
f: F)
where F: FnOnce(&mut Self)
{
2019-01-31 01:36:11 +01:00
let prev = self.context.last_node_with_lint_attrs;
self.context.last_node_with_lint_attrs = id;
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.enter_attrs(attrs);
f(self);
self.exit_attrs(attrs);
2019-01-31 01:36:11 +01:00
self.context.last_node_with_lint_attrs = prev;
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
}
2019-02-26 11:04:58 +01:00
fn with_param_env<F>(&mut self, id: hir::HirId, f: F)
where F: FnOnce(&mut Self),
{
2019-01-31 01:36:11 +01:00
let old_param_env = self.context.param_env;
self.context.param_env = self.context.tcx.param_env(
self.context.tcx.hir().local_def_id(id)
2019-01-31 01:36:11 +01:00
);
f(self);
2019-01-31 01:36:11 +01:00
self.context.param_env = old_param_env;
2018-06-02 23:38:57 +02:00
}
2018-06-11 08:48:15 +02:00
fn process_mod(&mut self, m: &'tcx hir::Mod, s: Span, n: hir::HirId) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_mod, m, s, n);
2018-06-11 08:48:15 +02:00
hir_visit::walk_mod(self, m, n);
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_mod_post, m, s, n);
2018-06-11 08:48:15 +02:00
}
2019-01-31 01:36:11 +01:00
fn enter_attrs(&mut self, attrs: &'tcx [ast::Attribute]) {
debug!("late context: enter_attrs({:?})", attrs);
lint_callback!(self, enter_lint_attrs, attrs);
}
2019-01-31 01:36:11 +01:00
fn exit_attrs(&mut self, attrs: &'tcx [ast::Attribute]) {
debug!("late context: exit_attrs({:?})", attrs);
lint_callback!(self, exit_lint_attrs, attrs);
}
}
2019-01-31 01:36:11 +01:00
impl<'a, 'tcx, T: LateLintPass<'a, 'tcx>> hir_visit::Visitor<'tcx>
for LateContextAndPass<'a, 'tcx, T> {
/// Because lints are scoped lexically, we want to walk nested
/// items in the context of the outer item, so enable
/// deep-walking.
fn nested_visit_map<'this>(&'this mut self) -> hir_visit::NestedVisitorMap<'this, 'tcx> {
2019-01-31 01:36:11 +01:00
hir_visit::NestedVisitorMap::All(&self.context.tcx.hir())
}
fn visit_nested_body(&mut self, body: hir::BodyId) {
2019-01-31 01:36:11 +01:00
let old_tables = self.context.tables;
self.context.tables = self.context.tcx.body_tables(body);
let body = self.context.tcx.hir().body(body);
self.visit_body(body);
2019-01-31 01:36:11 +01:00
self.context.tables = old_tables;
}
2019-07-26 19:52:37 -03:00
fn visit_arg(&mut self, arg: &'tcx hir::Arg) {
self.with_lint_attrs(arg.hir_id, &arg.attrs, |cx| {
lint_callback!(cx, check_arg, arg);
hir_visit::walk_arg(cx, arg);
});
}
2017-03-07 12:51:09 +01:00
fn visit_body(&mut self, body: &'tcx hir::Body) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_body, body);
2017-03-07 12:51:09 +01:00
hir_visit::walk_body(self, body);
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_body_post, body);
2017-03-07 12:51:09 +01:00
}
fn visit_item(&mut self, it: &'tcx hir::Item) {
2019-01-31 01:36:11 +01:00
let generics = self.context.generics.take();
self.context.generics = it.node.generics();
2019-02-06 14:16:11 +01:00
self.with_lint_attrs(it.hir_id, &it.attrs, |cx| {
2019-02-26 11:04:58 +01:00
cx.with_param_env(it.hir_id, |cx| {
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_item, it);
hir_visit::walk_item(cx, it);
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_item_post, it);
});
2017-10-28 17:19:07 -04:00
});
2019-01-31 01:36:11 +01:00
self.context.generics = generics;
}
fn visit_foreign_item(&mut self, it: &'tcx hir::ForeignItem) {
2019-02-06 14:16:11 +01:00
self.with_lint_attrs(it.hir_id, &it.attrs, |cx| {
2019-02-26 11:04:58 +01:00
cx.with_param_env(it.hir_id, |cx| {
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_foreign_item, it);
hir_visit::walk_foreign_item(cx, it);
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_foreign_item_post, it);
