1705 lines
65 KiB
Rust
Raw Normal View History

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use index::Index;
use index_builder::{FromId, IndexBuilder, Untracked};
use isolated_encoder::IsolatedEncoder;
use schema::*;
use rustc::middle::cstore::{LinkMeta, LinkagePreference, NativeLibrary,
EncodedMetadata, EncodedMetadataHashes,
EncodedMetadataHash};
use rustc::hir::def::CtorKind;
use rustc::hir::def_id::{CrateNum, CRATE_DEF_INDEX, DefIndex, DefId, LOCAL_CRATE};
use rustc::hir::map::definitions::{DefPathTable, GlobalMetaDataKind};
use rustc::ich::Fingerprint;
use rustc::middle::dependency_format::Linkage;
use rustc::middle::lang_items;
use rustc::mir;
use rustc::traits::specialization_graph;
use rustc::ty::{self, Ty, TyCtxt, ReprOptions};
use rustc::session::config::{self, CrateTypeProcMacro};
use rustc::util::nodemap::{FxHashMap, NodeSet};
use rustc_serialize::{Encodable, Encoder, SpecializedEncoder, opaque};
use std::hash::Hash;
use std::intrinsics;
2015-03-11 15:24:14 -07:00
use std::io::prelude::*;
use std::io::Cursor;
use std::path::Path;
use std::rc::Rc;
use std::u32;
use syntax::ast::{self, CRATE_NODE_ID};
use syntax::codemap::Spanned;
use syntax::attr;
use syntax::symbol::Symbol;
use syntax_pos;
2016-03-29 08:50:44 +03:00
use rustc::hir::{self, PatKind};
use rustc::hir::itemlikevisit::ItemLikeVisitor;
use rustc::hir::intravisit::{Visitor, NestedVisitorMap};
2016-03-29 08:50:44 +03:00
use rustc::hir::intravisit;
2015-07-31 00:04:06 -07:00
pub struct EncodeContext<'a, 'tcx: 'a> {
opaque: opaque::Encoder<'a>,
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
link_meta: &'a LinkMeta,
exported_symbols: &'a NodeSet,
lazy_state: LazyState,
type_shorthands: FxHashMap<Ty<'tcx>, usize>,
predicate_shorthands: FxHashMap<ty::Predicate<'tcx>, usize>,
pub metadata_hashes: EncodedMetadataHashes,
pub compute_ich: bool,
}
macro_rules! encoder_methods {
($($name:ident($ty:ty);)*) => {
$(fn $name(&mut self, value: $ty) -> Result<(), Self::Error> {
self.opaque.$name(value)
})*
}
}
impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> {
type Error = <opaque::Encoder<'a> as Encoder>::Error;
fn emit_nil(&mut self) -> Result<(), Self::Error> {
Ok(())
}
encoder_methods! {
emit_usize(usize);
emit_u128(u128);
emit_u64(u64);
emit_u32(u32);
emit_u16(u16);
emit_u8(u8);
emit_isize(isize);
emit_i128(i128);
emit_i64(i64);
emit_i32(i32);
emit_i16(i16);
emit_i8(i8);
emit_bool(bool);
emit_f64(f64);
emit_f32(f32);
emit_char(char);
emit_str(&str);
}
}
impl<'a, 'tcx, T> SpecializedEncoder<Lazy<T>> for EncodeContext<'a, 'tcx> {
fn specialized_encode(&mut self, lazy: &Lazy<T>) -> Result<(), Self::Error> {
self.emit_lazy_distance(lazy.position, Lazy::<T>::min_size())
}
}
impl<'a, 'tcx, T> SpecializedEncoder<LazySeq<T>> for EncodeContext<'a, 'tcx> {
fn specialized_encode(&mut self, seq: &LazySeq<T>) -> Result<(), Self::Error> {
self.emit_usize(seq.len)?;
if seq.len == 0 {
return Ok(());
}
self.emit_lazy_distance(seq.position, LazySeq::<T>::min_size(seq.len))
}
}
impl<'a, 'tcx> SpecializedEncoder<Ty<'tcx>> for EncodeContext<'a, 'tcx> {
fn specialized_encode(&mut self, ty: &Ty<'tcx>) -> Result<(), Self::Error> {
self.encode_with_shorthand(ty, &ty.sty, |ecx| &mut ecx.type_shorthands)
}
}
impl<'a, 'tcx> SpecializedEncoder<ty::GenericPredicates<'tcx>> for EncodeContext<'a, 'tcx> {
fn specialized_encode(&mut self,
predicates: &ty::GenericPredicates<'tcx>)
-> Result<(), Self::Error> {
predicates.parent.encode(self)?;
predicates.predicates.len().encode(self)?;
for predicate in &predicates.predicates {
self.encode_with_shorthand(predicate, predicate, |ecx| &mut ecx.predicate_shorthands)?
