rust/library/proc_macro/src/lib.rs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1494 lines
56 KiB
Rust
Raw Normal View History

//! A support library for macro authors when defining new macros.
2016-08-04 14:20:01 -05:00
//!
//! This library, provided by the standard distribution, provides the types
//! consumed in the interfaces of procedurally defined macro definitions such as
2018-08-19 08:30:23 -05:00
//! function-like macros `#[proc_macro]`, macro attributes `#[proc_macro_attribute]` and
//! custom derive attributes`#[proc_macro_derive]`.
2016-08-04 14:20:01 -05:00
//!
//! See [the book] for more.
//!
//! [the book]: ../book/ch19-06-macros.html#procedural-macros-for-generating-code-from-attributes
2016-08-04 14:20:01 -05:00
#![stable(feature = "proc_macro_lib", since = "1.15.0")]
#![deny(missing_docs)]
#![doc(
html_playground_url = "https://play.rust-lang.org/",
issue_tracker_base_url = "https://github.com/rust-lang/rust/issues/",
test(no_crate_inject, attr(deny(warnings))),
test(attr(allow(dead_code, deprecated, unused_variables, unused_mut)))
)]
2022-03-25 10:19:02 -05:00
// This library is copied into rust-analyzer to allow loading rustc compiled proc macros.
// Please avoid unstable features where possible to minimize the amount of changes necessary
// to make it compile with rust-analyzer on stable.
2020-11-19 14:01:48 -06:00
#![feature(rustc_allow_const_fn_unstable)]
#![feature(staged_api)]
#![feature(allow_internal_unstable)]
#![feature(decl_macro)]
#![feature(local_key_cell_methods)]
#![feature(maybe_uninit_write_slice)]
2020-04-22 14:45:35 -05:00
#![feature(negative_impls)]
#![feature(new_uninit)]
2020-05-31 20:09:25 -05:00
#![feature(restricted_std)]
#![feature(rustc_attrs)]
2020-04-22 14:45:35 -05:00
#![feature(min_specialization)]
#![feature(strict_provenance)]
2018-03-02 23:22:19 -06:00
#![recursion_limit = "256"]
#[unstable(feature = "proc_macro_internals", issue = "27812")]
#[doc(hidden)]
pub mod bridge;
mod diagnostic;
#[unstable(feature = "proc_macro_diagnostic", issue = "54140")]
2018-09-19 21:22:21 -05:00
pub use diagnostic::{Diagnostic, Level, MultiSpan};
2016-08-04 14:20:01 -05:00
use std::ops::{Range, RangeBounds};
use std::path::PathBuf;
use std::str::FromStr;
2022-08-08 19:14:43 -05:00
use std::{error, fmt};
2020-04-21 14:28:11 -05:00
/// Determines whether proc_macro has been made accessible to the currently
/// running program.
///
/// The proc_macro crate is only intended for use inside the implementation of
/// procedural macros. All the functions in this crate panic if invoked from
/// outside of a procedural macro, such as from a build script or unit test or
/// ordinary Rust binary.
///
/// With consideration for Rust libraries that are designed to support both
/// macro and non-macro use cases, `proc_macro::is_available()` provides a
/// non-panicking way to detect whether the infrastructure required to use the
/// API of proc_macro is presently available. Returns true if invoked from
/// inside of a procedural macro, false if invoked from any other binary.
2021-10-10 07:06:49 -05:00
#[stable(feature = "proc_macro_is_available", since = "1.57.0")]
2020-04-21 14:28:11 -05:00
pub fn is_available() -> bool {
bridge::client::is_available()
2020-04-21 14:28:11 -05:00
}
/// The main type provided by this crate, representing an abstract stream of
/// tokens, or, more specifically, a sequence of token trees.
/// The type provide interfaces for iterating over those token trees and, conversely,
/// collecting a number of token trees into one stream.
///
/// This is both the input and output of `#[proc_macro]`, `#[proc_macro_attribute]`
/// and `#[proc_macro_derive]` definitions.
#[rustc_diagnostic_item = "TokenStream"]
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
#[derive(Clone)]
pub struct TokenStream(Option<bridge::client::TokenStream>);
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl !Send for TokenStream {}
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl !Sync for TokenStream {}
/// Error returned from `TokenStream::from_str`.
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
#[non_exhaustive]
2017-06-04 20:41:33 -05:00
#[derive(Debug)]
pub struct LexError;
#[stable(feature = "proc_macro_lexerror_impls", since = "1.44.0")]
impl fmt::Display for LexError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("cannot parse string into token stream")
}
}
#[stable(feature = "proc_macro_lexerror_impls", since = "1.44.0")]
impl error::Error for LexError {}
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl !Send for LexError {}
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl !Sync for LexError {}
/// Error returned from `TokenStream::expand_expr`.
#[unstable(feature = "proc_macro_expand", issue = "90765")]
#[non_exhaustive]
#[derive(Debug)]
pub struct ExpandError;
#[unstable(feature = "proc_macro_expand", issue = "90765")]
impl fmt::Display for ExpandError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("macro expansion failed")
}
}
#[unstable(feature = "proc_macro_expand", issue = "90765")]
impl error::Error for ExpandError {}
#[unstable(feature = "proc_macro_expand", issue = "90765")]
impl !Send for ExpandError {}
#[unstable(feature = "proc_macro_expand", issue = "90765")]
impl !Sync for ExpandError {}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
impl TokenStream {
/// Returns an empty `TokenStream` containing no token trees.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
pub fn new() -> TokenStream {
TokenStream(None)
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Checks if this `TokenStream` is empty.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn is_empty(&self) -> bool {
self.0.as_ref().map(|h| h.is_empty()).unwrap_or(true)
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Parses this `TokenStream` as an expression and attempts to expand any
/// macros within it. Returns the expanded `TokenStream`.
///
/// Currently only expressions expanding to literals will succeed, although
/// this may be relaxed in the future.
///
/// NOTE: In error conditions, `expand_expr` may leave macros unexpanded,
/// report an error, failing compilation, and/or return an `Err(..)`. The
/// specific behavior for any error condition, and what conditions are
/// considered errors, is unspecified and may change in the future.
#[unstable(feature = "proc_macro_expand", issue = "90765")]
pub fn expand_expr(&self) -> Result<TokenStream, ExpandError> {
let stream = self.0.as_ref().ok_or(ExpandError)?;
match bridge::client::TokenStream::expand_expr(stream) {
Ok(stream) => Ok(TokenStream(Some(stream))),
Err(_) => Err(ExpandError),
}
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Attempts to break the string into tokens and parse those tokens into a token stream.
/// May fail for a number of reasons, for example, if the string contains unbalanced delimiters
/// or characters not existing in the language.
/// All tokens in the parsed stream get `Span::call_site()` spans.
///
2019-02-09 15:23:30 -06:00
/// NOTE: some errors may cause panics instead of returning `LexError`. We reserve the right to
/// change these errors into `LexError`s later.
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl FromStr for TokenStream {
type Err = LexError;
fn from_str(src: &str) -> Result<TokenStream, LexError> {
Ok(TokenStream(Some(bridge::client::TokenStream::from_str(src))))
}
}
// N.B., the bridge only provides `to_string`, implement `fmt::Display`
// based on it (the reverse of the usual relationship between the two).
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl ToString for TokenStream {
fn to_string(&self) -> String {
self.0.as_ref().map(|t| t.to_string()).unwrap_or_default()
}
}
/// Prints the token stream as a string that is supposed to be losslessly convertible back
/// into the same token stream (modulo spans), except for possibly `TokenTree::Group`s
/// with `Delimiter::None` delimiters and negative numeric literals.
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl fmt::Display for TokenStream {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.to_string())
}
}
/// Prints token in a form convenient for debugging.