});
})
}
fn visit_pat(&mut self, p: &'tcx hir::Pat) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_pat, p);
hir_visit::walk_pat(self, p);
}
fn visit_expr(&mut self, e: &'tcx hir::Expr) {
2019-02-06 14:16:11 +01:00
self.with_lint_attrs(e.hir_id, &e.attrs, |cx| {
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_expr, e);
hir_visit::walk_expr(cx, e);
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_expr_post, e);
})
}
fn visit_stmt(&mut self, s: &'tcx hir::Stmt) {
// statement attributes are actually just attributes on one of
// - item
// - local
// - expression
// so we keep track of lint levels there
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_stmt, s);
hir_visit::walk_stmt(self, s);
}
fn visit_fn(&mut self, fk: hir_visit::FnKind<'tcx>, decl: &'tcx hir::FnDecl,
2019-02-06 14:16:11 +01:00
body_id: hir::BodyId, span: Span, id: hir::HirId) {
// Wrap in tables here, not just in visit_nested_body,
// in order for `check_fn` to be able to use them.
2019-01-31 01:36:11 +01:00
let old_tables = self.context.tables;
self.context.tables = self.context.tcx.body_tables(body_id);
let body = self.context.tcx.hir().body(body_id);
lint_callback!(self, check_fn, fk, decl, body, span, id);
2016-10-28 22:58:32 +02:00
hir_visit::walk_fn(self, fk, decl, body_id, span, id);
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_fn_post, fk, decl, body, span, id);
self.context.tables = old_tables;
}
fn visit_variant_data(&mut self,
s: &'tcx hir::VariantData,
2015-09-20 03:34:12 +03:00
name: ast::Name,
g: &'tcx hir::Generics,
2019-02-06 14:16:11 +01:00
item_id: hir::HirId,
_: Span) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_struct_def, s, name, g, item_id);
hir_visit::walk_struct_def(self, s);
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_struct_def_post, s, name, g, item_id);
}
fn visit_struct_field(&mut self, s: &'tcx hir::StructField) {
2019-02-06 14:16:11 +01:00
self.with_lint_attrs(s.hir_id, &s.attrs, |cx| {
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_struct_field, s);
hir_visit::walk_struct_field(cx, s);
})
}
fn visit_variant(&mut self,
v: &'tcx hir::Variant,
g: &'tcx hir::Generics,
2019-02-06 14:16:11 +01:00
item_id: hir::HirId) {
self.with_lint_attrs(v.node.id, &v.node.attrs, |cx| {
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_variant, v, g);
hir_visit::walk_variant(cx, v, g, item_id);
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_variant_post, v, g);
})
}
fn visit_ty(&mut self, t: &'tcx hir::Ty) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_ty, t);
hir_visit::walk_ty(self, t);
}
2015-09-20 03:34:12 +03:00
fn visit_name(&mut self, sp: Span, name: ast::Name) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_name, sp, name);
}
2019-02-06 14:16:11 +01:00
fn visit_mod(&mut self, m: &'tcx hir::Mod, s: Span, n: hir::HirId) {
2019-01-31 01:36:11 +01:00
if !self.context.only_module {
2018-06-11 08:48:15 +02:00
self.process_mod(m, s, n);
}
}
fn visit_local(&mut self, l: &'tcx hir::Local) {
2019-02-06 14:16:11 +01:00
self.with_lint_attrs(l.hir_id, &l.attrs, |cx| {
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_local, l);
hir_visit::walk_local(cx, l);
})
}
fn visit_block(&mut self, b: &'tcx hir::Block) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_block, b);
hir_visit::walk_block(self, b);
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_block_post, b);
}
fn visit_arm(&mut self, a: &'tcx hir::Arm) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_arm, a);
hir_visit::walk_arm(self, a);
}
fn visit_generic_param(&mut self, p: &'tcx hir::GenericParam) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_generic_param, p);
hir_visit::walk_generic_param(self, p);
}