}
Ok(())
}
}
impl<'a, 'tcx> EncodeContext<'a, 'tcx> {
pub fn position(&self) -> usize {
self.opaque.position()
}
fn emit_node<F: FnOnce(&mut Self, usize) -> R, R>(&mut self, f: F) -> R {
assert_eq!(self.lazy_state, LazyState::NoNode);
let pos = self.position();
self.lazy_state = LazyState::NodeStart(pos);
let r = f(self, pos);
self.lazy_state = LazyState::NoNode;
r
}
fn emit_lazy_distance(&mut self,
position: usize,
min_size: usize)
-> Result<(), <Self as Encoder>::Error> {
let min_end = position + min_size;
let distance = match self.lazy_state {
LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"),
LazyState::NodeStart(start) => {
assert!(min_end <= start);
start - min_end
}
LazyState::Previous(last_min_end) => {
assert!(last_min_end <= position);
position - last_min_end
}
};
self.lazy_state = LazyState::Previous(min_end);
self.emit_usize(distance)
}
pub fn lazy<T: Encodable>(&mut self, value: &T) -> Lazy<T> {
self.emit_node(|ecx, pos| {
value.encode(ecx).unwrap();
assert!(pos + Lazy::<T>::min_size() <= ecx.position());
Lazy::with_position(pos)
})
}
pub fn lazy_seq<I, T>(&mut self, iter: I) -> LazySeq<T>
where I: IntoIterator<Item = T>,
T: Encodable
{
self.emit_node(|ecx, pos| {
let len = iter.into_iter().map(|value| value.encode(ecx).unwrap()).count();
assert!(pos + LazySeq::<T>::min_size(len) <= ecx.position());
LazySeq::with_position_and_length(pos, len)
})
}
pub fn lazy_seq_ref<'b, I, T>(&mut self, iter: I) -> LazySeq<T>
where I: IntoIterator<Item = &'b T>,
T: 'b + Encodable
{
self.emit_node(|ecx, pos| {
let len = iter.into_iter().map(|value| value.encode(ecx).unwrap()).count();
assert!(pos + LazySeq::<T>::min_size(len) <= ecx.position());
LazySeq::with_position_and_length(pos, len)
})
}
/// Encode the given value or a previously cached shorthand.
fn encode_with_shorthand<T, U, M>(&mut self,
value: &T,
variant: &U,
map: M)
-> Result<(), <Self as Encoder>::Error>
where M: for<'b> Fn(&'b mut Self) -> &'b mut FxHashMap<T, usize>,
T: Clone + Eq + Hash,
U: Encodable
{
let existing_shorthand = map(self).get(value).cloned();
if let Some(shorthand) = existing_shorthand {
return self.emit_usize(shorthand);
}
let start = self.position();
variant.encode(self)?;
let len = self.position() - start;
// The shorthand encoding uses the same usize as the
// discriminant, with an offset so they can't conflict.
let discriminant = unsafe { intrinsics::discriminant_value(variant) };
assert!(discriminant < SHORTHAND_OFFSET as u64);
let shorthand = start + SHORTHAND_OFFSET;
// Get the number of bits that leb128 could fit
// in the same space as the fully encoded type.
let leb128_bits = len * 7;
// Check that the shorthand is a not longer than the
// full encoding itself, i.e. it's an obvious win.
if leb128_bits >= 64 || (shorthand as u64) < (1 << leb128_bits) {
map(self).insert(value.clone(), shorthand);
}
Ok(())
}
// Encodes something that corresponds to a single DepNode::GlobalMetaData
// and registers the Fingerprint in the `metadata_hashes` map.
pub fn tracked<'x, DATA, R>(&'x mut self,
def_index: DefIndex,
op: fn(&mut IsolatedEncoder<'x, 'a, 'tcx>, DATA) -> R,
data: DATA)
-> Tracked<R> {
let mut entry_builder = IsolatedEncoder::new(self);
let ret = op(&mut entry_builder, data);
let (fingerprint, this) = entry_builder.finish();
if let Some(fingerprint) = fingerprint {
this.metadata_hashes.hashes.push(EncodedMetadataHash {
def_index,
hash: fingerprint,
})
}
Tracked::new(ret)
}
fn encode_info_for_items(&mut self) -> Index {
let krate = self.tcx.hir.krate();
let mut index = IndexBuilder::new(self);
index.record(DefId::local(CRATE_DEF_INDEX),
IsolatedEncoder::encode_info_for_mod,
FromId(CRATE_NODE_ID, (&krate.module, &krate.attrs, &hir::Public)));
let mut visitor = EncodeVisitor { index: index };
krate.visit_all_item_likes(&mut visitor.as_deep_visitor());
for macro_def in &krate.exported_macros {
visitor.visit_macro_def(macro_def);
}
visitor.index.into_items()
}
fn encode_def_path_table(&mut self) -> Lazy<DefPathTable> {
let definitions = self.tcx.hir.definitions();
self.lazy(definitions.def_path_table())
}
fn encode_codemap(&mut self) -> LazySeq<syntax_pos::FileMap> {
let codemap = self.tcx.sess.codemap();
let all_filemaps = codemap.files();
let (working_dir, working_dir_was_remapped) = self.tcx.sess.working_dir.clone();
let adapted = all_filemaps.iter()
.filter(|filemap| {
// No need to re-export imported filemaps, as any downstream
// crate will import them from their original source.
