rust/src/consts.rs

395 lines
18 KiB
Rust
Raw Normal View History

use gccjit::{LValue, RValue, ToRValue, Type};
2020-05-10 10:54:30 -04:00
use rustc_codegen_ssa::traits::{BaseTypeMethods, ConstMethods, DerivedTypeMethods, StaticMethods};
use rustc_hir as hir;
use rustc_hir::Node;
use rustc_middle::{bug, span_bug};
use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
use rustc_middle::mir::mono::MonoItem;
use rustc_middle::ty::{self, Instance, Ty};
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::mir::interpret::{self, Allocation, ErrorHandled, Scalar as InterpScalar, read_target_uint};
2020-05-10 10:54:30 -04:00
use rustc_span::Span;
use rustc_span::def_id::DefId;
use rustc_target::abi::{self, Align, HasDataLayout, Primitive, Size, WrappingRange};
2020-05-10 10:54:30 -04:00
use crate::base;
use crate::context::CodegenCx;
use crate::type_of::LayoutGccExt;
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn const_bitcast(&self, value: RValue<'gcc>, typ: Type<'gcc>) -> RValue<'gcc> {
if value.get_type() == self.bool_type.make_pointer() {
if let Some(pointee) = typ.get_pointee() {
if pointee.dyncast_vector().is_some() {
2020-05-10 10:54:30 -04:00
panic!()
}
}
}
self.context.new_bitcast(None, value, typ)
}
}
impl<'gcc, 'tcx> StaticMethods for CodegenCx<'gcc, 'tcx> {
fn static_addr_of(&self, cv: RValue<'gcc>, align: Align, kind: Option<&str>) -> RValue<'gcc> {
Sync from rust (#107) * Rebase fallout. * Move rustc_middle::middle::cstore to rustc_session. * Create more accurate debuginfo for vtables. Before this commit all vtables would have the same name "vtable" in debuginfo. Now they get a name that identifies the implementing type and the trait that is being implemented. * Remove alloc::prelude As per the libs team decision in #58935. Closes #58935 * Make hash_result an Option. * Properly check `target_features` not to trigger an assertion * Add LLVM CFI support to the Rust compiler This commit adds LLVM Control Flow Integrity (CFI) support to the Rust compiler. It initially provides forward-edge control flow protection for Rust-compiled code only by aggregating function pointers in groups identified by their number of arguments. Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by defining and using compatible type identifiers (see Type metadata in the design document in the tracking issue #89653). LLVM CFI can be enabled with -Zsanitizer=cfi and requires LTO (i.e., -Clto). * Update to nightly-2021-10-30 * Add deduplication of constant values as rustc relies on LLVM doing that Co-authored-by: Camille GILLOT <gillot.camille@gmail.com> Co-authored-by: Michael Woerister <michaelwoerister@posteo> Co-authored-by: Amanieu d'Antras <amanieu@gmail.com> Co-authored-by: Yuki Okushi <yuki.okushi@huawei.com> Co-authored-by: Ramon de C Valle <rcvalle@users.noreply.github.com>
2021-10-30 18:21:33 -04:00
// TODO(antoyo): implement a proper rvalue comparison in libgccjit instead of doing the
// following:
for (value, variable) in &*self.const_globals.borrow() {
if format!("{:?}", value) == format!("{:?}", cv) {
// TODO(antoyo): upgrade alignment.
return *variable;
}
2020-05-10 10:54:30 -04:00
}
let global_value = self.static_addr_of_mut(cv, align, kind);
2021-08-15 08:28:46 -04:00
// TODO(antoyo): set global constant.
2020-05-10 10:54:30 -04:00
self.const_globals.borrow_mut().insert(cv, global_value);
global_value
}
fn codegen_static(&self, def_id: DefId, is_mutable: bool) {
let attrs = self.tcx.codegen_fn_attrs(def_id);
let value =
2020-05-10 10:54:30 -04:00
match codegen_static_initializer(&self, def_id) {
Ok((value, _)) => value,
2020-05-10 10:54:30 -04:00
// Error has already been reported
Err(_) => return,
};
let global = self.get_static(def_id);
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let val_llty = self.val_ty(value);
let value =
if val_llty == self.type_i1() {
unimplemented!();
}
else {
value
};
let instance = Instance::mono(self.tcx, def_id);
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
let gcc_type = self.layout_of(ty).gcc_type(self, true);
// TODO(antoyo): set alignment.
let value =
if value.get_type() != gcc_type {
self.context.new_bitcast(None, value, gcc_type)
2020-05-10 10:54:30 -04:00
}
else {
value
2020-05-10 10:54:30 -04:00
};
global.global_set_initializer_rvalue(value);
2020-05-10 10:54:30 -04:00
// As an optimization, all shared statics which do not have interior
// mutability are placed into read-only memory.
if !is_mutable {
if self.type_is_freeze(ty) {
2021-08-15 08:28:46 -04:00
// TODO(antoyo): set global constant.