fn visit_generics(&mut self, g: &'tcx hir::Generics) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_generics, g);
hir_visit::walk_generics(self, g);
}
fn visit_where_predicate(&mut self, p: &'tcx hir::WherePredicate) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_where_predicate, p);
hir_visit::walk_where_predicate(self, p);
}
fn visit_poly_trait_ref(&mut self, t: &'tcx hir::PolyTraitRef,
m: hir::TraitBoundModifier) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_poly_trait_ref, t, m);
hir_visit::walk_poly_trait_ref(self, t, m);
}
fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem) {
2019-01-31 01:36:11 +01:00
let generics = self.context.generics.take();
self.context.generics = Some(&trait_item.generics);
2019-02-06 14:16:11 +01:00
self.with_lint_attrs(trait_item.hir_id, &trait_item.attrs, |cx| {
2019-02-26 11:04:58 +01:00
cx.with_param_env(trait_item.hir_id, |cx| {
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_trait_item, trait_item);
hir_visit::walk_trait_item(cx, trait_item);
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_trait_item_post, trait_item);
});
});
2019-01-31 01:36:11 +01:00
self.context.generics = generics;
}
fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem) {
2019-01-31 01:36:11 +01:00
let generics = self.context.generics.take();
self.context.generics = Some(&impl_item.generics);
2019-02-06 14:16:11 +01:00
self.with_lint_attrs(impl_item.hir_id, &impl_item.attrs, |cx| {
2019-02-26 11:04:58 +01:00
cx.with_param_env(impl_item.hir_id, |cx| {
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_impl_item, impl_item);
hir_visit::walk_impl_item(cx, impl_item);
2019-01-31 01:36:11 +01:00
lint_callback!(cx, check_impl_item_post, impl_item);
});
});
2019-01-31 01:36:11 +01:00
self.context.generics = generics;
}
fn visit_lifetime(&mut self, lt: &'tcx hir::Lifetime) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_lifetime, lt);
Fix lint attributes on non-item nodes. Currently, late lint checking uses two HIR visitors: LateContext and IdVisitor. IdVisitor only overrides visit_id, and for each node searches for builtin lints previously added to the session; LateContext overrides a number of methods, and runs late lints. When LateContext encounters an item, it first has IdVisitor walk everything in it except nested items (OnlyBodies), then recurses into it itself - i.e. there are two separate walks. Aside from apparently being unnecessary, this separation prevents lint attributes (allow/deny/warn) on non-item HIR nodes from working properly. Test case: // generates warning without this change fn main() { #[allow(unreachable_code)] loop { break; break; } } LateContext contains logic to merge attributes seen into the current lint settings while walking (with_lint_attrs), but IdVisitor does not. So such attributes will affect late lints (because they are called from LateContext), and if the node contains any items within it, they will affect builtin lints within those items (because that IdVisitor is run while LateContext is within the attributed node), but otherwise the attributes will be ignored for builtin lints. This change simply removes IdVisitor and moves its visit_id into LateContext itself. Hopefully this doesn't break anything... Also added walk calls to visit_lifetime and visit_lifetime_def respectively, so visit_lifetime_def will recurse into the lifetime and visit_lifetime will recurse into the name. In principle this could confuse lint plugins. This is "necessary" because walk_lifetime calls visit_id on the lifetime; of course, an alternative would be directly calling visit_id (which would require manually iterating over the lifetimes in visit_lifetime_def), but that seems less clean.