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl fmt::Debug for TokenStream {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("TokenStream ")?;
f.debug_list().entries(self.clone()).finish()
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
}
2017-06-04 20:41:33 -05:00
#[stable(feature = "proc_macro_token_stream_default", since = "1.45.0")]
impl Default for TokenStream {
fn default() -> Self {
TokenStream::new()
}
}
#[unstable(feature = "proc_macro_quote", issue = "54722")]
pub use quote::{quote, quote_span};
fn tree_to_bridge_tree(
tree: TokenTree,
) -> bridge::TokenTree<bridge::client::TokenStream, bridge::client::Span, bridge::client::Symbol> {
match tree {
TokenTree::Group(tt) => bridge::TokenTree::Group(tt.0),
TokenTree::Punct(tt) => bridge::TokenTree::Punct(tt.0),
TokenTree::Ident(tt) => bridge::TokenTree::Ident(tt.0),
TokenTree::Literal(tt) => bridge::TokenTree::Literal(tt.0),
}
}
/// Creates a token stream containing a single token tree.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl From<TokenTree> for TokenStream {
fn from(tree: TokenTree) -> TokenStream {
TokenStream(Some(bridge::client::TokenStream::from_token_tree(tree_to_bridge_tree(tree))))
}
}
/// Non-generic helper for implementing `FromIterator<TokenTree>` and
/// `Extend<TokenTree>` with less monomorphization in calling crates.
2022-06-17 21:10:07 -05:00
struct ConcatTreesHelper {
trees: Vec<
bridge::TokenTree<
bridge::client::TokenStream,
bridge::client::Span,
bridge::client::Symbol,
>,
>,
}
2022-06-17 21:10:07 -05:00
impl ConcatTreesHelper {
fn new(capacity: usize) -> Self {
2022-06-17 21:10:07 -05:00
ConcatTreesHelper { trees: Vec::with_capacity(capacity) }
}
fn push(&mut self, tree: TokenTree) {
self.trees.push(tree_to_bridge_tree(tree));
}
fn build(self) -> TokenStream {
if self.trees.is_empty() {
TokenStream(None)
} else {
TokenStream(Some(bridge::client::TokenStream::concat_trees(None, self.trees)))
}
}
2022-06-17 21:10:07 -05:00
fn append_to(self, stream: &mut TokenStream) {
if self.trees.is_empty() {
return;
}
stream.0 = Some(bridge::client::TokenStream::concat_trees(stream.0.take(), self.trees))
}
}
/// Non-generic helper for implementing `FromIterator<TokenStream>` and
/// `Extend<TokenStream>` with less monomorphization in calling crates.
2022-06-17 21:10:07 -05:00
struct ConcatStreamsHelper {
streams: Vec<bridge::client::TokenStream>,
}
2022-06-17 21:10:07 -05:00
impl ConcatStreamsHelper {
fn new(capacity: usize) -> Self {
2022-06-17 21:10:07 -05:00
ConcatStreamsHelper { streams: Vec::with_capacity(capacity) }
}
fn push(&mut self, stream: TokenStream) {
if let Some(stream) = stream.0 {
self.streams.push(stream);
}
}
fn build(mut self) -> TokenStream {
if self.streams.len() <= 1 {
TokenStream(self.streams.pop())
} else {
TokenStream(Some(bridge::client::TokenStream::concat_streams(None, self.streams)))
}
}
2022-06-17 21:10:07 -05:00
fn append_to(mut self, stream: &mut TokenStream) {
if self.streams.is_empty() {
return;
}
let base = stream.0.take();
if base.is_none() && self.streams.len() == 1 {
stream.0 = self.streams.pop();
} else {
stream.0 = Some(bridge::client::TokenStream::concat_streams(base, self.streams));
}
}
}
/// Collects a number of token trees into a single stream.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2022-08-08 19:14:43 -05:00
impl FromIterator<TokenTree> for TokenStream {
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
fn from_iter<I: IntoIterator<Item = TokenTree>>(trees: I) -> Self {
let iter = trees.into_iter();
2022-06-17 21:10:07 -05:00
let mut builder = ConcatTreesHelper::new(iter.size_hint().0);
iter.for_each(|tree| builder.push(tree));
builder.build()
}
}
/// A "flattening" operation on token streams, collects token trees
/// from multiple token streams into a single stream.
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
2022-08-08 19:14:43 -05:00
impl FromIterator<TokenStream> for TokenStream {
fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
let iter = streams.into_iter();
2022-06-17 21:10:07 -05:00
let mut builder = ConcatStreamsHelper::new(iter.size_hint().0);
iter.for_each(|stream| builder.push(stream));
builder.build()
}
}
2018-08-12 14:45:48 -05:00
#[stable(feature = "token_stream_extend", since = "1.30.0")]
impl Extend<TokenTree> for TokenStream {
fn extend<I: IntoIterator<Item = TokenTree>>(&mut self, trees: I) {
let iter = trees.into_iter();
2022-06-17 21:10:07 -05:00
let mut builder = ConcatTreesHelper::new(iter.size_hint().0);
iter.for_each(|tree| builder.push(tree));
2022-06-17 21:10:07 -05:00
builder.append_to(self);
2018-08-12 14:45:48 -05:00
}
}
#[stable(feature = "token_stream_extend", since = "1.30.0")]
impl Extend<TokenStream> for TokenStream {
fn extend<I: IntoIterator<Item = TokenStream>>(&mut self, streams: I) {
let iter = streams.into_iter();
2022-06-17 21:10:07 -05:00
let mut builder = ConcatStreamsHelper::new(iter.size_hint().0);
iter.for_each(|stream| builder.push(stream));
2022-06-17 21:10:07 -05:00
builder.append_to(self);
2018-08-12 14:45:48 -05:00
}
}
/// Public implementation details for the `TokenStream` type, such as iterators.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub mod token_stream {
2019-02-03 12:55:40 -06:00
use crate::{bridge, Group, Ident, Literal, Punct, TokenStream, TokenTree};
/// An iterator over `TokenStream`'s `TokenTree`s.
/// The iteration is "shallow", e.g., the iterator doesn't recurse into delimited groups,
/// and returns whole groups as token trees.
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
#[derive(Clone)]
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
pub struct IntoIter(
std::vec::IntoIter<
bridge::TokenTree<
bridge::client::TokenStream,
bridge::client::Span,
bridge::client::Symbol,
>,
>,
);
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
impl Iterator for IntoIter {
type Item = TokenTree;
fn next(&mut self) -> Option<TokenTree> {
self.0.next().map(|tree| match tree {
bridge::TokenTree::Group(tt) => TokenTree::Group(Group(tt)),
bridge::TokenTree::Punct(tt) => TokenTree::Punct(Punct(tt)),
bridge::TokenTree::Ident(tt) => TokenTree::Ident(Ident(tt)),
bridge::TokenTree::Literal(tt) => TokenTree::Literal(Literal(tt)),
})
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.0.size_hint()
}
fn count(self) -> usize {
self.0.count()
}
}
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
impl IntoIterator for TokenStream {
type Item = TokenTree;
type IntoIter = IntoIter;
fn into_iter(self) -> IntoIter {
2022-06-17 21:10:07 -05:00
IntoIter(self.0.map(|v| v.into_trees()).unwrap_or_default().into_iter())
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
}
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// `quote!(..)` accepts arbitrary tokens and expands into a `TokenStream` describing the input.
2021-08-22 07:46:15 -05:00
/// For example, `quote!(a + b)` will produce an expression, that, when evaluated, constructs
/// the `TokenStream` `[Ident("a"), Punct('+', Alone), Ident("b")]`.
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// Unquoting is done with `$`, and works by taking the single next ident as the unquoted term.
/// To quote `$` itself, use `$$`.
