rust/src/libsyntax/ast.rs

1178 lines
34 KiB
Rust
Raw Normal View History

2014-01-30 12:29:35 -06:00
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// The Rust abstract syntax tree.
use codemap::{Span, Spanned, DUMMY_SP};
use abi::Abi;
use ast_util;
use owned_slice::OwnedSlice;
use parse::token::{InternedString, special_idents, str_to_ident};
use parse::token;
2012-05-21 12:45:56 -05:00
use std::fmt;
use std::fmt::Show;
2013-06-24 19:40:33 -05:00
use std::option::Option;
use std::rc::Rc;
use std::gc::{Gc, GC};
use serialize::{Encodable, Decodable, Encoder, Decoder};
/// A pointer abstraction. FIXME(eddyb) #10676 use Rc<T> in the future.
2014-05-16 02:16:13 -05:00
pub type P<T> = Gc<T>;
#[allow(non_snake_case_functions)]
/// Construct a P<T> from a T value.
pub fn P<T: 'static>(value: T) -> P<T> {
2014-05-16 02:16:13 -05:00
box(GC) value
}
2013-06-07 12:39:59 -05:00
// FIXME #6993: in librustc, uses of "ident" should be replaced
// by just "Name".
2013-05-17 12:18:09 -05:00
// an identifier contains a Name (index into the interner
// table) and a SyntaxContext to track renaming and
// macro expansion per Flatt et al., "Macros
// That Work Together"
#[deriving(Clone, Hash, PartialOrd, Eq, Ord, Show)]
pub struct Ident {
pub name: Name,
pub ctxt: SyntaxContext
}
2013-09-01 19:50:59 -05:00
impl Ident {
/// Construct an identifier with the given name and an empty context:
pub fn new(name: Name) -> Ident { Ident {name: name, ctxt: EMPTY_CTXT}}
2013-09-01 19:50:59 -05:00
}
impl PartialEq for Ident {
fn eq(&self, other: &Ident) -> bool {
2014-01-19 02:21:14 -06:00
if self.ctxt == other.ctxt {
self.name == other.name
} else {
// IF YOU SEE ONE OF THESE FAILS: it means that you're comparing
// idents that have different contexts. You can't fix this without
// knowing whether the comparison should be hygienic or non-hygienic.
// if it should be non-hygienic (most things are), just compare the
// 'name' fields of the idents. Or, even better, replace the idents
// with Name's.
//
// On the other hand, if the comparison does need to be hygienic,
// one example and its non-hygienic counterpart would be:
// syntax::parse::token::mtwt_token_eq
// syntax::ext::tt::macro_parser::token_name_eq
fail!("not allowed to compare these idents: {:?}, {:?}. \
Probably related to issue \\#6993", self, other);
}
}
fn ne(&self, other: &Ident) -> bool {
! self.eq(other)
}
}
2013-07-18 06:12:07 -05:00
/// A SyntaxContext represents a chain of macro-expandings
/// and renamings. Each macro expansion corresponds to
/// a fresh uint
2013-04-03 12:28:14 -05:00
// I'm representing this syntax context as an index into
// a table, in order to work around a compiler bug
// that's causing unreleased memory to cause core dumps
// and also perhaps to save some work in destructor checks.
// the special uint '0' will be used to indicate an empty
// syntax context.
2013-04-03 12:28:14 -05:00
// this uint is a reference to a table stored in thread-local
// storage.
pub type SyntaxContext = u32;
pub static EMPTY_CTXT : SyntaxContext = 0;
pub static ILLEGAL_CTXT : SyntaxContext = 1;
2013-04-03 12:28:14 -05:00
2013-07-18 06:12:07 -05:00
/// A name is a part of an identifier, representing a string or gensym. It's
/// the result of interning.
pub type Name = u32;
2013-07-18 06:12:07 -05:00
/// A mark represents a unique id associated with a macro expansion
pub type Mrk = u32;
impl<S: Encoder<E>, E> Encodable<S, E> for Ident {
fn encode(&self, s: &mut S) -> Result<(), E> {
s.emit_str(token::get_ident(*self).get())
}
}
impl<D:Decoder<E>, E> Decodable<D, E> for Ident {
fn decode(d: &mut D) -> Result<Ident, E> {
Ok(str_to_ident(try!(d.read_str()).as_slice()))
}
}
2013-07-18 06:12:07 -05:00
/// Function name (not all functions have names)
pub type FnIdent = Option<Ident>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Lifetime {
pub id: NodeId,
pub span: Span,
pub name: Name
}
// a "Path" is essentially Rust's notion of a name;
// for instance: std::cmp::PartialEq . It's represented
// as a sequence of identifiers, along with a bunch
// of supporting information.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
2013-03-26 19:00:35 -05:00
pub struct Path {
pub span: Span,
2013-07-18 06:12:07 -05:00
/// A `::foo` path, is relative to the crate root rather than current
/// module (like paths in an import).