!filemap.is_imported()
})
.map(|filemap| {
// When exporting FileMaps, we expand all paths to absolute
// paths because any relative paths are potentially relative to
// a wrong directory.
// However, if a path has been modified via
// `-Zremap-path-prefix` we assume the user has already set
// things up the way they want and don't touch the path values
// anymore.
let name = Path::new(&filemap.name);
if filemap.name_was_remapped ||
(name.is_relative() && working_dir_was_remapped) {
// This path of this FileMap has been modified by
// path-remapping, so we use it verbatim (and avoid cloning
// the whole map in the process).
filemap.clone()
} else {
let mut adapted = (**filemap).clone();
let abs_path = Path::new(&working_dir).join(name)
.to_string_lossy()
.into_owned();
adapted.name = abs_path;
Rc::new(adapted)
}
})
.collect::<Vec<_>>();
self.lazy_seq_ref(adapted.iter().map(|rc| &**rc))
}
fn encode_crate_root(&mut self) -> Lazy<CrateRoot> {
let mut i = self.position();
let tcx = self.tcx;
let global_metadata_def_index = move |kind: GlobalMetaDataKind| {
kind.def_index(tcx.hir.definitions().def_path_table())
};
let crate_deps = self.tracked(
global_metadata_def_index(GlobalMetaDataKind::CrateDeps),
IsolatedEncoder::encode_crate_deps,
());
let dylib_dependency_formats = self.tracked(
global_metadata_def_index(GlobalMetaDataKind::DylibDependencyFormats),
IsolatedEncoder::encode_dylib_dependency_formats,
());
let dep_bytes = self.position() - i;
// Encode the language items.
i = self.position();
let lang_items = self.tracked(
global_metadata_def_index(GlobalMetaDataKind::LangItems),
IsolatedEncoder::encode_lang_items,
());
let lang_items_missing = self.tracked(
global_metadata_def_index(GlobalMetaDataKind::LangItemsMissing),
IsolatedEncoder::encode_lang_items_missing,
());
let lang_item_bytes = self.position() - i;
// Encode the native libraries used
i = self.position();
let native_libraries = self.tracked(
global_metadata_def_index(GlobalMetaDataKind::NativeLibraries),
IsolatedEncoder::encode_native_libraries,
());
let native_lib_bytes = self.position() - i;
// Encode codemap
i = self.position();
let codemap = self.encode_codemap();
let codemap_bytes = self.position() - i;
// Encode DefPathTable
i = self.position();
let def_path_table = self.encode_def_path_table();
let def_path_table_bytes = self.position() - i;
// Encode the def IDs of impls, for coherence checking.
i = self.position();
let impls = self.tracked(
global_metadata_def_index(GlobalMetaDataKind::Impls),
IsolatedEncoder::encode_impls,
());
let impl_bytes = self.position() - i;
// Encode exported symbols info.
i = self.position();
let exported_symbols = self.tracked(
global_metadata_def_index(GlobalMetaDataKind::ExportedSymbols),
IsolatedEncoder::encode_exported_symbols,
self.exported_symbols);
let exported_symbols_bytes = self.position() - i;
// Encode and index the items.