#[unstable(feature = "proc_macro_quote", issue = "54722")]
Implement span quoting for proc-macros This PR implements span quoting, allowing proc-macros to produce spans pointing *into their own crate*. This is used by the unstable `proc_macro::quote!` macro, allowing us to get error messages like this: ``` error[E0412]: cannot find type `MissingType` in this scope --> $DIR/auxiliary/span-from-proc-macro.rs:37:20 | LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream { | ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]` ... LL | field: MissingType | ^^^^^^^^^^^ not found in this scope | ::: $DIR/span-from-proc-macro.rs:8:1 | LL | #[error_from_attribute] | ----------------------- in this macro invocation ``` Here, `MissingType` occurs inside the implementation of the proc-macro `#[error_from_attribute]`. Previosuly, this would always result in a span pointing at `#[error_from_attribute]` This will make many proc-macro-related error message much more useful - when a proc-macro generates code containing an error, users will get an error message pointing directly at that code (within the macro definition), instead of always getting a span pointing at the macro invocation site. This is implemented as follows: * When a proc-macro crate is being *compiled*, it causes the `quote!` macro to get run. This saves all of the sapns in the input to `quote!` into the metadata of *the proc-macro-crate* (which we are currently compiling). The `quote!` macro then expands to a call to `proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an opaque identifier for the span in the crate metadata. * When the same proc-macro crate is *run* (e.g. it is loaded from disk and invoked by some consumer crate), the call to `proc_macro::Span::recover_proc_macro_span` causes us to load the span from the proc-macro crate's metadata. The proc-macro then produces a `TokenStream` containing a `Span` pointing into the proc-macro crate itself. The recursive nature of 'quote!' can be difficult to understand at first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows the output of the `quote!` macro, which should make this eaier to understand. This PR also supports custom quoting spans in custom quote macros (e.g. the `quote` crate). All span quoting goes through the `proc_macro::quote_span` method, which can be called by a custom quote macro to perform span quoting. An example of this usage is provided in `src/test/ui/proc-macro/auxiliary/custom-quote.rs` Custom quoting currently has a few limitations: In order to quote a span, we need to generate a call to `proc_macro::Span::recover_proc_macro_span`. However, proc-macros support renaming the `proc_macro` crate, so we can't simply hardcode this path. Previously, the `quote_span` method used the path `crate::Span` - however, this only works when it is called by the builtin `quote!` macro in the same crate. To support being called from arbitrary crates, we need access to the name of the `proc_macro` crate to generate a path. This PR adds an additional argument to `quote_span` to specify the name of the `proc_macro` crate. Howver, this feels kind of hacky, and we may want to change this before stabilizing anything quote-related. Additionally, using `quote_span` currently requires enabling the `proc_macro_internals` feature. The builtin `quote!` macro has an `#[allow_internal_unstable]` attribute, but this won't work for custom quote implementations. This will likely require some additional tricks to apply `allow_internal_unstable` to the span of `proc_macro::Span::recover_proc_macro_span`.
2020-08-02 18:52:16 -05:00
#[allow_internal_unstable(proc_macro_def_site, proc_macro_internals)]
2019-09-25 07:42:46 -05:00
#[rustc_builtin_macro]
pub macro quote($($t:tt)*) {
/* compiler built-in */
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
#[unstable(feature = "proc_macro_internals", issue = "27812")]
#[doc(hidden)]
mod quote;
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// A region of source code, along with macro expansion information.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
#[derive(Copy, Clone)]
pub struct Span(bridge::client::Span);
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl !Send for Span {}
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl !Sync for Span {}
macro_rules! diagnostic_method {
2020-04-22 15:16:43 -05:00
($name:ident, $level:expr) => {
2019-02-09 15:23:30 -06:00
/// Creates a new `Diagnostic` with the given `message` at the span
/// `self`.
#[unstable(feature = "proc_macro_diagnostic", issue = "54140")]
pub fn $name<T: Into<String>>(self, message: T) -> Diagnostic {
Diagnostic::spanned(self, $level, message)
}
2020-04-22 15:16:43 -05:00
};
}
impl Span {
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// A span that resolves at the macro definition site.
2018-10-01 12:47:18 -05:00
#[unstable(feature = "proc_macro_def_site", issue = "54724")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn def_site() -> Span {
Span(bridge::client::Span::def_site())
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// The span of the invocation of the current procedural macro.
/// Identifiers created with this span will be resolved as if they were written
/// directly at the macro call location (call-site hygiene) and other code
/// at the macro call site will be able to refer to them as well.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
pub fn call_site() -> Span {
Span(bridge::client::Span::call_site())
}
/// A span that represents `macro_rules` hygiene, and sometimes resolves at the macro
/// definition site (local variables, labels, `$crate`) and sometimes at the macro
/// call site (everything else).
/// The span location is taken from the call-site.
2020-01-31 15:18:14 -06:00
#[stable(feature = "proc_macro_mixed_site", since = "1.45.0")]
pub fn mixed_site() -> Span {
Span(bridge::client::Span::mixed_site())
}
2017-08-01 20:05:08 -05:00
/// The original source file into which this span points.
#[unstable(feature = "proc_macro_span", issue = "54725")]
2017-08-01 20:05:08 -05:00
pub fn source_file(&self) -> SourceFile {
SourceFile(self.0.source_file())
2017-08-01 20:05:08 -05:00
}
/// The `Span` for the tokens in the previous macro expansion from which
/// `self` was generated from, if any.
#[unstable(feature = "proc_macro_span", issue = "54725")]
pub fn parent(&self) -> Option<Span> {
2018-04-26 17:28:34 -05:00
self.0.parent().map(Span)
}
/// The span for the origin source code that `self` was generated from. If
/// this `Span` wasn't generated from other macro expansions then the return
/// value is the same as `*self`.
#[unstable(feature = "proc_macro_span", issue = "54725")]
pub fn source(&self) -> Span {
Span(self.0.source())
}
/// Returns the span's byte position range in the source file.
#[unstable(feature = "proc_macro_span", issue = "54725")]
pub fn byte_range(&self) -> Range<usize> {
self.0.byte_range()
}
2021-06-09 07:37:10 -05:00
/// Creates an empty span pointing to directly before this span.
#[unstable(feature = "proc_macro_span", issue = "54725")]
pub fn start(&self) -> Span {
Span(self.0.start())
2021-06-09 07:37:10 -05:00
}
/// Creates an empty span pointing to directly after this span.
#[unstable(feature = "proc_macro_span", issue = "54725")]
pub fn end(&self) -> Span {
Span(self.0.end())
2021-06-09 07:37:10 -05:00
}
2023-05-14 17:30:18 -05:00
/// The one-indexed line of the source file where the span starts.
///
/// To obtain the line of the span's end, use `span.end().line()`.
#[unstable(feature = "proc_macro_span", issue = "54725")]
pub fn line(&self) -> usize {
self.0.line()
}
/// The one-indexed column of the source file where the span starts.
///
/// To obtain the column of the span's end, use `span.end().column()`.
#[unstable(feature = "proc_macro_span", issue = "54725")]
pub fn column(&self) -> usize {
self.0.column()
}
2021-06-09 07:37:10 -05:00
2019-02-09 15:23:30 -06:00
/// Creates a new span encompassing `self` and `other`.
2017-08-01 20:05:08 -05:00
///
/// Returns `None` if `self` and `other` are from different files.
#[unstable(feature = "proc_macro_span", issue = "54725")]
2017-08-01 20:05:08 -05:00
pub fn join(&self, other: Span) -> Option<Span> {
self.0.join(other.0).map(Span)
2017-08-01 20:05:08 -05:00
}
/// Creates a new span with the same line/column information as `self` but
/// that resolves symbols as though it were at `other`.