2017-01-03 20:40:29 +01:00
hir_visit::walk_lifetime(self, lt);
}
fn visit_path(&mut self, p: &'tcx hir::Path, id: hir::HirId) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_path, p, id);
hir_visit::walk_path(self, p);
}
fn visit_attribute(&mut self, attr: &'tcx ast::Attribute) {
2019-01-31 01:36:11 +01:00
lint_callback!(self, check_attribute, attr);
}
}
impl<'a, T: EarlyLintPass> ast_visit::Visitor<'a> for EarlyContextAndPass<'a, T> {
2019-07-26 19:52:37 -03:00
fn visit_arg(&mut self, arg: &'a ast::Arg) {
self.with_lint_attrs(arg.id, &arg.attrs, |cx| {
run_early_pass!(cx, check_arg, arg);
ast_visit::walk_arg(cx, arg);
});
}
fn visit_item(&mut self, it: &'a ast::Item) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.with_lint_attrs(it.id, &it.attrs, |cx| {
run_early_pass!(cx, check_item, it);
ast_visit::walk_item(cx, it);
run_early_pass!(cx, check_item_post, it);
})
}
fn visit_foreign_item(&mut self, it: &'a ast::ForeignItem) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.with_lint_attrs(it.id, &it.attrs, |cx| {
run_early_pass!(cx, check_foreign_item, it);
ast_visit::walk_foreign_item(cx, it);
run_early_pass!(cx, check_foreign_item_post, it);
})
}
fn visit_pat(&mut self, p: &'a ast::Pat) {
run_early_pass!(self, check_pat, p);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.check_id(p.id);
ast_visit::walk_pat(self, p);
run_early_pass!(self, check_pat_post, p);
}
fn visit_expr(&mut self, e: &'a ast::Expr) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.with_lint_attrs(e.id, &e.attrs, |cx| {
run_early_pass!(cx, check_expr, e);
ast_visit::walk_expr(cx, e);
})
}
fn visit_stmt(&mut self, s: &'a ast::Stmt) {
run_early_pass!(self, check_stmt, s);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.check_id(s.id);
ast_visit::walk_stmt(self, s);
}
fn visit_fn(&mut self, fk: ast_visit::FnKind<'a>, decl: &'a ast::FnDecl,
span: Span, id: ast::NodeId) {
run_early_pass!(self, check_fn, fk, decl, span, id);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.check_id(id);
ast_visit::walk_fn(self, fk, decl, span);
run_early_pass!(self, check_fn_post, fk, decl, span, id);
}
fn visit_variant_data(&mut self,
s: &'a ast::VariantData,
ident: ast::Ident,
g: &'a ast::Generics,
item_id: ast::NodeId,
_: Span) {
run_early_pass!(self, check_struct_def, s, ident, g, item_id);
if let Some(ctor_hir_id) = s.ctor_id() {
self.check_id(ctor_hir_id);
}
ast_visit::walk_struct_def(self, s);
run_early_pass!(self, check_struct_def_post, s, ident, g, item_id);
}
fn visit_struct_field(&mut self, s: &'a ast::StructField) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.with_lint_attrs(s.id, &s.attrs, |cx| {
run_early_pass!(cx, check_struct_field, s);
ast_visit::walk_struct_field(cx, s);
})
}
fn visit_variant(&mut self, v: &'a ast::Variant, g: &'a ast::Generics, item_id: ast::NodeId) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.with_lint_attrs(item_id, &v.node.attrs, |cx| {
run_early_pass!(cx, check_variant, v, g);
ast_visit::walk_variant(cx, v, g, item_id);
run_early_pass!(cx, check_variant_post, v, g);
})
}
fn visit_ty(&mut self, t: &'a ast::Ty) {
run_early_pass!(self, check_ty, t);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.check_id(t.id);
ast_visit::walk_ty(self, t);
}
2018-03-19 03:54:56 +03:00
fn visit_ident(&mut self, ident: ast::Ident) {
run_early_pass!(self, check_ident, ident);
}
2017-05-12 07:15:29 +12:00
fn visit_mod(&mut self, m: &'a ast::Mod, s: Span, _a: &[ast::Attribute], n: ast::NodeId) {