pub global: bool,
/// The segments in the path: the things separated by `::`.
pub segments: Vec<PathSegment> ,
}
/// A segment of a path: an identifier, an optional lifetime, and a set of
/// types.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct PathSegment {
/// The identifier portion of this path segment.
pub identifier: Ident,
/// The lifetime parameters for this path segment.
pub lifetimes: Vec<Lifetime>,
/// The type parameters for this path segment, if present.
pub types: OwnedSlice<P<Ty>>,
2013-01-13 12:48:09 -06:00
}
pub type CrateNum = u32;
pub type NodeId = u32;
#[deriving(Clone, Eq, Ord, PartialOrd, PartialEq, Encodable, Decodable, Hash, Show)]
pub struct DefId {
pub krate: CrateNum,
pub node: NodeId,
2013-01-13 13:05:40 -06:00
}
/// Item definitions in the currently-compiled crate would have the CrateNum
/// LOCAL_CRATE in their DefId.
pub static LOCAL_CRATE: CrateNum = 0;
pub static CRATE_NODE_ID: NodeId = 0;
// When parsing and doing expansions, we initially give all AST nodes this AST
// node value. Then later, in the renumber pass, we renumber them to have
// small, positive ids.
pub static DUMMY_NODE_ID: NodeId = -1;
// The AST represents all type param bounds as types.
// typeck::collect::compute_bounds matches these against
// the "special" built-in traits (see middle::lang_items) and
// detects Copy, Send and Share.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum TyParamBound {
TraitTyParamBound(TraitRef),
StaticRegionTyParamBound,
UnboxedFnTyParamBound(UnboxedFnTy),
OtherRegionTyParamBound(Span) // FIXME -- just here until work for #5723 lands
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct TyParam {
pub ident: Ident,
pub id: NodeId,
pub sized: Sized,
pub bounds: OwnedSlice<TyParamBound>,
2014-04-02 19:53:57 -05:00
pub default: Option<P<Ty>>,
pub span: Span
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Generics {
pub lifetimes: Vec<Lifetime>,
pub ty_params: OwnedSlice<TyParam>,
}
impl Generics {
pub fn is_parameterized(&self) -> bool {
self.lifetimes.len() + self.ty_params.len() > 0
}
pub fn is_lt_parameterized(&self) -> bool {
self.lifetimes.len() > 0
}
pub fn is_type_parameterized(&self) -> bool {
self.ty_params.len() > 0
}
2013-01-13 13:15:14 -06:00
}
// The set of MetaItems that define the compilation environment of the crate,
// used to drive conditional compilation
2014-05-16 02:16:13 -05:00
pub type CrateConfig = Vec<Gc<MetaItem>>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Crate {
pub module: Mod,
pub attrs: Vec<Attribute>,
pub config: CrateConfig,
pub span: Span,
2013-01-14 21:06:59 -06:00
}
pub type MetaItem = Spanned<MetaItem_>;
#[deriving(Clone, Encodable, Decodable, Eq, Hash)]
pub enum MetaItem_ {
MetaWord(InternedString),
2014-05-16 02:16:13 -05:00
MetaList(InternedString, Vec<Gc<MetaItem>>),
MetaNameValue(InternedString, Lit),
}
// can't be derived because the MetaList requires an unordered comparison
impl PartialEq for MetaItem_ {
fn eq(&self, other: &MetaItem_) -> bool {
match *self {
MetaWord(ref ns) => match *other {
MetaWord(ref no) => (*ns) == (*no),
_ => false
},
MetaNameValue(ref ns, ref vs) => match *other {
MetaNameValue(ref no, ref vo) => {
(*ns) == (*no) && vs.node == vo.node
}
_ => false
},
MetaList(ref ns, ref miss) => match *other {
MetaList(ref no, ref miso) => {
ns == no &&
miss.iter().all(|mi| miso.iter().any(|x| x.node == mi.node))
}
_ => false
}
}
}
}
2010-12-30 10:21:37 -06:00
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Block {
pub view_items: Vec<ViewItem>,
2014-05-16 02:16:13 -05:00
pub stmts: Vec<Gc<Stmt>>,
pub expr: Option<Gc<Expr>>,
pub id: NodeId,
pub rules: BlockCheckMode,
pub span: Span,
2013-01-14 21:35:08 -06:00
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Pat {
pub id: NodeId,
pub node: Pat_,
pub span: Span,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct FieldPat {
pub ident: Ident,
2014-05-16 02:16:13 -05:00
pub pat: Gc<Pat>,
}
2011-07-11 07:13:20 -05:00
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum BindingMode {
BindByRef(Mutability),
BindByValue(Mutability),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Pat_ {
PatWild,
2013-11-07 21:25:39 -06:00
PatWildMulti,
// A PatIdent may either be a new bound variable,
2012-01-19 16:24:03 -06:00
// or a nullary enum (in which case the second field
2012-08-20 14:23:37 -05:00
// is None).