#[stable(feature = "proc_macro_span_resolved_at", since = "1.45.0")]
pub fn resolved_at(&self, other: Span) -> Span {
Span(self.0.resolved_at(other.0))
}
/// Creates a new span with the same name resolution behavior as `self` but
/// with the line/column information of `other`.
#[stable(feature = "proc_macro_span_located_at", since = "1.45.0")]
pub fn located_at(&self, other: Span) -> Span {
other.resolved_at(*self)
}
2022-09-17 18:15:30 -05:00
/// Compares two spans to see if they're equal.
#[unstable(feature = "proc_macro_span", issue = "54725")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn eq(&self, other: &Span) -> bool {
self.0 == other.0
}
/// Returns the source text behind a span. This preserves the original source
/// code, including spaces and comments. It only returns a result if the span
/// corresponds to real source code.
///
/// Note: The observable result of a macro should only rely on the tokens and
/// not on this source text. The result of this function is a best effort to
/// be used for diagnostics only.
2022-10-31 09:43:15 -05:00
#[stable(feature = "proc_macro_source_text", since = "1.66.0")]
pub fn source_text(&self) -> Option<String> {
self.0.source_text()
}
Implement span quoting for proc-macros This PR implements span quoting, allowing proc-macros to produce spans pointing *into their own crate*. This is used by the unstable `proc_macro::quote!` macro, allowing us to get error messages like this: ``` error[E0412]: cannot find type `MissingType` in this scope --> $DIR/auxiliary/span-from-proc-macro.rs:37:20 | LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream { | ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]` ... LL | field: MissingType | ^^^^^^^^^^^ not found in this scope | ::: $DIR/span-from-proc-macro.rs:8:1 | LL | #[error_from_attribute] | ----------------------- in this macro invocation ``` Here, `MissingType` occurs inside the implementation of the proc-macro `#[error_from_attribute]`. Previosuly, this would always result in a span pointing at `#[error_from_attribute]` This will make many proc-macro-related error message much more useful - when a proc-macro generates code containing an error, users will get an error message pointing directly at that code (within the macro definition), instead of always getting a span pointing at the macro invocation site. This is implemented as follows: * When a proc-macro crate is being *compiled*, it causes the `quote!` macro to get run. This saves all of the sapns in the input to `quote!` into the metadata of *the proc-macro-crate* (which we are currently compiling). The `quote!` macro then expands to a call to `proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an opaque identifier for the span in the crate metadata. * When the same proc-macro crate is *run* (e.g. it is loaded from disk and invoked by some consumer crate), the call to `proc_macro::Span::recover_proc_macro_span` causes us to load the span from the proc-macro crate's metadata. The proc-macro then produces a `TokenStream` containing a `Span` pointing into the proc-macro crate itself. The recursive nature of 'quote!' can be difficult to understand at first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows the output of the `quote!` macro, which should make this eaier to understand. This PR also supports custom quoting spans in custom quote macros (e.g. the `quote` crate). All span quoting goes through the `proc_macro::quote_span` method, which can be called by a custom quote macro to perform span quoting. An example of this usage is provided in `src/test/ui/proc-macro/auxiliary/custom-quote.rs` Custom quoting currently has a few limitations: In order to quote a span, we need to generate a call to `proc_macro::Span::recover_proc_macro_span`. However, proc-macros support renaming the `proc_macro` crate, so we can't simply hardcode this path. Previously, the `quote_span` method used the path `crate::Span` - however, this only works when it is called by the builtin `quote!` macro in the same crate. To support being called from arbitrary crates, we need access to the name of the `proc_macro` crate to generate a path. This PR adds an additional argument to `quote_span` to specify the name of the `proc_macro` crate. Howver, this feels kind of hacky, and we may want to change this before stabilizing anything quote-related. Additionally, using `quote_span` currently requires enabling the `proc_macro_internals` feature. The builtin `quote!` macro has an `#[allow_internal_unstable]` attribute, but this won't work for custom quote implementations. This will likely require some additional tricks to apply `allow_internal_unstable` to the span of `proc_macro::Span::recover_proc_macro_span`.
2020-08-02 18:52:16 -05:00
// Used by the implementation of `Span::quote`
#[doc(hidden)]
#[unstable(feature = "proc_macro_internals", issue = "27812")]
pub fn save_span(&self) -> usize {
self.0.save_span()
}
// Used by the implementation of `Span::quote`
#[doc(hidden)]
#[unstable(feature = "proc_macro_internals", issue = "27812")]
pub fn recover_proc_macro_span(id: usize) -> Span {
Span(bridge::client::Span::recover_proc_macro_span(id))
}
diagnostic_method!(error, Level::Error);
diagnostic_method!(warning, Level::Warning);
diagnostic_method!(note, Level::Note);
diagnostic_method!(help, Level::Help);
}
/// Prints a span in a form convenient for debugging.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl fmt::Debug for Span {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.0.fmt(f)
}
}
2017-08-01 20:05:08 -05:00
/// The source file of a given `Span`.
#[unstable(feature = "proc_macro_span", issue = "54725")]
2017-08-01 20:05:08 -05:00
#[derive(Clone)]
pub struct SourceFile(bridge::client::SourceFile);
2018-03-01 19:42:22 -06:00
2017-08-01 20:05:08 -05:00
impl SourceFile {
2019-02-09 15:23:30 -06:00
/// Gets the path to this source file.
2017-08-01 20:05:08 -05:00
///
/// ### Note
/// If the code span associated with this `SourceFile` was generated by an external macro, this
/// macro, this might not be an actual path on the filesystem. Use [`is_real`] to check.
2017-08-01 20:05:08 -05:00
///
/// Also note that even if `is_real` returns `true`, if `--remap-path-prefix` was passed on
/// the command line, the path as given might not actually be valid.
2017-08-01 20:05:08 -05:00
///
2020-08-22 15:29:43 -05:00
/// [`is_real`]: Self::is_real
#[unstable(feature = "proc_macro_span", issue = "54725")]
pub fn path(&self) -> PathBuf {
PathBuf::from(self.0.path())
2017-08-01 20:05:08 -05:00
}
/// Returns `true` if this source file is a real source file, and not generated by an external
/// macro's expansion.
#[unstable(feature = "proc_macro_span", issue = "54725")]
2017-08-01 20:05:08 -05:00
pub fn is_real(&self) -> bool {
// This is a hack until intercrate spans are implemented and we can have real source files
// for spans generated in external macros.
// https://github.com/rust-lang/rust/pull/43604#issuecomment-333334368
self.0.is_real()
2017-08-01 20:05:08 -05:00
}
}
#[unstable(feature = "proc_macro_span", issue = "54725")]
2017-08-01 20:05:08 -05:00
impl fmt::Debug for SourceFile {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2017-08-01 20:05:08 -05:00
f.debug_struct("SourceFile")
.field("path", &self.path())
2017-08-01 20:05:08 -05:00
.field("is_real", &self.is_real())
.finish()
}
}
#[unstable(feature = "proc_macro_span", issue = "54725")]
2017-08-01 20:05:08 -05:00
impl PartialEq for SourceFile {
fn eq(&self, other: &Self) -> bool {
self.0.eq(&other.0)
2017-08-01 20:05:08 -05:00
}
}
#[unstable(feature = "proc_macro_span", issue = "54725")]
2017-08-01 20:05:08 -05:00
impl Eq for SourceFile {}
/// A single token or a delimited sequence of token trees (e.g., `[1, (), ..]`).
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
#[derive(Clone)]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub enum TokenTree {
/// A token stream surrounded by bracket delimiters.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
Group(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Group),
/// An identifier.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
Ident(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Ident),
/// A single punctuation character (`+`, `,`, `$`, etc.).
