rust/src/libstd/net/ip.rs

450 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use cmp::Ordering;
use hash;
use fmt;
use libc;
use sys_common::{AsInner, FromInner};
use net::{hton, ntoh};
/// Representation of an IPv4 address.
#[derive(Copy)]
pub struct Ipv4Addr {
inner: libc::in_addr,
}
/// Representation of an IPv6 address.
#[derive(Copy)]
pub struct Ipv6Addr {
inner: libc::in6_addr,
}
#[allow(missing_docs)]
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub enum Ipv6MulticastScope {
InterfaceLocal,
LinkLocal,
RealmLocal,
AdminLocal,
SiteLocal,
OrganizationLocal,
Global
}
/// Enumeration of possible IP addresses
#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
pub enum IpAddr {
/// An IPv4 address.
V4(Ipv4Addr),
/// An IPv6 address.
V6(Ipv6Addr)
}
impl IpAddr {
/// Create a new IpAddr that contains an IPv4 address.
///
/// The result will represent the IP address a.b.c.d
pub fn new_v4(a: u8, b: u8, c: u8, d: u8) -> IpAddr {
IpAddr::V4(Ipv4Addr::new(a, b, c, d))
}
/// Create a new IpAddr that contains an IPv6 address.
///
/// The result will represent the IP address a:b:c:d:e:f
pub fn new_v6(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16,
h: u16) -> IpAddr {
IpAddr::V6(Ipv6Addr::new(a, b, c, d, e, f, g, h))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl fmt::Display for IpAddr {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
IpAddr::V4(v4) => v4.fmt(f),
IpAddr::V6(v6) => v6.fmt(f)
}
}
}
impl Ipv4Addr {
/// Create a new IPv4 address from four eight-bit octets.
///
/// The result will represent the IP address a.b.c.d
pub fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
Ipv4Addr {
inner: libc::in_addr {
s_addr: hton(((a as u32) << 24) |
((b as u32) << 16) |
((c as u32) << 8) |
(d as u32)),
}
}
}
/// Returns the four eight-bit integers that make up this address
pub fn octets(&self) -> [u8; 4] {
let bits = ntoh(self.inner.s_addr);
[(bits >> 24) as u8, (bits >> 16) as u8, (bits >> 8) as u8, bits as u8]
}
/// Returns true for the special 'unspecified' address 0.0.0.0
pub fn is_unspecified(&self) -> bool {
self.inner.s_addr == 0
}
/// Returns true if this is a loopback address (127.0.0.0/8)
pub fn is_loopback(&self) -> bool {
self.octets()[0] == 127
}
/// Returns true if this is a private address.
///
/// The private address ranges are defined in RFC1918 and include:
///
/// - 10.0.0.0/8
/// - 172.16.0.0/12
/// - 192.168.0.0/16
pub fn is_private(&self) -> bool {
match (self.octets()[0], self.octets()[1]) {
(10, _) => true,
(172, b) if b >= 16 && b <= 31 => true,
(192, 168) => true,
_ => false
}
}
/// Returns true if the address is link-local (169.254.0.0/16)
pub fn is_link_local(&self) -> bool {
self.octets()[0] == 169 && self.octets()[1] == 254
}
/// Returns true if the address appears to be globally routable.
///
/// Non-globally-routable networks include the private networks (10.0.0.0/8,
/// 172.16.0.0/12 and 192.168.0.0/16), the loopback network (127.0.0.0/8),
/// and the link-local network (169.254.0.0/16).
pub fn is_global(&self) -> bool {
!self.is_private() && !self.is_loopback() && !self.is_link_local()
}
/// Returns true if this is a multicast address.
///
/// Multicast addresses have a most significant octet between 224 and 239.