2012-01-19 16:24:03 -06:00
// In the nullary enum case, the parser can't determine
// which it is. The resolver determines this, and
// records this pattern's NodeId in an auxiliary
// set (of "pat_idents that refer to nullary enums")
2014-05-16 02:16:13 -05:00
PatIdent(BindingMode, Path, Option<Gc<Pat>>),
PatEnum(Path, Option<Vec<Gc<Pat>>>), /* "none" means a * pattern where
* we don't bind the fields to names */
2014-05-16 02:16:13 -05:00
PatStruct(Path, Vec<FieldPat>, bool),
PatTup(Vec<Gc<Pat>>),
PatBox(Gc<Pat>),
PatRegion(Gc<Pat>), // reference pattern
PatLit(Gc<Expr>),
PatRange(Gc<Expr>, Gc<Expr>),
// [a, b, ..i, y, z] is represented as
// PatVec(~[a, b], Some(i), ~[y, z])
2014-05-16 02:16:13 -05:00
PatVec(Vec<Gc<Pat>>, Option<Gc<Pat>>, Vec<Gc<Pat>>),
2014-05-19 15:29:41 -05:00
PatMac(Mac),
2010-11-24 16:42:01 -06:00
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash, Show)]
pub enum Mutability {
MutMutable,
MutImmutable,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum ExprVstore {
ExprVstoreUniq, // ~[1,2,3,4]
ExprVstoreSlice, // &[1,2,3,4]
ExprVstoreMutSlice, // &mut [1,2,3,4]
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum BinOp {
BiAdd,
BiSub,
BiMul,
BiDiv,
BiRem,
BiAnd,
BiOr,
BiBitXor,
BiBitAnd,
BiBitOr,
BiShl,
BiShr,
BiEq,
BiLt,
BiLe,
BiNe,
BiGe,
BiGt,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum UnOp {
UnBox,
UnUniq,
UnDeref,
UnNot,
UnNeg
}
pub type Stmt = Spanned<Stmt_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Stmt_ {
2013-05-07 11:38:48 -05:00
// could be an item or a local (let) binding:
2014-05-16 02:16:13 -05:00
StmtDecl(Gc<Decl>, NodeId),
// expr without trailing semi-colon (must have unit type):
2014-05-16 02:16:13 -05:00
StmtExpr(Gc<Expr>, NodeId),
// expr with trailing semi-colon (may have any type):
2014-05-16 02:16:13 -05:00
StmtSemi(Gc<Expr>, NodeId),
// bool: is there a trailing sem-colon?
StmtMac(Mac, bool),
}
/// Where a local declaration came from: either a true `let ... =
/// ...;`, or one desugared from the pattern of a for loop.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum LocalSource {
LocalLet,
LocalFor,
}
// FIXME (pending discussion of #1697, #2178...): local should really be
// a refinement on pat.
/// Local represents a `let` statement, e.g., `let <pat>:<ty> = <expr>;`
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Local {
pub ty: P<Ty>,
2014-05-16 02:16:13 -05:00
pub pat: Gc<Pat>,
pub init: Option<Gc<Expr>>,
pub id: NodeId,
pub span: Span,
pub source: LocalSource,
}
pub type Decl = Spanned<Decl_>;
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Decl_ {
2013-05-07 11:38:48 -05:00
// a local (let) binding:
2014-05-16 02:16:13 -05:00
DeclLocal(Gc<Local>),
2013-05-07 11:38:48 -05:00
// an item binding:
2014-05-16 02:16:13 -05:00
DeclItem(Gc<Item>),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Arm {
pub attrs: Vec<Attribute>,
2014-05-16 02:16:13 -05:00
pub pats: Vec<Gc<Pat>>,
pub guard: Option<Gc<Expr>>,
pub body: Gc<Expr>,
}
2010-11-24 17:45:59 -06:00
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Field {
pub ident: SpannedIdent,
2014-05-16 02:16:13 -05:00
pub expr: Gc<Expr>,
pub span: Span,
}
pub type SpannedIdent = Spanned<Ident>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum BlockCheckMode {
DefaultBlock,
UnsafeBlock(UnsafeSource),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum UnsafeSource {
CompilerGenerated,
UserProvided,
2013-07-02 14:47:32 -05:00
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Expr {
pub id: NodeId,
pub node: Expr_,
pub span: Span,
2013-01-15 15:51:43 -06:00
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Expr_ {
2014-05-16 02:16:13 -05:00
ExprVstore(Gc<Expr>, ExprVstore),
// First expr is the place; second expr is the value.