2020-05-10 10:54:30 -04:00
}
}
if attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) {
// Do not allow LLVM to change the alignment of a TLS on macOS.
//
// By default a global's alignment can be freely increased.
// This allows LLVM to generate more performant instructions
// e.g., using load-aligned into a SIMD register.
//
// However, on macOS 10.10 or below, the dynamic linker does not
// respect any alignment given on the TLS (radar 24221680).
// This will violate the alignment assumption, and causing segfault at runtime.
//
// This bug is very easy to trigger. In `println!` and `panic!`,
// the `LOCAL_STDOUT`/`LOCAL_STDERR` handles are stored in a TLS,
// which the values would be `mem::replace`d on initialization.
// The implementation of `mem::replace` will use SIMD
// whenever the size is 32 bytes or higher. LLVM notices SIMD is used
// and tries to align `LOCAL_STDOUT`/`LOCAL_STDERR` to a 32-byte boundary,
// which macOS's dyld disregarded and causing crashes
// (see issues #51794, #51758, #50867, #48866 and #44056).
//
// To workaround the bug, we trick LLVM into not increasing
// the global's alignment by explicitly assigning a section to it
// (equivalent to automatically generating a `#[link_section]` attribute).
// See the comment in the `GlobalValue::canIncreaseAlignment()` function
// of `lib/IR/Globals.cpp` for why this works.
//
// When the alignment is not increased, the optimized `mem::replace`
// will use load-unaligned instructions instead, and thus avoiding the crash.
//
// We could remove this hack whenever we decide to drop macOS 10.10 support.
if self.tcx.sess.target.options.is_like_osx {
// The `inspect` method is okay here because we checked relocations, and
// because we are doing this access to inspect the final interpreter state
// (not as part of the interpreter execution).
//
// FIXME: This check requires that the (arbitrary) value of undefined bytes
// happens to be zero. Instead, we should only check the value of defined bytes
// and set all undefined bytes to zero if this allocation is headed for the
// BSS.
unimplemented!();
}
}
// Wasm statics with custom link sections get special treatment as they
// go into custom sections of the wasm executable.
if self.tcx.sess.opts.target_triple.triple().starts_with("wasm32") {
if let Some(_section) = attrs.link_section {
unimplemented!();
}
} else {
2021-08-15 08:28:46 -04:00
// TODO(antoyo): set link section.
2020-05-10 10:54:30 -04:00
}
if attrs.flags.contains(CodegenFnAttrFlags::USED) {
self.add_used_global(global.to_rvalue());
2020-05-10 10:54:30 -04:00
}
}
/// Add a global value to a list to be stored in the `llvm.used` variable, an array of i8*.
fn add_used_global(&self, _global: RValue<'gcc>) {
2021-08-15 08:28:46 -04:00
// TODO(antoyo)
2020-05-10 10:54:30 -04:00
}
fn add_compiler_used_global(&self, _global: RValue<'gcc>) {
// TODO(antoyo)
}
2020-05-10 10:54:30 -04:00
}
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
pub fn static_addr_of_mut(&self, cv: RValue<'gcc>, align: Align, kind: Option<&str>) -> RValue<'gcc> {
let global =
2020-05-10 10:54:30 -04:00
match kind {
Some(kind) if !self.tcx.sess.fewer_names() => {
let name = self.generate_local_symbol_name(kind);
2021-08-15 08:28:46 -04:00
// TODO(antoyo): check if it's okay that TLS is off here.
// TODO(antoyo): check if it's okay that link_section is None here.