pub fn is_multicast(&self) -> bool {
self.octets()[0] >= 224 && self.octets()[0] <= 239
}
/// Convert this address to an IPv4-compatible IPv6 address
///
/// a.b.c.d becomes ::a.b.c.d
pub fn to_ipv6_compatible(&self) -> Ipv6Addr {
Ipv6Addr::new(0, 0, 0, 0, 0, 0,
((self.octets()[0] as u16) << 8) | self.octets()[1] as u16,
((self.octets()[2] as u16) << 8) | self.octets()[3] as u16)
}
/// Convert this address to an IPv4-mapped IPv6 address
///
/// a.b.c.d becomes ::ffff:a.b.c.d
pub fn to_ipv6_mapped(&self) -> Ipv6Addr {
Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff,
((self.octets()[0] as u16) << 8) | self.octets()[1] as u16,
((self.octets()[2] as u16) << 8) | self.octets()[3] as u16)
}
}
impl fmt::Display for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let octets = self.octets();
write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
}
}
impl fmt::Debug for Ipv4Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
impl Clone for Ipv4Addr {
fn clone(&self) -> Ipv4Addr { *self }
}
impl PartialEq for Ipv4Addr {
fn eq(&self, other: &Ipv4Addr) -> bool {
self.inner.s_addr == other.inner.s_addr
}
}
impl Eq for Ipv4Addr {}
impl<S: hash::Hasher + hash::Writer> hash::Hash<S> for Ipv4Addr {
fn hash(&self, s: &mut S) {
self.inner.s_addr.hash(s)
}
}
impl PartialOrd for Ipv4Addr {
fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Ipv4Addr {
fn cmp(&self, other: &Ipv4Addr) -> Ordering {
self.inner.s_addr.cmp(&other.inner.s_addr)
}
}
impl AsInner<libc::in_addr> for Ipv4Addr {
fn as_inner(&self) -> &libc::in_addr { &self.inner }
}
impl FromInner<libc::in_addr> for Ipv4Addr {
fn from_inner(addr: libc::in_addr) -> Ipv4Addr {
Ipv4Addr { inner: addr }
}
}
impl Ipv6Addr {
/// Create a new IPv6 address from eight 16-bit segments.
///
/// The result will represent the IP address a:b:c:d:e:f
pub fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16,
h: u16) -> Ipv6Addr {
Ipv6Addr {
inner: libc::in6_addr {
s6_addr: [hton(a), hton(b), hton(c), hton(d),
hton(e), hton(f), hton(g), hton(h)]
}
}
}
/// Return the eight 16-bit segments that make up this address
pub fn segments(&self) -> [u16; 8] {
[ntoh(self.inner.s6_addr[0]),
ntoh(self.inner.s6_addr[1]),
ntoh(self.inner.s6_addr[2]),
ntoh(self.inner.s6_addr[3]),
ntoh(self.inner.s6_addr[4]),
ntoh(self.inner.s6_addr[5]),
ntoh(self.inner.s6_addr[6]),
ntoh(self.inner.s6_addr[7])]
}
/// Returns true for the special 'unspecified' address ::
pub fn is_unspecified(&self) -> bool {
self.segments() == [0, 0, 0, 0, 0, 0, 0, 0]
}
/// Returns true if this is a loopback address (::1)
pub fn is_loopback(&self) -> bool {
self.segments() == [0, 0, 0, 0, 0, 0, 0, 1]
}
/// Returns true if the address appears to be globally routable.
///
/// Non-globally-routable networks include the loopback address; the
/// link-local, site-local, and unique local unicast addresses; and the
/// interface-, link-, realm-, admin- and site-local multicast addresses.
pub fn is_global(&self) -> bool {
match self.multicast_scope() {
Some(Ipv6MulticastScope::Global) => true,
None => self.is_unicast_global(),
_ => false
}
}
/// Returns true if this is a unique local address (IPv6)
///
/// Unique local addresses are defined in RFC4193 and have the form fc00::/7
pub fn is_unique_local(&self) -> bool {
(self.segments()[0] & 0xfe00) == 0xfc00
}
/// Returns true if the address is unicast and link-local (fe80::/10)
pub fn is_unicast_link_local(&self) -> bool {
(self.segments()[0] & 0xffc0) == 0xfe80
}
/// Returns true if this is a deprecated unicast site-local address (IPv6
/// fec0::/10)
pub fn is_unicast_site_local(&self) -> bool {
(self.segments()[0] & 0xffc0) == 0xfec0
}
/// Returns true if the address is a globally routable unicast address
///
/// Non-globally-routable unicast addresses include the loopback address,
/// the link-local addresses, the deprecated site-local addresses and the
/// unique local addresses.
pub fn is_unicast_global(&self) -> bool {
!self.is_multicast()
&& !self.is_loopback() && !self.is_unicast_link_local()
&& !self.is_unicast_site_local() && !self.is_unique_local()
}
/// Returns the address's multicast scope if the address is multicast.
pub fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
if self.is_multicast() {
match self.segments()[0] & 0x000f {
1 => Some(Ipv6MulticastScope::InterfaceLocal),
2 => Some(Ipv6MulticastScope::LinkLocal),
3 => Some(Ipv6MulticastScope::RealmLocal),
4 => Some(Ipv6MulticastScope::AdminLocal),
5 => Some(Ipv6MulticastScope::SiteLocal),
8 => Some(Ipv6MulticastScope::OrganizationLocal),
14 => Some(Ipv6MulticastScope::Global),
_ => None
}
} else {
None
}
}
/// Returns true if this is a multicast address.