run_early_pass!(self, check_mod, m, s, n);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.check_id(n);
ast_visit::walk_mod(self, m);
run_early_pass!(self, check_mod_post, m, s, n);
}
fn visit_local(&mut self, l: &'a ast::Local) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.with_lint_attrs(l.id, &l.attrs, |cx| {
run_early_pass!(cx, check_local, l);
ast_visit::walk_local(cx, l);
})
}
fn visit_block(&mut self, b: &'a ast::Block) {
run_early_pass!(self, check_block, b);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.check_id(b.id);
ast_visit::walk_block(self, b);
run_early_pass!(self, check_block_post, b);
}
fn visit_arm(&mut self, a: &'a ast::Arm) {
run_early_pass!(self, check_arm, a);
ast_visit::walk_arm(self, a);
}
fn visit_expr_post(&mut self, e: &'a ast::Expr) {
run_early_pass!(self, check_expr_post, e);
}
fn visit_generic_param(&mut self, param: &'a ast::GenericParam) {
run_early_pass!(self, check_generic_param, param);
ast_visit::walk_generic_param(self, param);
}
fn visit_generics(&mut self, g: &'a ast::Generics) {
run_early_pass!(self, check_generics, g);
ast_visit::walk_generics(self, g);
}
fn visit_where_predicate(&mut self, p: &'a ast::WherePredicate) {
run_early_pass!(self, check_where_predicate, p);
ast_visit::walk_where_predicate(self, p);
}
fn visit_poly_trait_ref(&mut self, t: &'a ast::PolyTraitRef, m: &'a ast::TraitBoundModifier) {
run_early_pass!(self, check_poly_trait_ref, t, m);
ast_visit::walk_poly_trait_ref(self, t, m);
}
fn visit_trait_item(&mut self, trait_item: &'a ast::TraitItem) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.with_lint_attrs(trait_item.id, &trait_item.attrs, |cx| {
run_early_pass!(cx, check_trait_item, trait_item);
ast_visit::walk_trait_item(cx, trait_item);
run_early_pass!(cx, check_trait_item_post, trait_item);
});
}
fn visit_impl_item(&mut self, impl_item: &'a ast::ImplItem) {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.with_lint_attrs(impl_item.id, &impl_item.attrs, |cx| {
run_early_pass!(cx, check_impl_item, impl_item);
ast_visit::walk_impl_item(cx, impl_item);
run_early_pass!(cx, check_impl_item_post, impl_item);
});
}
fn visit_lifetime(&mut self, lt: &'a ast::Lifetime) {
run_early_pass!(self, check_lifetime, lt);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.check_id(lt.id);
}
fn visit_path(&mut self, p: &'a ast::Path, id: ast::NodeId) {
run_early_pass!(self, check_path, p, id);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.check_id(id);
ast_visit::walk_path(self, p);
}
fn visit_attribute(&mut self, attr: &'a ast::Attribute) {
run_early_pass!(self, check_attribute, attr);
}
2018-07-14 16:40:17 +02:00
fn visit_mac_def(&mut self, mac: &'a ast::MacroDef, id: ast::NodeId) {
run_early_pass!(self, check_mac_def, mac, id);
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
self.check_id(id);
}
2018-07-14 16:40:17 +02:00
fn visit_mac(&mut self, mac: &'a ast::Mac) {
// FIXME(#54110): So, this setup isn't really right. I think
// that (a) the libsyntax visitor ought to be doing this as
// part of `walk_mac`, and (b) we should be calling
// `visit_path`, *but* that would require a `NodeId`, and I
// want to get #53686 fixed quickly. -nmatsakis
ast_visit::walk_path(self, &mac.node.path);
run_early_pass!(self, check_mac, mac);
2018-07-14 16:40:17 +02:00
}
}
2019-01-31 01:36:11 +01:00
struct LateLintPassObjects<'a> {
lints: &'a mut [LateLintPassObject],
}