// TODO(antoyo): set alignment here as well.
let global = self.define_global(&name[..], self.val_ty(cv), false, None);
2021-08-15 08:28:46 -04:00
// TODO(antoyo): set linkage.
global
2020-05-10 10:54:30 -04:00
}
_ => {
let typ = self.val_ty(cv).get_aligned(align.bytes());
let global = self.declare_unnamed_global(typ);
global
2020-05-10 10:54:30 -04:00
},
};
2021-08-15 08:28:46 -04:00
// FIXME(antoyo): I think the name coming from generate_local_symbol_name() above cannot be used
2020-05-10 10:54:30 -04:00
// globally.
global.global_set_initializer_rvalue(cv);
2021-08-15 08:28:46 -04:00
// TODO(antoyo): set unnamed address.
global.get_address(None)
2020-05-10 10:54:30 -04:00
}
pub fn get_static(&self, def_id: DefId) -> LValue<'gcc> {
2020-05-10 10:54:30 -04:00
let instance = Instance::mono(self.tcx, def_id);
let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
if let Some(&global) = self.instances.borrow().get(&instance) {
return global;
}
let defined_in_current_codegen_unit =
self.codegen_unit.items().contains_key(&MonoItem::Static(def_id));
assert!(
!defined_in_current_codegen_unit,
"consts::get_static() should always hit the cache for \
statics defined in the same CGU, but did not for `{:?}`",
def_id
);
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
let sym = self.tcx.symbol_name(instance).name;
let global =
if let Some(def_id) = def_id.as_local() {
let id = self.tcx.hir().local_def_id_to_hir_id(def_id);
let llty = self.layout_of(ty).gcc_type(self, true);
// FIXME: refactor this to work without accessing the HIR
let global = match self.tcx.hir().get(id) {
Node::Item(&hir::Item { span, kind: hir::ItemKind::Static(..), .. }) => {
if let Some(global) = self.get_declared_value(&sym) {
if self.val_ty(global) != self.type_ptr_to(llty) {
span_bug!(span, "Conflicting types for static");
}
}
let is_tls = fn_attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL);
let global = self.declare_global(&sym, llty, is_tls, fn_attrs.link_section);
if !self.tcx.is_reachable_non_generic(def_id) {
2021-08-15 08:28:46 -04:00
// TODO(antoyo): set visibility.
2020-05-10 10:54:30 -04:00
}
global
}
Node::ForeignItem(&hir::ForeignItem {
span,
kind: hir::ForeignItemKind::Static(..),
..
}) => {
let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
check_and_apply_linkage(&self, &fn_attrs, ty, sym, span)
}
item => bug!("get_static: expected static, found {:?}", item),
};
global
}
else {
// FIXME(nagisa): perhaps the map of externs could be offloaded to llvm somehow?
//debug!("get_static: sym={} item_attr={:?}", sym, self.tcx.item_attrs(def_id));
let attrs = self.tcx.codegen_fn_attrs(def_id);
let span = self.tcx.def_span(def_id);
let global = check_and_apply_linkage(&self, &attrs, ty, sym, span);
2021-08-15 08:28:46 -04:00
let needs_dll_storage_attr = false; // TODO(antoyo)
2020-05-10 10:54:30 -04:00
// If this assertion triggers, there's something wrong with commandline
// argument validation.
debug_assert!(
!(self.tcx.sess.opts.cg.linker_plugin_lto.enabled()
&& self.tcx.sess.target.options.is_like_msvc
&& self.tcx.sess.opts.cg.prefer_dynamic)
);
if needs_dll_storage_attr {
// This item is external but not foreign, i.e., it originates from an external Rust
// crate. Since we don't know whether this crate will be linked dynamically or
// statically in the final application, we always mark such symbols as 'dllimport'.
// If final linkage happens to be static, we rely on compiler-emitted __imp_ stubs
// to make things work.
//
// However, in some scenarios we defer emission of statics to downstream
// crates, so there are cases where a static with an upstream DefId
// is actually present in the current crate. We can find out via the
// is_codegened_item query.
if !self.tcx.is_codegened_item(def_id) {
unimplemented!();
}
}
global
};
2021-08-15 08:28:46 -04:00
// TODO(antoyo): set dll storage class.
2020-05-10 10:54:30 -04:00
self.instances.borrow_mut().insert(instance, global);
global
}
}
pub fn const_alloc_to_gcc<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, alloc: &Allocation) -> RValue<'gcc> {
let mut llvals = Vec::with_capacity(alloc.relocations().len() + 1);
let dl = cx.data_layout();
let pointer_size = dl.pointer_size.bytes() as usize;
let mut next_offset = 0;
for &(offset, alloc_id) in alloc.relocations().iter() {
let offset = offset.bytes();
assert_eq!(offset as usize as u64, offset);
let offset = offset as usize;
if offset > next_offset {
// This `inspect` is okay since we have checked that it is not within a relocation, it
// is within the bounds of the allocation, and it doesn't affect interpreter execution
// (we inspect the result after interpreter execution). Any undef byte is replaced with
// some arbitrary byte value.