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
Punct(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Punct),
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
Literal(#[stable(feature = "proc_macro_lib2", since = "1.29.0")] Literal),
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl !Send for TokenTree {}
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl !Sync for TokenTree {}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
impl TokenTree {
/// Returns the span of this tree, delegating to the `span` method of
/// the contained token or a delimited stream.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn span(&self) -> Span {
match *self {
TokenTree::Group(ref t) => t.span(),
2018-05-05 13:09:41 -05:00
TokenTree::Ident(ref t) => t.span(),
TokenTree::Punct(ref t) => t.span(),
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
TokenTree::Literal(ref t) => t.span(),
}
}
/// Configures the span for *only this token*.
///
/// Note that if this token is a `Group` then this method will not configure
/// the span of each of the internal tokens, this will simply delegate to
/// the `set_span` method of each variant.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn set_span(&mut self, span: Span) {
match *self {
TokenTree::Group(ref mut t) => t.set_span(span),
2018-05-05 13:09:41 -05:00
TokenTree::Ident(ref mut t) => t.set_span(span),
TokenTree::Punct(ref mut t) => t.set_span(span),
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
TokenTree::Literal(ref mut t) => t.set_span(span),
}
}
}
2018-11-12 12:05:20 -06:00
/// Prints token tree in a form convenient for debugging.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl fmt::Debug for TokenTree {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Each of these has the name in the struct type in the derived debug,
// so don't bother with an extra layer of indirection
match *self {
TokenTree::Group(ref tt) => tt.fmt(f),
2018-05-05 13:09:41 -05:00
TokenTree::Ident(ref tt) => tt.fmt(f),
TokenTree::Punct(ref tt) => tt.fmt(f),
TokenTree::Literal(ref tt) => tt.fmt(f),
}
}
}
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
impl From<Group> for TokenTree {
fn from(g: Group) -> TokenTree {
TokenTree::Group(g)
}
}
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2018-05-05 13:09:41 -05:00
impl From<Ident> for TokenTree {
fn from(g: Ident) -> TokenTree {
TokenTree::Ident(g)
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
}
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2018-05-05 13:09:41 -05:00
impl From<Punct> for TokenTree {
fn from(g: Punct) -> TokenTree {
TokenTree::Punct(g)
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
}
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
impl From<Literal> for TokenTree {
fn from(g: Literal) -> TokenTree {
TokenTree::Literal(g)
}
}
// N.B., the bridge only provides `to_string`, implement `fmt::Display`
// based on it (the reverse of the usual relationship between the two).
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl ToString for TokenTree {
fn to_string(&self) -> String {
match *self {
TokenTree::Group(ref t) => t.to_string(),
TokenTree::Ident(ref t) => t.to_string(),
TokenTree::Punct(ref t) => t.to_string(),
TokenTree::Literal(ref t) => t.to_string(),
}
}
}
/// Prints the token tree as a string that is supposed to be losslessly convertible back
/// into the same token tree (modulo spans), except for possibly `TokenTree::Group`s
/// with `Delimiter::None` delimiters and negative numeric literals.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl fmt::Display for TokenTree {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.to_string())
}
}
/// A delimited token stream.
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// A `Group` internally contains a `TokenStream` which is surrounded by `Delimiter`s.
#[derive(Clone)]
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
pub struct Group(bridge::Group<bridge::client::TokenStream, bridge::client::Span>);
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl !Send for Group {}
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl !Sync for Group {}
/// Describes how a sequence of token trees is delimited.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
pub enum Delimiter {
/// `( ... )`
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
Parenthesis,
/// `{ ... }`
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
Brace,
/// `[ ... ]`
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
Bracket,
/// `Ø ... Ø`
/// An invisible delimiter, that may, for example, appear around tokens coming from a
/// "macro variable" `$var`. It is important to preserve operator priorities in cases like
/// `$var * 3` where `$var` is `1 + 2`.
/// Invisible delimiters might not survive roundtrip of a token stream through a string.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
None,
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
impl Group {
/// Creates a new `Group` with the given delimiter and token stream.
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// This constructor will set the span for this group to
/// `Span::call_site()`. To change the span you can use the `set_span`
/// method below.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn new(delimiter: Delimiter, stream: TokenStream) -> Group {
Group(bridge::Group {
delimiter,
stream: stream.0,
span: bridge::DelimSpan::from_single(Span::call_site().0),
})
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// Returns the delimiter of this `Group`
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn delimiter(&self) -> Delimiter {
self.0.delimiter
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// Returns the `TokenStream` of tokens that are delimited in this `Group`.
///
/// Note that the returned token stream does not include the delimiter
/// returned above.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn stream(&self) -> TokenStream {
TokenStream(self.0.stream.clone())
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Returns the span for the delimiters of this token stream, spanning the
/// entire `Group`.
///
/// ```text
/// pub fn span(&self) -> Span {
/// ^^^^^^^
/// ```
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn span(&self) -> Span {
Span(self.0.span.entire)
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Returns the span pointing to the opening delimiter of this group.
///
/// ```text
/// pub fn span_open(&self) -> Span {
/// ^
/// ```
#[stable(feature = "proc_macro_group_span", since = "1.55.0")]
pub fn span_open(&self) -> Span {
Span(self.0.span.open)
}
/// Returns the span pointing to the closing delimiter of this group.
///
/// ```text
/// pub fn span_close(&self) -> Span {
/// ^
/// ```
#[stable(feature = "proc_macro_group_span", since = "1.55.0")]
pub fn span_close(&self) -> Span {
Span(self.0.span.close)
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// Configures the span for this `Group`'s delimiters, but not its internal
/// tokens.
///
/// This method will **not** set the span of all the internal tokens spanned
/// by this group, but rather it will only set the span of the delimiter
/// tokens at the level of the `Group`.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn set_span(&mut self, span: Span) {
self.0.span = bridge::DelimSpan::from_single(span.0);
}
}
// N.B., the bridge only provides `to_string`, implement `fmt::Display`
// based on it (the reverse of the usual relationship between the two).
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl ToString for Group {
fn to_string(&self) -> String {
TokenStream::from(TokenTree::from(self.clone())).to_string()
}
}
/// Prints the group as a string that should be losslessly convertible back
/// into the same group (modulo spans), except for possibly `TokenTree::Group`s
/// with `Delimiter::None` delimiters.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
impl fmt::Display for Group {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.to_string())
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
}
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl fmt::Debug for Group {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Group")
.field("delimiter", &self.delimiter())
.field("stream", &self.stream())
.field("span", &self.span())
.finish()
}
}
2021-06-20 15:19:47 -05:00
/// A `Punct` is a single punctuation character such as `+`, `-` or `#`.
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
2018-11-12 12:05:20 -06:00
/// Multi-character operators like `+=` are represented as two instances of `Punct` with different
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// forms of `Spacing` returned.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
#[derive(Clone)]
pub struct Punct(bridge::Punct<bridge::client::Span>);
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2018-05-05 13:09:41 -05:00
impl !Send for Punct {}
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2018-05-05 13:09:41 -05:00
impl !Sync for Punct {}
2021-06-20 15:19:47 -05:00
/// Describes whether a `Punct` is followed immediately by another `Punct` ([`Spacing::Joint`]) or
/// by a different token or whitespace ([`Spacing::Alone`]).
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2017-06-04 20:41:33 -05:00
pub enum Spacing {
2021-06-20 15:19:47 -05:00
/// A `Punct` is not immediately followed by another `Punct`.
/// E.g. `+` is `Alone` in `+ =`, `+ident` and `+()`.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
Alone,
2021-06-20 15:19:47 -05:00
/// A `Punct` is immediately followed by another `Punct`.
/// E.g. `+` is `Joint` in `+=` and `++`.