2019-06-24 10:43:51 +02:00
#[cfg_attr(not(bootstrap), allow(rustc::lint_pass_impl_without_macro))]
2019-01-31 01:36:11 +01:00
impl LintPass for LateLintPassObjects<'_> {
fn name(&self) -> &'static str {
panic!()
}
fn get_lints(&self) -> LintArray {
panic!()
}
}
macro_rules! expand_late_lint_pass_impl_methods {
([$a:tt, $hir:tt], [$($(#[$attr:meta])* fn $name:ident($($param:ident: $arg:ty),*);)*]) => (
$(fn $name(&mut self, context: &LateContext<$a, $hir>, $($param: $arg),*) {
for obj in self.lints.iter_mut() {
obj.$name(context, $($param),*);
}
})*
)
}
macro_rules! late_lint_pass_impl {
([], [$hir:tt], $methods:tt) => (
impl LateLintPass<'a, $hir> for LateLintPassObjects<'_> {
expand_late_lint_pass_impl_methods!(['a, $hir], $methods);
}
)
}
late_lint_methods!(late_lint_pass_impl, [], ['tcx]);
fn late_lint_mod_pass<'tcx, T: for<'a> LateLintPass<'a, 'tcx>>(
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
2019-01-31 01:36:11 +01:00
module_def_id: DefId,
pass: T,
) {
2018-06-11 08:48:15 +02:00
let access_levels = &tcx.privacy_access_levels(LOCAL_CRATE);
2019-01-31 01:36:11 +01:00
let context = LateContext {
2018-06-11 08:48:15 +02:00
tcx,
tables: &ty::TypeckTables::empty(None),
param_env: ty::ParamEnv::empty(),
access_levels,
lint_store: tcx.sess.lint_store.borrow(),
2018-06-11 08:48:15 +02:00
last_node_with_lint_attrs: tcx.hir().as_local_hir_id(module_def_id).unwrap(),
generics: None,
only_module: true,
};
2019-01-31 01:36:11 +01:00
let mut cx = LateContextAndPass {
context,
pass
};
2018-06-11 08:48:15 +02:00
let (module, span, hir_id) = tcx.hir().get_module(module_def_id);
cx.process_mod(module, span, hir_id);
2019-03-03 18:47:54 +01:00
// Visit the crate attributes
if hir_id == hir::CRATE_HIR_ID {
walk_list!(cx, visit_attribute, tcx.hir().attrs(hir::CRATE_HIR_ID));
2019-03-03 18:47:54 +01:00
}
2018-06-11 08:48:15 +02:00
}
2019-01-31 01:36:11 +01:00
pub fn late_lint_mod<'tcx, T: for<'a> LateLintPass<'a, 'tcx>>(
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
2019-01-31 01:36:11 +01:00
module_def_id: DefId,
builtin_lints: T,
) {
if tcx.sess.opts.debugging_opts.no_interleave_lints {
// These passes runs in late_lint_crate with -Z no_interleave_lints
return;
}
2019-01-31 01:36:11 +01:00
late_lint_mod_pass(tcx, module_def_id, builtin_lints);
2019-01-31 04:36:37 +01:00
let mut passes: Vec<_> = tcx.sess.lint_store.borrow().late_module_passes
.iter().map(|pass| pass.fresh_late_pass()).collect();
2019-01-31 01:36:11 +01:00
if !passes.is_empty() {
late_lint_mod_pass(tcx, module_def_id, LateLintPassObjects { lints: &mut passes[..] });
}
2018-06-11 08:48:15 +02:00
}
2019-06-14 00:48:52 +03:00
fn late_lint_pass_crate<'tcx, T: for<'a> LateLintPass<'a, 'tcx>>(tcx: TyCtxt<'tcx>, pass: T) {
let access_levels = &tcx.privacy_access_levels(LOCAL_CRATE);
let krate = tcx.hir().krate();
2019-01-31 01:36:11 +01:00
let context = LateContext {
tcx,
tables: &ty::TypeckTables::empty(None),
param_env: ty::ParamEnv::empty(),
access_levels,
lint_store: tcx.sess.lint_store.borrow(),
2019-01-31 01:36:11 +01:00
last_node_with_lint_attrs: hir::CRATE_HIR_ID,
generics: None,
only_module: false,
};
2019-01-31 01:36:11 +01:00
let mut cx = LateContextAndPass {
context,
pass
2018-07-14 16:40:17 +02:00
};
2019-01-31 01:36:11 +01:00
// Visit the whole crate.
cx.with_lint_attrs(hir::CRATE_HIR_ID, &krate.attrs, |cx| {
// since the root module isn't visited as an item (because it isn't an
// item), warn for it here.