2014-05-16 02:16:13 -05:00
ExprBox(Gc<Expr>, Gc<Expr>),
ExprVec(Vec<Gc<Expr>>),
ExprCall(Gc<Expr>, Vec<Gc<Expr>>),
ExprMethodCall(SpannedIdent, Vec<P<Ty>>, Vec<Gc<Expr>>),
ExprTup(Vec<Gc<Expr>>),
ExprBinary(BinOp, Gc<Expr>, Gc<Expr>),
ExprUnary(UnOp, Gc<Expr>),
ExprLit(Gc<Lit>),
ExprCast(Gc<Expr>, P<Ty>),
ExprIf(Gc<Expr>, P<Block>, Option<Gc<Expr>>),
ExprWhile(Gc<Expr>, P<Block>),
// FIXME #6993: change to Option<Name>
2014-05-16 02:16:13 -05:00
ExprForLoop(Gc<Pat>, Gc<Expr>, P<Block>, Option<Ident>),
// Conditionless loop (can be exited with break, cont, or ret)
// FIXME #6993: change to Option<Name>
ExprLoop(P<Block>, Option<Ident>),
2014-05-16 02:16:13 -05:00
ExprMatch(Gc<Expr>, Vec<Arm>),
ExprFnBlock(P<FnDecl>, P<Block>),
ExprProc(P<FnDecl>, P<Block>),
ExprBlock(P<Block>),
2014-05-16 02:16:13 -05:00
ExprAssign(Gc<Expr>, Gc<Expr>),
ExprAssignOp(BinOp, Gc<Expr>, Gc<Expr>),
ExprField(Gc<Expr>, SpannedIdent, Vec<P<Ty>>),
2014-05-16 02:16:13 -05:00
ExprIndex(Gc<Expr>, Gc<Expr>),
/// Expression that looks like a "name". For example,
/// `std::slice::from_elem::<uint>` is an ExprPath that's the "name" part
/// of a function call.
ExprPath(Path),
2014-05-16 02:16:13 -05:00
ExprAddrOf(Mutability, Gc<Expr>),
ExprBreak(Option<Ident>),
ExprAgain(Option<Ident>),
2014-05-16 02:16:13 -05:00
ExprRet(Option<Gc<Expr>>),
ExprInlineAsm(InlineAsm),
ExprMac(Mac),
// A struct literal expression.
2014-05-16 02:16:13 -05:00
ExprStruct(Path, Vec<Field> , Option<Gc<Expr>> /* base */),
// A vector literal constructed from one repeated element.
2014-05-16 02:16:13 -05:00
ExprRepeat(Gc<Expr> /* element */, Gc<Expr> /* count */),
// No-op: used solely so we can pretty-print faithfully
2014-05-16 02:16:13 -05:00
ExprParen(Gc<Expr>)
}
// When the main rust parser encounters a syntax-extension invocation, it
// parses the arguments to the invocation as a token-tree. This is a very
// loose structure, such that all sorts of different AST-fragments can
// be passed to syntax extensions using a uniform type.
//
// If the syntax extension is an MBE macro, it will attempt to match its
// LHS "matchers" against the provided token tree, and if it finds a
// match, will transcribe the RHS token tree, splicing in any captured
// macro_parser::matched_nonterminals into the TTNonterminals it finds.
//
// The RHS of an MBE macro is the only place a TTNonterminal or TTSeq
// makes any real sense. You could write them elsewhere but nothing
// else knows what to do with them, so you'll probably get a syntax
// error.
//
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
#[doc="For macro invocations; parsing is delegated to the macro"]
pub enum TokenTree {
2013-02-04 15:15:17 -06:00
// a single token
TTTok(Span, ::parse::token::Token),
2013-02-04 15:15:17 -06:00
// a delimited sequence (the delimiters appear as the first
// and last elements of the vector)
2014-03-27 09:40:35 -05:00
// FIXME(eddyb) #6308 Use Rc<[TokenTree]> after DST.