///
/// Additionally, single quote `'` can join with identifiers to form lifetimes: `'ident`.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
Joint,
}
2018-05-05 13:09:41 -05:00
impl Punct {
/// Creates a new `Punct` from the given character and spacing.
/// The `ch` argument must be a valid punctuation character permitted by the language,
/// otherwise the function will panic.
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
2018-05-05 13:09:41 -05:00
/// The returned `Punct` will have the default span of `Span::call_site()`
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// which can be further configured with the `set_span` method below.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2018-05-05 13:09:41 -05:00
pub fn new(ch: char, spacing: Spacing) -> Punct {
const LEGAL_CHARS: &[char] = &[
'=', '<', '>', '!', '~', '+', '-', '*', '/', '%', '^', '&', '|', '@', '.', ',', ';',
':', '#', '$', '?', '\'',
];
if !LEGAL_CHARS.contains(&ch) {
panic!("unsupported character `{:?}`", ch);
}
Punct(bridge::Punct {
ch: ch as u8,
joint: spacing == Spacing::Joint,
span: Span::call_site().0,
})
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Returns the value of this punctuation character as `char`.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2018-05-05 13:09:41 -05:00
pub fn as_char(&self) -> char {
self.0.ch as char
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Returns the spacing of this punctuation character, indicating whether it's immediately
2018-05-05 13:09:41 -05:00
/// followed by another `Punct` in the token stream, so they can potentially be combined into
2018-11-12 12:05:20 -06:00
/// a multi-character operator (`Joint`), or it's followed by some other token or whitespace
/// (`Alone`) so the operator has certainly ended.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn spacing(&self) -> Spacing {
if self.0.joint { Spacing::Joint } else { Spacing::Alone }
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Returns the span for this punctuation character.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn span(&self) -> Span {
Span(self.0.span)
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Configure the span for this punctuation character.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn set_span(&mut self, span: Span) {
self.0.span = span.0;
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
}
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl ToString for Punct {
fn to_string(&self) -> String {
self.as_char().to_string()
}
}
/// Prints the punctuation character as a string that should be losslessly convertible
/// back into the same character.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2018-05-05 13:09:41 -05:00
impl fmt::Display for Punct {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{}", self.as_char())
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
}
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl fmt::Debug for Punct {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Punct")
.field("ch", &self.as_char())
.field("spacing", &self.spacing())
.field("span", &self.span())
.finish()
}
}
#[stable(feature = "proc_macro_punct_eq", since = "1.50.0")]
impl PartialEq<char> for Punct {
fn eq(&self, rhs: &char) -> bool {
self.as_char() == *rhs
}
}
#[stable(feature = "proc_macro_punct_eq_flipped", since = "1.52.0")]
impl PartialEq<Punct> for char {
fn eq(&self, rhs: &Punct) -> bool {
*self == rhs.as_char()
}
}
/// An identifier (`ident`).
#[derive(Clone)]
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
pub struct Ident(bridge::Ident<bridge::client::Span, bridge::client::Symbol>);
2018-05-05 13:09:41 -05:00
impl Ident {
/// Creates a new `Ident` with the given `string` as well as the specified
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// `span`.
/// The `string` argument must be a valid identifier permitted by the
/// language (including keywords, e.g. `self` or `fn`). Otherwise, the function will panic.
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// Note that `span`, currently in rustc, configures the hygiene information
/// for this identifier.
///
/// As of this time `Span::call_site()` explicitly opts-in to "call-site" hygiene
/// meaning that identifiers created with this span will be resolved as if they were written
/// directly at the location of the macro call, and other code at the macro call site will be
/// able to refer to them as well.
///
/// Later spans like `Span::def_site()` will allow to opt-in to "definition-site" hygiene
/// meaning that identifiers created with this span will be resolved at the location of the
/// macro definition and other code at the macro call site will not be able to refer to them.
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// Due to the current importance of hygiene this constructor, unlike other
/// tokens, requires a `Span` to be specified at construction.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2018-05-05 13:09:41 -05:00
pub fn new(string: &str, span: Span) -> Ident {
Ident(bridge::Ident {
sym: bridge::client::Symbol::new_ident(string, false),
is_raw: false,
span: span.0,
})
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Same as `Ident::new`, but creates a raw identifier (`r#ident`).
/// The `string` argument be a valid identifier permitted by the language
/// (including keywords, e.g. `fn`). Keywords which are usable in path segments
/// (e.g. `self`, `super`) are not supported, and will cause a panic.
#[stable(feature = "proc_macro_raw_ident", since = "1.47.0")]
pub fn new_raw(string: &str, span: Span) -> Ident {
Ident(bridge::Ident {
sym: bridge::client::Symbol::new_ident(string, true),
is_raw: true,
span: span.0,
})
}
2018-05-05 13:09:41 -05:00
/// Returns the span of this `Ident`, encompassing the entire string returned
/// by [`to_string`](ToString::to_string).
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn span(&self) -> Span {
Span(self.0.span)
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
2018-05-05 13:09:41 -05:00
/// Configures the span of this `Ident`, possibly changing its hygiene context.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn set_span(&mut self, span: Span) {
self.0.span = span.0;
}
}
/// Converts the identifier to a string that should be losslessly convertible
/// back into the same identifier.
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl ToString for Ident {
fn to_string(&self) -> String {
self.0.sym.with(|sym| if self.0.is_raw { ["r#", sym].concat() } else { sym.to_owned() })
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
}
/// Prints the identifier as a string that should be losslessly convertible back
/// into the same identifier.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2018-05-05 13:09:41 -05:00
impl fmt::Display for Ident {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.0.is_raw {
f.write_str("r#")?;
}
fmt::Display::fmt(&self.0.sym, f)
}
}
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl fmt::Debug for Ident {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Ident")
.field("ident", &self.to_string())
.field("span", &self.span())
.finish()
}
}
/// A literal string (`"hello"`), byte string (`b"hello"`),
/// character (`'a'`), byte character (`b'a'`), an integer or floating point number
/// with or without a suffix (`1`, `1u8`, `2.3`, `2.3f32`).
2018-05-05 13:09:41 -05:00
/// Boolean literals like `true` and `false` do not belong here, they are `Ident`s.
#[derive(Clone)]
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
pub struct Literal(bridge::Literal<bridge::client::Span, bridge::client::Symbol>);
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
macro_rules! suffixed_int_literals {
($($name:ident => $kind:ident,)*) => ($(
/// Creates a new suffixed integer literal with the specified value.
///
/// This function will create an integer like `1u32` where the integer
/// value specified is the first part of the token and the integral is
/// also suffixed at the end.
/// Literals created from negative numbers might not survive round-trips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// Literals created through this method have the `Span::call_site()`
/// span by default, which can be configured with the `set_span` method
/// below.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn $name(n: $kind) -> Literal {
Literal(bridge::Literal {
kind: bridge::LitKind::Integer,
symbol: bridge::client::Symbol::new(&n.to_string()),
suffix: Some(bridge::client::Symbol::new(stringify!($kind))),
span: Span::call_site().0,
})
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
)*)
}
macro_rules! unsuffixed_int_literals {
($($name:ident => $kind:ident,)*) => ($(
/// Creates a new unsuffixed integer literal with the specified value.
///
/// This function will create an integer like `1` where the integer
/// value specified is the first part of the token. No suffix is
/// specified on this token, meaning that invocations like
/// `Literal::i8_unsuffixed(1)` are equivalent to
/// `Literal::u32_unsuffixed(1)`.
