rust/clippy_lints/src/infinite_iter.rs

219 lines
6.3 KiB
Rust
Raw Normal View History

use rustc::hir::*;
use rustc::lint::*;
use utils::{get_trait_def_id, implements_trait, higher, match_path, paths, span_lint};
/// **What it does:** Checks for iteration that is guaranteed to be infinite.
///
/// **Why is this bad?** While there may be places where this is acceptable
/// (e.g. in event streams), in most cases this is simply an error.
///
/// **Known problems:** None.
///
/// **Example:**
/// ```rust
/// repeat(1_u8).iter().collect::<Vec<_>>()
/// ```
declare_lint! {
pub INFINITE_ITER,
Warn,
"infinite iteration"
}
/// **What it does:** Checks for iteration that may be infinite.
///
/// **Why is this bad?** While there may be places where this is acceptable
/// (e.g. in event streams), in most cases this is simply an error.
///
/// **Known problems:** The code may have a condition to stop iteration, but
/// this lint is not clever enough to analyze it.
///
/// **Example:**
/// ```rust
/// [0..].iter().zip(infinite_iter.take_while(|x| x > 5))
/// ```
declare_lint! {
pub MAYBE_INFINITE_ITER,
Allow,
"possible infinite iteration"
}
#[derive(Copy, Clone)]
pub struct Pass;
impl LintPass for Pass {
fn get_lints(&self) -> LintArray {
lint_array!(INFINITE_ITER, MAYBE_INFINITE_ITER)
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for Pass {
fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &'tcx Expr) {
let (lint, msg) = match complete_infinite_iter(cx, expr) {
True => (INFINITE_ITER, "infinite iteration detected"),
Unknown => (MAYBE_INFINITE_ITER,
"possible infinite iteration detected"),
False => { return; }
};
span_lint(cx, lint, expr.span, msg)
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum TriState {
True,
Unknown,
False
}
use self::TriState::{True, Unknown, False};
impl TriState {
fn and(self, b: Self) -> Self {
match (self, b) {
(False, _) | (_, False) => False,
(Unknown, _) | (_, Unknown) => Unknown,
_ => True
}
}
fn or(self, b: Self) -> Self {
match (self, b) {
(True, _) | (_, True) => True,
(Unknown, _) | (_, Unknown) => Unknown,
_ => False
}
}
}
impl From<bool> for TriState {
fn from(b: bool) -> Self {
if b { True } else { False }
}
}
#[derive(Copy, Clone)]
enum Heuristic {
Always,
First,
Any,
All
}
use self::Heuristic::{Always, First, Any, All};
// here we use the `TriState` as (Finite, Possible Infinite, Infinite)
static HEURISTICS : &[(&str, usize, Heuristic, TriState)] = &[
("zip", 2, All, True),
("chain", 2, Any, True),
("cycle", 1, Always, True),
("map", 2, First, True),
("by_ref", 1, First, True),
("cloned", 1, First, True),
("rev", 1, First, True),
("inspect", 1, First, True),
("enumerate", 1, First, True),
("peekable", 2, First, True),
("fuse", 1, First, True),
("skip", 2, First, True),
("skip_while", 1, First, True),
("filter", 2, First, True),
("filter_map", 2, First, True),
("flat_map", 2, First, True),
("unzip", 1, First, True),
("take_while", 2, First, Unknown),
("scan", 3, First, Unknown)
];
fn is_infinite(cx: &LateContext, expr: &Expr) -> TriState {
match expr.node {
ExprMethodCall(ref method, _, ref args) => {
for &(name, len, heuristic, cap) in HEURISTICS.iter() {
if method.name == name && args.len() == len {
return (match heuristic {
Always => True,
First => is_infinite(cx, &args[0]),
Any => is_infinite(cx, &args[0]).or(is_infinite(cx, &args[1])),
All => is_infinite(cx, &args[0]).and(is_infinite(cx, &args[1])),
}).and(cap);
}
}
if method.name == "flat_map" && args.len() == 2 {
if let ExprClosure(_, _, body_id, _) = args[1].node {
let body = cx.tcx.hir.body(body_id);
return is_infinite(cx, &body.value);
}
}
False
},
ExprBlock(ref block) =>
block.expr.as_ref().map_or(False, |e| is_infinite(cx, e)),
ExprBox(ref e) | ExprAddrOf(_, ref e) => is_infinite(cx, e),
ExprCall(ref path, _) => {
if let ExprPath(ref qpath) = path.node {
match_path(qpath, &paths::REPEAT).into()
} else { False }
},
ExprStruct(..) => {
higher::range(expr).map_or(false, |r| r.end.is_none()).into()
},
_ => False
}
}
static POSSIBLY_COMPLETING_METHODS : &[(&str, usize)] = &[
("find", 2),
("rfind", 2),
("position", 2),
("rposition", 2),
("any", 2),
("all", 2)
];
static COMPLETING_METHODS : &[(&str, usize)] = &[
("count", 1),
("collect", 1),
("fold", 3),
("for_each", 2),
("partition", 2),
("max", 1),
("max_by", 2),
("max_by_key", 2),
("min", 1),
("min_by", 2),
("min_by_key", 2),
("sum", 1),
("product", 1)
];
fn complete_infinite_iter(cx: &LateContext, expr: &Expr) -> TriState {
match expr.node {
ExprMethodCall(ref method, _, ref args) => {
for &(name, len) in COMPLETING_METHODS.iter() {
if method.name == name && args.len() == len {
return is_infinite(cx, &args[0]);
}
}
for &(name, len) in POSSIBLY_COMPLETING_METHODS.iter() {
if method.name == name && args.len() == len {
return Unknown.and(is_infinite(cx, &args[0]));
}
}
if method.name == "last" && args.len() == 1 &&
get_trait_def_id(cx, &paths::DOUBLE_ENDED_ITERATOR).map_or(false,
|id| !implements_trait(cx,
cx.tables.expr_ty(&args[0]),
id,
&[])) {
return is_infinite(cx, &args[0]);
}
},
ExprBinary(op, ref l, ref r) => {
if op.node.is_comparison() {
return is_infinite(cx, l).and(is_infinite(cx, r)).and(Unknown)
}
}, //TODO: ExprLoop + Match
_ => ()
}
False
}