TTDelim(Rc<Vec<TokenTree>>),
2013-06-06 13:14:29 -05:00
2013-02-04 15:15:17 -06:00
// These only make sense for right-hand-sides of MBE macros:
// a kleene-style repetition sequence with a span, a TTForest,
// an optional separator, and a boolean where true indicates
2013-11-28 14:22:53 -06:00
// zero or more (..), and false indicates one or more (+).
2014-03-27 09:40:35 -05:00
// FIXME(eddyb) #6308 Use Rc<[TokenTree]> after DST.
TTSeq(Span, Rc<Vec<TokenTree>>, Option<::parse::token::Token>, bool),
2013-02-04 15:15:17 -06:00
// a syntactic variable that will be filled in by macro expansion.
TTNonterminal(Span, Ident)
}
//
// Matchers are nodes defined-by and recognized-by the main rust parser and
// language, but they're only ever found inside syntax-extension invocations;
// indeed, the only thing that ever _activates_ the rules in the rust parser
// for parsing a matcher is a matcher looking for the 'matchers' nonterminal
// itself. Matchers represent a small sub-language for pattern-matching
// token-trees, and are thus primarily used by the macro-defining extension
// itself.
//
// MatchTok
// --------
//
// A matcher that matches a single token, denoted by the token itself. So
// long as there's no $ involved.
//
//
// MatchSeq
// --------
//
// A matcher that matches a sequence of sub-matchers, denoted various
// possible ways:
//
// $(M)* zero or more Ms
// $(M)+ one or more Ms
// $(M),+ one or more comma-separated Ms
// $(A B C);* zero or more semi-separated 'A B C' seqs
//
//
// MatchNonterminal
// -----------------
//
// A matcher that matches one of a few interesting named rust
// nonterminals, such as types, expressions, items, or raw token-trees. A
// black-box matcher on expr, for example, binds an expr to a given ident,
// and that ident can re-occur as an interpolation in the RHS of a
// macro-by-example rule. For example:
//
// $foo:expr => 1 + $foo // interpolate an expr
// $foo:tt => $foo // interpolate a token-tree
// $foo:tt => bar! $foo // only other valid interpolation
// // is in arg position for another
// // macro
//
// As a final, horrifying aside, note that macro-by-example's input is
// also matched by one of these matchers. Holy self-referential! It is matched
2014-01-30 12:29:35 -06:00
// by a MatchSeq, specifically this one:
//
// $( $lhs:matchers => $rhs:tt );+
//
// If you understand that, you have closed to loop and understand the whole
// macro system. Congratulations.
//
pub type Matcher = Spanned<Matcher_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Matcher_ {
// match one token
MatchTok(::parse::token::Token),
// match repetitions of a sequence: body, separator, zero ok?,
// lo, hi position-in-match-array used:
MatchSeq(Vec<Matcher> , Option<::parse::token::Token>, bool, uint, uint),
// parse a Rust NT: name to bind, name of NT, position in match array:
MatchNonterminal(Ident, Ident, uint)
2012-06-12 12:59:50 -05:00
}
pub type Mac = Spanned<Mac_>;
2013-06-06 13:14:29 -05:00
// represents a macro invocation. The Path indicates which macro
// is being invoked, and the vector of token-trees contains the source
// of the macro invocation.
// There's only one flavor, now, so this could presumably be simplified.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Mac_ {
MacInvocTT(Path, Vec<TokenTree> , SyntaxContext), // new macro-invocation
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum StrStyle {
CookedStr,
RawStr(uint)
}
pub type Lit = Spanned<Lit_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Lit_ {
LitStr(InternedString, StrStyle),
LitBinary(Rc<Vec<u8> >),
LitChar(char),
LitInt(i64, IntTy),
LitUint(u64, UintTy),
LitIntUnsuffixed(i64),
LitFloat(InternedString, FloatTy),
LitFloatUnsuffixed(InternedString),
LitNil,
LitBool(bool),
}
2010-11-03 18:43:12 -05:00
// NB: If you change this, you'll probably want to change the corresponding
// type structure in middle/ty.rs as well.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct MutTy {
pub ty: P<Ty>,
pub mutbl: Mutability,
}
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct TypeField {
pub ident: Ident,
pub mt: MutTy,
pub span: Span,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct TypeMethod {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub fn_style: FnStyle,
pub decl: P<FnDecl>,
pub generics: Generics,
pub explicit_self: ExplicitSelf,
pub id: NodeId,
pub span: Span,
pub vis: Visibility,
}
// A trait method is either required (meaning it doesn't have an
// implementation, just a signature) or provided (meaning it has a default
// implementation).