/// Literals created from negative numbers might not survive rountrips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// Literals created through this method have the `Span::call_site()`
/// span by default, which can be configured with the `set_span` method
/// below.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn $name(n: $kind) -> Literal {
Literal(bridge::Literal {
kind: bridge::LitKind::Integer,
symbol: bridge::client::Symbol::new(&n.to_string()),
suffix: None,
span: Span::call_site().0,
})
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
)*)
}
impl Literal {
fn new(kind: bridge::LitKind, value: &str, suffix: Option<&str>) -> Self {
Literal(bridge::Literal {
kind,
symbol: bridge::client::Symbol::new(value),
suffix: suffix.map(bridge::client::Symbol::new),
span: Span::call_site().0,
})
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
suffixed_int_literals! {
u8_suffixed => u8,
u16_suffixed => u16,
u32_suffixed => u32,
u64_suffixed => u64,
u128_suffixed => u128,
usize_suffixed => usize,
i8_suffixed => i8,
i16_suffixed => i16,
i32_suffixed => i32,
i64_suffixed => i64,
i128_suffixed => i128,
isize_suffixed => isize,
2017-06-04 20:41:33 -05:00
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
unsuffixed_int_literals! {
u8_unsuffixed => u8,
u16_unsuffixed => u16,
u32_unsuffixed => u32,
u64_unsuffixed => u64,
u128_unsuffixed => u128,
usize_unsuffixed => usize,
i8_unsuffixed => i8,
i16_unsuffixed => i16,
i32_unsuffixed => i32,
i64_unsuffixed => i64,
i128_unsuffixed => i128,
isize_unsuffixed => isize,
2017-06-04 20:41:33 -05:00
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// Creates a new unsuffixed floating-point literal.
///
/// This constructor is similar to those like `Literal::i8_unsuffixed` where
/// the float's value is emitted directly into the token but no suffix is
/// used, so it may be inferred to be a `f64` later in the compiler.
/// Literals created from negative numbers might not survive rountrips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn f32_unsuffixed(n: f32) -> Literal {
2017-06-04 20:41:33 -05:00
if !n.is_finite() {
panic!("Invalid float literal {n}");
2017-06-04 20:41:33 -05:00
}
let mut repr = n.to_string();
if !repr.contains('.') {
repr.push_str(".0");
}
Literal::new(bridge::LitKind::Float, &repr, None)
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// Creates a new suffixed floating-point literal.
///
2018-11-12 12:05:20 -06:00
/// This constructor will create a literal like `1.0f32` where the value
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// specified is the preceding part of the token and `f32` is the suffix of
/// the token. This token will always be inferred to be an `f32` in the
/// compiler.
/// Literals created from negative numbers might not survive rountrips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn f32_suffixed(n: f32) -> Literal {
2017-06-04 20:41:33 -05:00
if !n.is_finite() {
panic!("Invalid float literal {n}");
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
Literal::new(bridge::LitKind::Float, &n.to_string(), Some("f32"))
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// Creates a new unsuffixed floating-point literal.
///
/// This constructor is similar to those like `Literal::i8_unsuffixed` where
/// the float's value is emitted directly into the token but no suffix is
/// used, so it may be inferred to be a `f64` later in the compiler.
/// Literals created from negative numbers might not survive rountrips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn f64_unsuffixed(n: f64) -> Literal {
2017-06-04 20:41:33 -05:00
if !n.is_finite() {
panic!("Invalid float literal {n}");
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
let mut repr = n.to_string();
if !repr.contains('.') {
repr.push_str(".0");
}
Literal::new(bridge::LitKind::Float, &repr, None)
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Creates a new suffixed floating-point literal.
///
2018-11-12 12:05:20 -06:00
/// This constructor will create a literal like `1.0f64` where the value
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// specified is the preceding part of the token and `f64` is the suffix of
/// the token. This token will always be inferred to be an `f64` in the
/// compiler.
/// Literals created from negative numbers might not survive rountrips through
/// `TokenStream` or strings and may be broken into two tokens (`-` and positive literal).
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn f64_suffixed(n: f64) -> Literal {
if !n.is_finite() {
panic!("Invalid float literal {n}");
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
Literal::new(bridge::LitKind::Float, &n.to_string(), Some("f64"))
}
/// String literal.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
pub fn string(string: &str) -> Literal {
let quoted = format!("{:?}", string);
assert!(quoted.starts_with('"') && quoted.ends_with('"'));
let symbol = &quoted[1..quoted.len() - 1];
Literal::new(bridge::LitKind::Str, symbol, None)
}
/// Character literal.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
pub fn character(ch: char) -> Literal {
let quoted = format!("{:?}", ch);
assert!(quoted.starts_with('\'') && quoted.ends_with('\''));
let symbol = &quoted[1..quoted.len() - 1];
Literal::new(bridge::LitKind::Char, symbol, None)
2017-06-04 20:41:33 -05:00
}
/// Byte string literal.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
2017-06-04 20:41:33 -05:00
pub fn byte_string(bytes: &[u8]) -> Literal {
let string = bytes.escape_ascii().to_string();
Literal::new(bridge::LitKind::ByteStr, &string, None)
}
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
/// Returns the span encompassing this literal.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn span(&self) -> Span {
Span(self.0.span)
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
/// Configures the span associated for this literal.
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
pub fn set_span(&mut self, span: Span) {
self.0.span = span.0;
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
}
2018-11-20 23:12:30 -06:00
/// Returns a `Span` that is a subset of `self.span()` containing only the
/// source bytes in range `range`. Returns `None` if the would-be trimmed
/// span is outside the bounds of `self`.
// FIXME(SergioBenitez): check that the byte range starts and ends at a
// UTF-8 boundary of the source. otherwise, it's likely that a panic will
// occur elsewhere when the source text is printed.
// FIXME(SergioBenitez): there is no way for the user to know what
// `self.span()` actually maps to, so this method can currently only be
// called blindly. For example, `to_string()` for the character 'c' returns
// "'\u{63}'"; there is no way for the user to know whether the source text
// was 'c' or whether it was '\u{63}'.
#[unstable(feature = "proc_macro_span", issue = "54725")]
pub fn subspan<R: RangeBounds<usize>>(&self, range: R) -> Option<Span> {
self.0.span.subspan(range.start_bound().cloned(), range.end_bound().cloned()).map(Span)
}
fn with_symbol_and_suffix<R>(&self, f: impl FnOnce(&str, &str) -> R) -> R {
self.0.symbol.with(|symbol| match self.0.suffix {
Some(suffix) => suffix.with(|suffix| f(symbol, suffix)),
None => f(symbol, ""),
})
}
/// Invokes the callback with a `&[&str]` consisting of each part of the
/// literal's representation. This is done to allow the `ToString` and
/// `Display` implementations to borrow references to symbol values, and
/// both be optimized to reduce overhead.
fn with_stringify_parts<R>(&self, f: impl FnOnce(&[&str]) -> R) -> R {
/// Returns a string containing exactly `num` '#' characters.
/// Uses a 256-character source string literal which is always safe to
/// index with a `u8` index.
fn get_hashes_str(num: u8) -> &'static str {
const HASHES: &str = "\
################################################################\
################################################################\
################################################################\
################################################################\
";
const _: () = assert!(HASHES.len() == 256);
&HASHES[..num as usize]
}
self.with_symbol_and_suffix(|symbol, suffix| match self.0.kind {
bridge::LitKind::Byte => f(&["b'", symbol, "'", suffix]),
bridge::LitKind::Char => f(&["'", symbol, "'", suffix]),
bridge::LitKind::Str => f(&["\"", symbol, "\"", suffix]),
bridge::LitKind::StrRaw(n) => {
let hashes = get_hashes_str(n);
f(&["r", hashes, "\"", symbol, "\"", hashes, suffix])
}
bridge::LitKind::ByteStr => f(&["b\"", symbol, "\"", suffix]),
bridge::LitKind::ByteStrRaw(n) => {
let hashes = get_hashes_str(n);
f(&["br", hashes, "\"", symbol, "\"", hashes, suffix])
}
_ => f(&[symbol, suffix]),
})
}
}
2021-04-29 14:08:35 -05:00
/// Parse a single literal from its stringified representation.