lint_callback!(cx, check_crate, krate);
hir_visit::walk_crate(cx, krate);
lint_callback!(cx, check_crate_post, krate);
})
}
fn late_lint_crate<'tcx, T: for<'a> LateLintPass<'a, 'tcx>>(tcx: TyCtxt<'tcx>, builtin_lints: T) {
let mut passes = tcx.sess.lint_store.borrow().late_passes.lock().take().unwrap();
2019-01-31 01:36:11 +01:00
if !tcx.sess.opts.debugging_opts.no_interleave_lints {
if !passes.is_empty() {
late_lint_pass_crate(tcx, LateLintPassObjects { lints: &mut passes[..] });
}
late_lint_pass_crate(tcx, builtin_lints);
} else {
for pass in &mut passes {
time(tcx.sess, &format!("running late lint: {}", pass.name()), || {
late_lint_pass_crate(tcx, LateLintPassObjects { lints: slice::from_mut(pass) });
});
}
2019-01-31 04:36:37 +01:00
let mut passes: Vec<_> = tcx.sess.lint_store.borrow().late_module_passes
.iter().map(|pass| pass.fresh_late_pass()).collect();
2019-01-31 01:36:11 +01:00
for pass in &mut passes {
time(tcx.sess, &format!("running late module lint: {}", pass.name()), || {
late_lint_pass_crate(tcx, LateLintPassObjects { lints: slice::from_mut(pass) });
});
}
}
// Put the passes back in the session.
*tcx.sess.lint_store.borrow().late_passes.lock() = Some(passes);
}
2018-06-11 08:48:15 +02:00
/// Performs lint checking on a crate.
2019-01-31 01:36:11 +01:00
pub fn check_crate<'tcx, T: for<'a> LateLintPass<'a, 'tcx>>(
2019-06-14 00:48:52 +03:00
tcx: TyCtxt<'tcx>,
builtin_lints: impl FnOnce() -> T + Send,
2019-01-31 01:36:11 +01:00
) {
join(|| {
time(tcx.sess, "crate lints", || {
// Run whole crate non-incremental lints
late_lint_crate(tcx, builtin_lints());
});
}, || {
time(tcx.sess, "module lints", || {
// Run per-module lints
2019-01-31 04:36:37 +01:00
par_iter(&tcx.hir().krate().modules).for_each(|(&module, _)| {
tcx.ensure().lint_mod(tcx.hir().local_def_id_from_node_id(module));
2019-01-31 04:36:37 +01:00
});
});
});
2018-06-11 08:48:15 +02:00
}
struct EarlyLintPassObjects<'a> {
lints: &'a mut [EarlyLintPassObject],
}
2019-06-24 10:43:51 +02:00
#[cfg_attr(not(bootstrap), allow(rustc::lint_pass_impl_without_macro))]
impl LintPass for EarlyLintPassObjects<'_> {
fn name(&self) -> &'static str {
panic!()
}
fn get_lints(&self) -> LintArray {
panic!()
}
}
macro_rules! expand_early_lint_pass_impl_methods {
([$($(#[$attr:meta])* fn $name:ident($($param:ident: $arg:ty),*);)*]) => (
$(fn $name(&mut self, context: &EarlyContext<'_>, $($param: $arg),*) {
for obj in self.lints.iter_mut() {
obj.$name(context, $($param),*);
}
})*
)
}
macro_rules! early_lint_pass_impl {
([], [$($methods:tt)*]) => (
impl EarlyLintPass for EarlyLintPassObjects<'_> {
expand_early_lint_pass_impl_methods!([$($methods)*]);
}
)
}
early_lint_methods!(early_lint_pass_impl, []);
fn early_lint_crate<T: EarlyLintPass>(
sess: &Session,
krate: &ast::Crate,
pass: T,
buffered: LintBuffer,
) -> LintBuffer {
let mut cx = EarlyContextAndPass {
context: EarlyContext::new(sess, krate, buffered),
pass,
};
// Visit the whole crate.
cx.with_lint_attrs(ast::CRATE_NODE_ID, &krate.attrs, |cx| {
// since the root module isn't visited as an item (because it isn't an
// item), warn for it here.