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum TraitMethod {
Required(TypeMethod),
2014-05-16 02:16:13 -05:00
Provided(Gc<Method>),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum IntTy {
TyI,
TyI8,
TyI16,
TyI32,
TyI64,
2013-07-02 14:47:32 -05:00
}
impl fmt::Show for IntTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}",
ast_util::int_ty_to_str(*self, None, ast_util::AutoSuffix))
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum UintTy {
TyU,
TyU8,
TyU16,
TyU32,
TyU64,
2013-07-02 14:47:32 -05:00
}
impl fmt::Show for UintTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}",
ast_util::uint_ty_to_str(*self, None, ast_util::AutoSuffix))
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum FloatTy {
TyF32,
TyF64,
TyF128
2013-07-02 14:47:32 -05:00
}
impl fmt::Show for FloatTy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", ast_util::float_ty_to_str(*self))
}
}
// NB PartialEq method appears below.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Ty {
pub id: NodeId,
pub node: Ty_,
pub span: Span,
2013-01-15 16:59:39 -06:00
}
// Not represented directly in the AST, referred to by name through a ty_path.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum PrimTy {
TyInt(IntTy),
TyUint(UintTy),
TyFloat(FloatTy),
TyStr,
TyBool,
TyChar
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Onceness {
Once,
Many
}
impl fmt::Show for Onceness {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Once => "once".fmt(f),
Many => "many".fmt(f),
}
}
}
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct ClosureTy {
pub lifetimes: Vec<Lifetime>,
pub fn_style: FnStyle,
pub onceness: Onceness,
pub decl: P<FnDecl>,
// Optional optvec distinguishes between "fn()" and "fn:()" so we can
// implement issue #7264. None means "fn()", which means infer a default
// bound based on pointer sigil during typeck. Some(Empty) means "fn:()",
// which means use no bounds (e.g., not even Owned on a ~fn()).
pub bounds: Option<OwnedSlice<TyParamBound>>,
}
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct BareFnTy {
pub fn_style: FnStyle,
pub abi: Abi,
pub lifetimes: Vec<Lifetime>,
pub decl: P<FnDecl>
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct UnboxedFnTy {
pub decl: P<FnDecl>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Ty_ {
TyNil,
TyBot, /* bottom type */
TyBox(P<Ty>),
TyUniq(P<Ty>),
TyVec(P<Ty>),
2014-05-16 02:16:13 -05:00
TyFixedLengthVec(P<Ty>, Gc<Expr>),
TyPtr(MutTy),
TyRptr(Option<Lifetime>, MutTy),
2014-05-16 02:16:13 -05:00
TyClosure(Gc<ClosureTy>, Option<Lifetime>),
TyProc(Gc<ClosureTy>),
TyBareFn(Gc<BareFnTy>),
TyUnboxedFn(Gc<UnboxedFnTy>),
TyTup(Vec<P<Ty>> ),
TyPath(Path, Option<OwnedSlice<TyParamBound>>, NodeId), // for #7264; see above
// No-op; kept solely so that we can pretty-print faithfully
TyParen(P<Ty>),
2014-05-16 02:16:13 -05:00
TyTypeof(Gc<Expr>),
// TyInfer means the type should be inferred instead of it having been
// specified. This can appear anywhere in a type.
TyInfer,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum AsmDialect {
AsmAtt,
AsmIntel
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct InlineAsm {
pub asm: InternedString,
pub asm_str_style: StrStyle,
pub clobbers: InternedString,
2014-05-16 02:16:13 -05:00
pub inputs: Vec<(InternedString, Gc<Expr>)>,
pub outputs: Vec<(InternedString, Gc<Expr>)>,
pub volatile: bool,
pub alignstack: bool,
pub dialect: AsmDialect
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Arg {
pub ty: P<Ty>,
2014-05-16 02:16:13 -05:00
pub pat: Gc<Pat>,
pub id: NodeId,
}
impl Arg {
pub fn new_self(span: Span, mutability: Mutability) -> Arg {
let path = ast_util::ident_to_path(span, special_idents::self_);
Arg {
// HACK(eddyb) fake type for the self argument.