///
/// In order to parse successfully, the input string must not contain anything
/// but the literal token. Specifically, it must not contain whitespace or
/// comments in addition to the literal.
///
/// The resulting literal token will have a `Span::call_site()` span.
///
/// NOTE: some errors may cause panics instead of returning `LexError`. We
/// reserve the right to change these errors into `LexError`s later.
#[stable(feature = "proc_macro_literal_parse", since = "1.54.0")]
impl FromStr for Literal {
type Err = LexError;
fn from_str(src: &str) -> Result<Self, LexError> {
match bridge::client::FreeFunctions::literal_from_str(src) {
2021-04-29 14:08:35 -05:00
Ok(literal) => Ok(Literal(literal)),
Err(()) => Err(LexError),
2021-04-29 14:08:35 -05:00
}
}
}
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl ToString for Literal {
fn to_string(&self) -> String {
self.with_stringify_parts(|parts| parts.concat())
2018-11-20 23:12:30 -06:00
}
}
/// Prints the literal as a string that should be losslessly convertible
/// back into the same literal (except for possible rounding for floating point literals).
rustc: Stabilize much of the `proc_macro` feature This commit stabilizes some of the `proc_macro` language feature as well as a number of APIs in the `proc_macro` crate as [previously discussed][1]. This means that on stable Rust you can now define custom procedural macros which operate as attributes attached to items or `macro_rules!`-like bang-style invocations. This extends the suite of currently stable procedural macros, custom derives, with custom attributes and custom bang macros. Note though that despite the stabilization in this commit procedural macros are still not usable on stable Rust. To stabilize that we'll need to stabilize at least part of the `use_extern_macros` feature. Currently you can define a procedural macro attribute but you can't import it to call it! A summary of the changes made in this PR (as well as the various consequences) is: * The `proc_macro` language and library features are now stable. * Other APIs not stabilized in the `proc_macro` crate are now named under a different feature, such as `proc_macro_diagnostic` or `proc_macro_span`. * A few checks in resolution for `proc_macro` being enabled have switched over to `use_extern_macros` being enabled. This means that code using `#![feature(proc_macro)]` today will likely need to move to `#![feature(use_extern_macros)]`. It's intended that this PR, once landed, will be followed up with an attempt to stabilize a small slice of `use_extern_macros` just for procedural macros to make this feature 100% usable on stable. [1]: https://internals.rust-lang.org/t/help-stabilize-a-subset-of-macros-2-0/7252
2018-07-03 17:36:31 -05:00
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
proc_macro: Reorganize public API This commit is a reorganization of the `proc_macro` crate's public user-facing API. This is the result of a number of discussions at the recent Rust All-Hands where we're hoping to get the `proc_macro` crate into ship shape for stabilization of a subset of its functionality in the Rust 2018 release. The reorganization here is motivated by experiences from the `proc-macro2`, `quote`, and `syn` crates on crates.io (and other crates which depend on them). The main focus is future flexibility along with making a few more operations consistent and/or fixing bugs. A summary of the changes made from today's `proc_macro` API is: * The `TokenNode` enum has been removed and the public fields of `TokenTree` have also been removed. Instead the `TokenTree` type is now a public enum (what `TokenNode` was) and each variant is an opaque struct which internally contains `Span` information. This makes the various tokens a bit more consistent, require fewer wrappers, and otherwise provides good future-compatibility as opaque structs are easy to modify later on. * `Literal` integer constructors have been expanded to be unambiguous as to what they're doing and also allow for more future flexibility. Previously constructors like `Literal::float` and `Literal::integer` were used to create unsuffixed literals and the concrete methods like `Literal::i32` would create a suffixed token. This wasn't immediately clear to all users (the suffixed/unsuffixed aspect) and having *one* constructor for unsuffixed literals required us to pick a largest type which may not always be true. To fix these issues all constructors are now of the form `Literal::i32_unsuffixed` or `Literal::i32_suffixed` (for all integral types). This should allow future compatibility as well as being immediately clear what's suffixed and what isn't. * Each variant of `TokenTree` internally contains a `Span` which can also be configured via `set_span`. For example `Literal` and `Term` now both internally contain a `Span` rather than having it stored in an auxiliary location. * Constructors of all tokens are called `new` now (aka `Term::intern` is gone) and most do not take spans. Manufactured tokens typically don't have a fresh span to go with them and the span is purely used for error-reporting **except** the span for `Term`, which currently affects hygiene. The default spans for all these constructed tokens is `Span::call_site()` for now. The `Term` type's constructor explicitly requires passing in a `Span` to provide future-proofing against possible hygiene changes. It's intended that a first pass of stabilization will likely only stabilize `Span::call_site()` which is an explicit opt-in for "I would like no hygiene here please". The intention here is to make this explicit in procedural macros to be forwards-compatible with a hygiene-specifying solution. * Some of the conversions for `TokenStream` have been simplified a little. * The `TokenTreeIter` iterator was renamed to `token_stream::IntoIter`. Overall the hope is that this is the "final pass" at the API of `TokenStream` and most of `TokenTree` before stabilization. Explicitly left out here is any changes to `Span`'s API which will likely need to be re-evaluated before stabilization. All changes in this PR have already been reflected to the [`proc-macro2`], `quote`, and `syn` crates. New versions of all these crates have also been published to crates.io. Once this lands in nightly I plan on making an internals post again summarizing the changes made here and also calling on all macro authors to give the APIs a spin and see how they work. Hopefully pending no major issues we can then have an FCP to stabilize later this cycle! [`proc-macro2`]: https://docs.rs/proc-macro2/0.3.1/proc_macro2/
2018-04-02 10:19:32 -05:00
impl fmt::Display for Literal {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.with_stringify_parts(|parts| {
for part in parts {
fmt::Display::fmt(part, f)?;
}
Ok(())
})
}
}
#[stable(feature = "proc_macro_lib2", since = "1.29.0")]
impl fmt::Debug for Literal {
2019-02-03 12:55:40 -06:00
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Literal")
// format the kind on one line even in {:#?} mode
.field("kind", &format_args!("{:?}", &self.0.kind))
.field("symbol", &self.0.symbol)
// format `Some("...")` on one line even in {:#?} mode
.field("suffix", &format_args!("{:?}", &self.0.suffix))
.field("span", &self.0.span)
.finish()
}
}
/// Tracked access to environment variables.
#[unstable(feature = "proc_macro_tracked_env", issue = "99515")]
pub mod tracked_env {
use std::env::{self, VarError};
use std::ffi::OsStr;
/// Retrieve an environment variable and add it to build dependency info.
/// The build system executing the compiler will know that the variable was accessed during
/// compilation, and will be able to rerun the build when the value of that variable changes.
/// Besides the dependency tracking this function should be equivalent to `env::var` from the
/// standard library, except that the argument must be UTF-8.
#[unstable(feature = "proc_macro_tracked_env", issue = "99515")]
pub fn var<K: AsRef<OsStr> + AsRef<str>>(key: K) -> Result<String, VarError> {
let key: &str = key.as_ref();
let value = env::var(key);
crate::bridge::client::FreeFunctions::track_env_var(key, value.as_deref().ok());
value
}
}
/// Tracked access to additional files.
#[unstable(feature = "track_path", issue = "99515")]
pub mod tracked_path {
/// Track a file explicitly.
///
/// Commonly used for tracking asset preprocessing.
#[unstable(feature = "track_path", issue = "99515")]
pub fn path<P: AsRef<str>>(path: P) {
let path: &str = path.as_ref();
crate::bridge::client::FreeFunctions::track_path(path);
}
}