run_early_pass!(cx, check_crate, krate);
ast_visit::walk_crate(cx, krate);
run_early_pass!(cx, check_crate_post, krate);
});
cx.context.buffered
}
pub fn check_ast_crate<T: EarlyLintPass>(
2018-07-14 16:40:17 +02:00
sess: &Session,
krate: &ast::Crate,
pre_expansion: bool,
builtin_lints: T,
2018-07-14 16:40:17 +02:00
) {
let (mut passes, mut buffered) = if pre_expansion {
2018-07-14 16:40:17 +02:00
(
sess.lint_store.borrow_mut().pre_expansion_passes.take().unwrap(),
LintBuffer::default(),
2018-07-14 16:40:17 +02:00
)
} else {
(
sess.lint_store.borrow_mut().early_passes.take().unwrap(),
2018-07-14 16:40:17 +02:00
sess.buffered_lints.borrow_mut().take().unwrap(),
)
};
if !sess.opts.debugging_opts.no_interleave_lints {
buffered = early_lint_crate(sess, krate, builtin_lints, buffered);
if !passes.is_empty() {
buffered = early_lint_crate(
sess,
krate,
EarlyLintPassObjects { lints: &mut passes[..] },
buffered,
);
}
} else {
for pass in &mut passes {
buffered = time(sess, &format!("running lint: {}", pass.name()), || {
early_lint_crate(
sess,
krate,
EarlyLintPassObjects { lints: slice::from_mut(pass) },
buffered,
)
});
}
}
// Put the lint store levels and passes back in the session.
2018-07-14 16:40:17 +02:00
if pre_expansion {
sess.lint_store.borrow_mut().pre_expansion_passes = Some(passes);
2018-07-14 16:40:17 +02:00
} else {
sess.lint_store.borrow_mut().early_passes = Some(passes);
2018-07-14 16:40:17 +02:00
}
// All of the buffered lints should have been emitted at this point.
// If not, that means that we somehow buffered a lint for a node id
// that was not lint-checked (perhaps it doesn't exist?). This is a bug.
//
// Rustdoc runs everybody-loops before the early lints and removes
// function bodies, so it's totally possible for linted
// node ids to not exist (e.g., macros defined within functions for the
// unused_macro lint) anymore. So we only run this check
// when we're not in rustdoc mode. (see issue #47639)
if !sess.opts.actually_rustdoc {
2018-07-14 16:40:17 +02:00
for (_id, lints) in buffered.map {
for early_lint in lints {
sess.delay_span_bug(early_lint.span, "failed to process buffered lint here");
}
}
}
}
impl Encodable for LintId {
fn encode<S: Encoder>(&self, s: &mut S) -> Result<(), S::Error> {
s.emit_str(&self.lint.name.to_lowercase())
}
}
impl Decodable for LintId {
#[inline]
fn decode<D: Decoder>(d: &mut D) -> Result<LintId, D::Error> {
let s = d.read_str()?;
ty::tls::with(|tcx| {
rustc: Rearchitect lints to be emitted more eagerly In preparation for incremental compilation this commit refactors the lint handling infrastructure in the compiler to be more "eager" and overall more incremental-friendly. Many passes of the compiler can emit lints at various points but before this commit all lints were buffered in a table to be emitted at the very end of compilation. This commit changes these lints to be emitted immediately during compilation using pre-calculated lint level-related data structures. Linting today is split into two phases, one set of "early" lints run on the `syntax::ast` and a "late" set of lints run on the HIR. This commit moves the "early" lints to running as late as possible in compilation, just before HIR lowering. This notably means that we're catching resolve-related lints just before HIR lowering. The early linting remains a pass very similar to how it was before, maintaining context of the current lint level as it walks the tree. Post-HIR, however, linting is structured as a method on the `TyCtxt` which transitively executes a query to calculate lint levels. Each request to lint on a `TyCtxt` will query the entire crate's 'lint level data structure' and then go from there about whether the lint should be emitted or not. The query depends on the entire HIR crate but should be very quick to calculate (just a quick walk of the HIR) and the red-green system should notice that the lint level data structure rarely changes, and should hopefully preserve incrementality. Overall this resulted in a pretty big change to the test suite now that lints are emitted much earlier in compilation (on-demand vs only at the end). This in turn necessitated the addition of many `#![allow(warnings)]` directives throughout the compile-fail test suite and a number of updates to the UI test suite.
2017-07-26 21:51:09 -07:00
match tcx.sess.lint_store.borrow().find_lints(&s) {
Ok(ids) => {
if ids.len() != 0 {
panic!("invalid lint-id `{}`", s);
}
Ok(ids[0])
}
Err(_) => panic!("invalid lint-id `{}`", s),
}
})
}
}