rust/crates/ra_hir/src/ty/autoderef.rs

104 lines
3.7 KiB
Rust
Raw Normal View History

//! In certain situations, rust automatically inserts derefs as necessary: for
2019-01-06 12:51:42 -06:00
//! example, field accesses `foo.bar` still work when `foo` is actually a
//! reference to a type with the field `bar`. This is an approximation of the
//! logic in rustc (which lives in librustc_typeck/check/autoderef.rs).
use std::iter::successors;
2019-01-06 12:51:42 -06:00
2019-11-23 03:58:01 -06:00
use hir_def::{lang_item::LangItemTarget, resolver::Resolver};
2019-10-30 10:56:20 -05:00
use hir_expand::name;
use log::{info, warn};
2019-01-06 12:51:42 -06:00
2019-11-23 03:58:01 -06:00
use crate::{db::HirDatabase, Trait};
use super::{traits::Solution, Canonical, Substs, Ty, TypeWalk};
2019-06-16 05:04:08 -05:00
const AUTODEREF_RECURSION_LIMIT: usize = 10;
pub(crate) fn autoderef<'a>(
db: &'a impl HirDatabase,
resolver: &'a Resolver,
ty: Canonical<Ty>,
) -> impl Iterator<Item = Canonical<Ty>> + 'a {
2019-06-16 05:04:08 -05:00
successors(Some(ty), move |ty| deref(db, resolver, ty)).take(AUTODEREF_RECURSION_LIMIT)
}
pub(crate) fn deref(
db: &impl HirDatabase,
resolver: &Resolver,
ty: &Canonical<Ty>,
) -> Option<Canonical<Ty>> {
if let Some(derefed) = ty.value.builtin_deref() {
Some(Canonical { value: derefed, num_vars: ty.num_vars })
} else {
deref_by_trait(db, resolver, ty)
2019-01-06 12:51:42 -06:00
}
}
fn deref_by_trait(
db: &impl HirDatabase,
resolver: &Resolver,
ty: &Canonical<Ty>,
) -> Option<Canonical<Ty>> {
let krate = resolver.krate()?;
2019-11-21 06:24:51 -06:00
let deref_trait = match db.lang_item(krate.into(), "deref".into())? {
2019-11-23 03:58:01 -06:00
LangItemTarget::TraitId(t) => Trait::from(t),
_ => return None,
};
2019-09-15 07:14:33 -05:00
let target = deref_trait.associated_type_by_name(db, &name::TARGET_TYPE)?;
2019-11-21 07:23:02 -06:00
let generic_params = db.generic_params(target.id.into());
if generic_params.count_params_including_parent() != 1 {
// the Target type + Deref trait should only have one generic parameter,
// namely Deref's Self type
return None;
}
// FIXME make the Canonical handling nicer
let env = super::lower::trait_env(db, resolver);
let parameters = Substs::build_for_generics(&generic_params)
.push(ty.value.clone().shift_bound_vars(1))
.build();
let projection = super::traits::ProjectionPredicate {
ty: Ty::Bound(0),
projection_ty: super::ProjectionTy { associated_ty: target, parameters },
};
let obligation = super::Obligation::Projection(projection);
let in_env = super::traits::InEnvironment { value: obligation, environment: env };
let canonical = super::Canonical { num_vars: 1 + ty.num_vars, value: in_env };
2019-11-21 06:24:51 -06:00
let solution = db.trait_solve(krate.into(), canonical)?;
2019-01-06 12:51:42 -06:00
match &solution {
Solution::Unique(vars) => {
// FIXME: vars may contain solutions for any inference variables
// that happened to be inside ty. To correctly handle these, we
// would have to pass the solution up to the inference context, but
// that requires a larger refactoring (especially if the deref
// happens during method resolution). So for the moment, we just
// check that we're not in the situation we're we would actually
// need to handle the values of the additional variables, i.e.
// they're just being 'passed through'. In the 'standard' case where
// we have `impl<T> Deref for Foo<T> { Target = T }`, that should be
// the case.
for i in 1..vars.0.num_vars {
if vars.0.value[i] != Ty::Bound((i - 1) as u32) {
warn!("complex solution for derefing {:?}: {:?}, ignoring", ty, solution);
return None;
}
}
Some(Canonical { value: vars.0.value[0].clone(), num_vars: vars.0.num_vars })
}
Solution::Ambig(_) => {
info!("Ambiguous solution for derefing {:?}: {:?}", ty, solution);
None
}
2019-01-06 12:51:42 -06:00
}
}