//
// FIXME: relay undef bytes to codegen as undef const bytes
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(next_offset..offset);
llvals.push(cx.const_bytes(bytes));
}
let ptr_offset =
read_target_uint( dl.endian,
// This `inspect` is okay since it is within the bounds of the allocation, it doesn't
// affect interpreter execution (we inspect the result after interpreter execution),
// and we properly interpret the relocation as a relocation pointer offset.
alloc.inspect_with_uninit_and_ptr_outside_interpreter(offset..(offset + pointer_size)),
)
.expect("const_alloc_to_llvm: could not read relocation pointer")
as u64;
llvals.push(cx.scalar_to_backend(
InterpScalar::from_pointer(
interpret::Pointer::new(alloc_id, Size::from_bytes(ptr_offset)),
&cx.tcx,
),
abi::Scalar { value: Primitive::Pointer, valid_range: WrappingRange { start: 0, end: !0 } },
2020-05-10 10:54:30 -04:00
cx.type_i8p(),
));
next_offset = offset + pointer_size;
}
if alloc.len() >= next_offset {
let range = next_offset..alloc.len();
// This `inspect` is okay since we have check that it is after all relocations, it is
// within the bounds of the allocation, and it doesn't affect interpreter execution (we
// inspect the result after interpreter execution). Any undef byte is replaced with some
// arbitrary byte value.
//
// FIXME: relay undef bytes to codegen as undef const bytes
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(range);
llvals.push(cx.const_bytes(bytes));
}
cx.const_struct(&llvals, true)
}
pub fn codegen_static_initializer<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, def_id: DefId) -> Result<(RValue<'gcc>, &'tcx Allocation), ErrorHandled> {
let alloc = cx.tcx.eval_static_initializer(def_id)?;
Ok((const_alloc_to_gcc(cx, alloc), alloc))
}
fn check_and_apply_linkage<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, attrs: &CodegenFnAttrs, ty: Ty<'tcx>, sym: &str, span: Span) -> LValue<'gcc> {
2020-05-10 10:54:30 -04:00
let is_tls = attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL);
let llty = cx.layout_of(ty).gcc_type(cx, true);
if let Some(linkage) = attrs.linkage {
// If this is a static with a linkage specified, then we need to handle
// it a little specially. The typesystem prevents things like &T and
// extern "C" fn() from being non-null, so we can't just declare a
// static and call it a day. Some linkages (like weak) will make it such
// that the static actually has a null value.
let llty2 =
if let ty::RawPtr(ref mt) = ty.kind() {
cx.layout_of(mt.ty).gcc_type(cx, true)
}
else {
cx.sess().span_fatal(
span,
"must have type `*const T` or `*mut T` due to `#[linkage]` attribute",
)
};
// Declare a symbol `foo` with the desired linkage.
let global1 = cx.declare_global_with_linkage(&sym, llty2, base::global_linkage_to_gcc(linkage));
// Declare an internal global `extern_with_linkage_foo` which
// is initialized with the address of `foo`. If `foo` is
// discarded during linking (for example, if `foo` has weak
// linkage and there are no definitions), then
// `extern_with_linkage_foo` will instead be initialized to
// zero.
let mut real_name = "_rust_extern_with_linkage_".to_string();
real_name.push_str(&sym);
let global2 = cx.define_global(&real_name, llty, is_tls, attrs.link_section);
2021-08-15 08:28:46 -04:00
// TODO(antoyo): set linkage.
global2.global_set_initializer_rvalue(global1.get_address(None));
2021-08-15 08:28:46 -04:00
// TODO(antoyo): use global_set_initializer() when it will work.
2020-05-10 10:54:30 -04:00
global2
}
else {
// Generate an external declaration.
// FIXME(nagisa): investigate whether it can be changed into define_global
// Thread-local statics in some other crate need to *always* be linked
// against in a thread-local fashion, so we need to be sure to apply the
// thread-local attribute locally if it was present remotely. If we
// don't do this then linker errors can be generated where the linker
// complains that one object files has a thread local version of the
// symbol and another one doesn't.
cx.declare_global(&sym, llty, is_tls, attrs.link_section)
}
}