ty: P(Ty {
id: DUMMY_NODE_ID,
node: TyInfer,
span: DUMMY_SP,
}),
2014-05-16 02:16:13 -05:00
pat: box(GC) Pat {
id: DUMMY_NODE_ID,
node: PatIdent(BindByValue(mutability), path, None),
span: span
},
id: DUMMY_NODE_ID
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct FnDecl {
pub inputs: Vec<Arg>,
pub output: P<Ty>,
pub cf: RetStyle,
pub variadic: bool
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum FnStyle {
UnsafeFn, // declared with "unsafe fn"
NormalFn, // declared with "fn"
}
impl fmt::Show for FnStyle {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
NormalFn => "normal".fmt(f),
UnsafeFn => "unsafe".fmt(f),
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum RetStyle {
NoReturn, // functions with return type _|_ that always
// raise an error or exit (i.e. never return to the caller)
Return, // everything else
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum ExplicitSelf_ {
SelfStatic, // no self
SelfValue, // `self`
SelfRegion(Option<Lifetime>, Mutability), // `&'lt self`, `&'lt mut self`
SelfUniq // `~self`
2012-07-30 18:33:02 -05:00
}
pub type ExplicitSelf = Spanned<ExplicitSelf_>;
2012-07-30 18:33:02 -05:00
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Method {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub generics: Generics,
pub explicit_self: ExplicitSelf,
pub fn_style: FnStyle,
pub decl: P<FnDecl>,
pub body: P<Block>,
pub id: NodeId,
pub span: Span,
pub vis: Visibility,
}
2010-12-14 17:32:13 -06:00
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Mod {
/// A span from the first token past `{` to the last token until `}`.
/// For `mod foo;`, the inner span ranges from the first token
/// to the last token in the external file.
pub inner: Span,
pub view_items: Vec<ViewItem>,
2014-05-16 02:16:13 -05:00
pub items: Vec<Gc<Item>>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct ForeignMod {
pub abi: Abi,
pub view_items: Vec<ViewItem>,
2014-05-16 02:16:13 -05:00
pub items: Vec<Gc<ForeignItem>>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct VariantArg {
pub ty: P<Ty>,
pub id: NodeId,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum VariantKind {
TupleVariantKind(Vec<VariantArg>),
2014-05-16 02:16:13 -05:00
StructVariantKind(Gc<StructDef>),
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct EnumDef {
pub variants: Vec<P<Variant>>,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Variant_ {
pub name: Ident,
pub attrs: Vec<Attribute>,
pub kind: VariantKind,
pub id: NodeId,
2014-05-16 02:16:13 -05:00
pub disr_expr: Option<Gc<Expr>>,
pub vis: Visibility,
}
pub type Variant = Spanned<Variant_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct PathListIdent_ {
pub name: Ident,
pub id: NodeId,
}
pub type PathListIdent = Spanned<PathListIdent_>;
pub type ViewPath = Spanned<ViewPath_>;
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum ViewPath_ {
// quux = foo::bar::baz
//
// or just
//
// foo::bar::baz (with 'baz =' implicitly on the left)
ViewPathSimple(Ident, Path, NodeId),
// foo::bar::*
ViewPathGlob(Path, NodeId),
// foo::bar::{a,b,c}
ViewPathList(Path, Vec<PathListIdent> , NodeId)
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct ViewItem {
pub node: ViewItem_,
pub attrs: Vec<Attribute>,
pub vis: Visibility,
pub span: Span,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum ViewItem_ {
// ident: name used to refer to this crate in the code
2014-02-05 18:02:10 -06:00
// optional (InternedString,StrStyle): if present, this is a location
// (containing arbitrary characters) from which to fetch the crate sources
// For example, extern crate whatever = "github.com/mozilla/rust"
ViewItemExternCrate(Ident, Option<(InternedString,StrStyle)>, NodeId),
2014-05-16 02:16:13 -05:00
ViewItemUse(Gc<ViewPath>),
}
// Meta-data associated with an item
pub type Attribute = Spanned<Attribute_>;
// Distinguishes between Attributes that decorate items and Attributes that
// are contained as statements within items. These two cases need to be
// distinguished for pretty-printing.
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum AttrStyle {
AttrOuter,
AttrInner,
2013-07-02 14:47:32 -05:00
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
2014-05-20 02:07:24 -05:00
pub struct AttrId(pub uint);
// doc-comments are promoted to attributes that have is_sugared_doc = true
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Attribute_ {
2014-05-20 02:07:24 -05:00
pub id: AttrId,
pub style: AttrStyle,
2014-05-16 02:16:13 -05:00
pub value: Gc<MetaItem>,
pub is_sugared_doc: bool,
}
/*
TraitRef's appear in impls.
resolve maps each TraitRef's ref_id to its defining trait; that's all
that the ref_id is for. The impl_id maps to the "self type" of this impl.