///
/// Multicast addresses have the form ff00::/8.
pub fn is_multicast(&self) -> bool {
(self.segments()[0] & 0xff00) == 0xff00
}
/// Convert this address to an IPv4 address. Returns None if this address is
/// neither IPv4-compatible or IPv4-mapped.
///
/// ::a.b.c.d and ::ffff:a.b.c.d become a.b.c.d
pub fn to_ipv4(&self) -> Option<Ipv4Addr> {
match self.segments() {
[0, 0, 0, 0, 0, f, g, h] if f == 0 || f == 0xffff => {
Some(Ipv4Addr::new((g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8))
},
_ => None
}
}
}
impl fmt::Display for Ipv6Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
match self.segments() {
// We need special cases for :: and ::1, otherwise they're formatted
// as ::0.0.0.[01]
[0, 0, 0, 0, 0, 0, 0, 0] => write!(fmt, "::"),
[0, 0, 0, 0, 0, 0, 0, 1] => write!(fmt, "::1"),
// Ipv4 Compatible address
[0, 0, 0, 0, 0, 0, g, h] => {
write!(fmt, "::{}.{}.{}.{}", (g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8)
}
// Ipv4-Mapped address
[0, 0, 0, 0, 0, 0xffff, g, h] => {
write!(fmt, "::ffff:{}.{}.{}.{}", (g >> 8) as u8, g as u8,
(h >> 8) as u8, h as u8)
},
_ => {
fn find_zero_slice(segments: &[u16; 8]) -> (usize, usize) {
let mut longest_span_len = 0;
let mut longest_span_at = 0;
let mut cur_span_len = 0;
let mut cur_span_at = 0;
for i in range(0, 8) {
if segments[i] == 0 {
if cur_span_len == 0 {
cur_span_at = i;
}
cur_span_len += 1;
if cur_span_len > longest_span_len {
longest_span_len = cur_span_len;
longest_span_at = cur_span_at;
}
} else {
cur_span_len = 0;
cur_span_at = 0;
}
}
(longest_span_at, longest_span_len)
}
let (zeros_at, zeros_len) = find_zero_slice(&self.segments());
if zeros_len > 1 {
fn fmt_subslice(segments: &[u16]) -> String {
segments
.iter()
.map(|&seg| format!("{:x}", seg))
.collect::<Vec<String>>()
.as_slice()
.connect(":")
}
write!(fmt, "{}::{}",
fmt_subslice(&self.segments()[..zeros_at]),
fmt_subslice(&self.segments()[zeros_at + zeros_len..]))
} else {
let &[a, b, c, d, e, f, g, h] = &self.segments();
write!(fmt, "{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}:{:x}",
a, b, c, d, e, f, g, h)
}
}
}
}
}
impl fmt::Debug for Ipv6Addr {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
fmt::Display::fmt(self, fmt)
}
}
impl Clone for Ipv6Addr {
fn clone(&self) -> Ipv6Addr { *self }
}
impl PartialEq for Ipv6Addr {
fn eq(&self, other: &Ipv6Addr) -> bool {
self.inner.s6_addr == other.inner.s6_addr
}
}
impl Eq for Ipv6Addr {}
impl<S: hash::Hasher + hash::Writer> hash::Hash<S> for Ipv6Addr {
fn hash(&self, s: &mut S) {
self.inner.s6_addr.hash(s)
}
}
impl PartialOrd for Ipv6Addr {
fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Ipv6Addr {
fn cmp(&self, other: &Ipv6Addr) -> Ordering {
self.inner.s6_addr.cmp(&other.inner.s6_addr)
}
}
impl AsInner<libc::in6_addr> for Ipv6Addr {
fn as_inner(&self) -> &libc::in6_addr { &self.inner }
}
impl FromInner<libc::in6_addr> for Ipv6Addr {
fn from_inner(addr: libc::in6_addr) -> Ipv6Addr {
Ipv6Addr { inner: addr }
}
}