If this impl is an ItemImpl, the impl_id is redundant (it could be the
same as the impl's node id).
*/
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct TraitRef {
pub path: Path,
pub ref_id: NodeId,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Visibility {
Public,
Inherited,
2013-07-02 14:47:32 -05:00
}
impl Visibility {
pub fn inherit_from(&self, parent_visibility: Visibility) -> Visibility {
match self {
&Inherited => parent_visibility,
&Public => *self
}
}
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Sized {
DynSize,
StaticSize,
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct StructField_ {
pub kind: StructFieldKind,
pub id: NodeId,
pub ty: P<Ty>,
pub attrs: Vec<Attribute>,
}
2014-06-05 17:00:29 -05:00
impl StructField_ {
pub fn ident(&self) -> Option<Ident> {
match self.kind {
NamedField(ref ident, _) => Some(ident.clone()),
UnnamedField(_) => None
}
}
}
pub type StructField = Spanned<StructField_>;
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum StructFieldKind {
NamedField(Ident, Visibility),
UnnamedField(Visibility), // element of a tuple-like struct
}
impl StructFieldKind {
pub fn is_unnamed(&self) -> bool {
match *self {
UnnamedField(..) => true,
NamedField(..) => false,
}
}
}
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct StructDef {
pub fields: Vec<StructField>, /* fields, not including ctor */
/* ID of the constructor. This is only used for tuple- or enum-like
* structs. */
pub ctor_id: Option<NodeId>,
pub super_struct: Option<P<Ty>>, // Super struct, if specified.
pub is_virtual: bool, // True iff the struct may be inherited from.
2013-01-13 15:45:57 -06:00
}
/*
FIXME (#3300): Should allow items to be anonymous. Right now
we just use dummy names for anon items.
*/
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct Item {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub id: NodeId,
pub node: Item_,
pub vis: Visibility,
pub span: Span,
2013-01-13 15:13:41 -06:00
}
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum Item_ {
2014-05-16 02:16:13 -05:00
ItemStatic(P<Ty>, Mutability, Gc<Expr>),
ItemFn(P<FnDecl>, FnStyle, Abi, Generics, P<Block>),
ItemMod(Mod),
ItemForeignMod(ForeignMod),
ItemTy(P<Ty>, Generics),
ItemEnum(EnumDef, Generics),
2014-05-16 02:16:13 -05:00
ItemStruct(Gc<StructDef>, Generics),
ItemTrait(Generics, Sized, Vec<TraitRef> , Vec<TraitMethod> ),
ItemImpl(Generics,
Option<TraitRef>, // (optional) trait this impl implements
P<Ty>, // self
2014-05-16 02:16:13 -05:00
Vec<Gc<Method>>),
// a macro invocation (which includes macro definition)
ItemMac(Mac),
2011-05-11 08:10:24 -05:00
}
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub struct ForeignItem {
pub ident: Ident,
pub attrs: Vec<Attribute>,
pub node: ForeignItem_,
pub id: NodeId,
pub span: Span,
pub vis: Visibility,
2013-01-13 14:02:16 -06:00
}
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum ForeignItem_ {
ForeignItemFn(P<FnDecl>, Generics),
ForeignItemStatic(P<Ty>, /* is_mutbl */ bool),
}
// The data we save and restore about an inlined item or method. This is not
// part of the AST that we parse from a file, but it becomes part of the tree
// that we trans.
#[deriving(PartialEq, Eq, Encodable, Decodable, Hash)]
pub enum InlinedItem {
2014-05-16 02:16:13 -05:00
IIItem(Gc<Item>),
IIMethod(DefId /* impl id */, bool /* is provided */, Gc<Method>),
IIForeign(Gc<ForeignItem>),
}
#[cfg(test)]
mod test {
use serialize::json;
use serialize;
use codemap::*;
use super::*;
2013-04-03 12:28:14 -05:00
// are ASTs encodable?
#[test]
fn check_asts_encodable() {
use std::io;
let e = Crate {
module: Mod {
inner: Span {
lo: BytePos(11),
hi: BytePos(19),
expn_info: None,
},
view_items: Vec::new(),
items: Vec::new(),
},
attrs: Vec::new(),
config: Vec::new(),
span: Span {
lo: BytePos(10),
hi: BytePos(20),
expn_info: None,
},
};
// doesn't matter which encoder we use....
let _f = &e as &serialize::Encodable<json::Encoder, io::IoError>;
}
2013-02-13 14:49:45 -06:00
}