i = self.position();
let items = self.encode_info_for_items();
let item_bytes = self.position() - i;
i = self.position();
let index = items.write_index(&mut self.opaque.cursor);
let index_bytes = self.position() - i;
let tcx = self.tcx;
let link_meta = self.link_meta;
let is_proc_macro = tcx.sess.crate_types.borrow().contains(&CrateTypeProcMacro);
let has_default_lib_allocator =
attr::contains_name(tcx.hir.krate_attrs(), "default_lib_allocator");
let has_global_allocator = tcx.sess.has_global_allocator.get();
let root = self.lazy(&CrateRoot {
name: tcx.crate_name(LOCAL_CRATE),
triple: tcx.sess.opts.target_triple.clone(),
hash: link_meta.crate_hash,
disambiguator: tcx.sess.local_crate_disambiguator(),
panic_strategy: Tracked::new(tcx.sess.panic_strategy()),
has_global_allocator: Tracked::new(has_global_allocator),
has_default_lib_allocator: Tracked::new(has_default_lib_allocator),
plugin_registrar_fn: tcx.sess
.plugin_registrar_fn
.get()
.map(|id| tcx.hir.local_def_id(id).index),
macro_derive_registrar: if is_proc_macro {
let id = tcx.sess.derive_registrar_fn.get().unwrap();
Some(tcx.hir.local_def_id(id).index)
} else {
None
},
crate_deps,
dylib_dependency_formats,
lang_items,
lang_items_missing,
native_libraries,
codemap,
def_path_table,
impls,
exported_symbols,
index,
});
let total_bytes = self.position();
self.metadata_hashes.hashes.push(EncodedMetadataHash {
def_index: global_metadata_def_index(GlobalMetaDataKind::Krate),
hash: Fingerprint::from_smaller_hash(link_meta.crate_hash.as_u64())
});
if self.tcx.sess.meta_stats() {
let mut zero_bytes = 0;
for e in self.opaque.cursor.get_ref() {
if *e == 0 {
zero_bytes += 1;
}
}
println!("metadata stats:");
println!(" dep bytes: {}", dep_bytes);
println!(" lang item bytes: {}", lang_item_bytes);
println!(" native bytes: {}", native_lib_bytes);
println!(" codemap bytes: {}", codemap_bytes);
println!(" impl bytes: {}", impl_bytes);
println!(" exp. symbols bytes: {}", exported_symbols_bytes);
println!(" def-path table bytes: {}", def_path_table_bytes);
println!(" item bytes: {}", item_bytes);
println!(" index bytes: {}", index_bytes);
println!(" zero bytes: {}", zero_bytes);
println!(" total bytes: {}", total_bytes);
}
root
}
}
// These are methods for encoding various things. They are meant to be used with
// IndexBuilder::record() and EncodeContext::tracked(). They actually
// would not have to be methods of IsolatedEncoder (free standing functions
// taking IsolatedEncoder as first argument would be just fine) but by making
// them methods we don't have to repeat the lengthy `<'a, 'b: 'a, 'tcx: 'b>`
// clause again and again.
impl<'a, 'b: 'a, 'tcx: 'b> IsolatedEncoder<'a, 'b, 'tcx> {
fn encode_variances_of(&mut self, def_id: DefId) -> LazySeq<ty::Variance> {
debug!("IsolatedEncoder::encode_variances_of({:?})", def_id);
let tcx = self.tcx;
self.lazy_seq_from_slice(&tcx.variances_of(def_id))
}
fn encode_item_type(&mut self, def_id: DefId) -> Lazy<Ty<'tcx>> {
let tcx = self.tcx;
let ty = tcx.type_of(def_id);
debug!("IsolatedEncoder::encode_item_type({:?}) => {:?}", def_id, ty);
self.lazy(&ty)
}
/// Encode data for the given variant of the given ADT. The
/// index of the variant is untracked: this is ok because we
/// will have to lookup the adt-def by its id, and that gives us
/// the right to access any information in the adt-def (including,
/// e.g., the length of the various vectors).
fn encode_enum_variant_info(&mut self,
(enum_did, Untracked(index)): (DefId, Untracked<usize>))
-> Entry<'tcx> {
let tcx = self.tcx;
let def = tcx.adt_def(enum_did);
let variant = &def.variants[index];
let def_id = variant.did;
debug!("IsolatedEncoder::encode_enum_variant_info({:?})", def_id);
let data = VariantData {
ctor_kind: variant.ctor_kind,
discr: variant.discr,
struct_ctor: None,
ctor_sig: if variant.ctor_kind == CtorKind::Fn {
Some(self.lazy(&tcx.fn_sig(def_id)))
} else {
None
}
};
let enum_id = tcx.hir.as_local_node_id(enum_did).unwrap();
let enum_vis = &tcx.hir.expect_item(enum_id).vis;
Entry {
kind: EntryKind::Variant(self.lazy(&data)),
visibility: self.lazy(&ty::Visibility::from_hir(enum_vis, enum_id, tcx)),
span: self.lazy(&tcx.def_span(def_id)),
attributes: self.encode_attributes(&tcx.get_attrs(def_id)),
children: self.lazy_seq(variant.fields.iter().map(|f| {
assert!(f.did.is_local());
f.did.index
})),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: if variant.ctor_kind == CtorKind::Fn {
self.encode_variances_of(def_id)
} else {
LazySeq::empty()
},
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: None,
mir: self.encode_optimized_mir(def_id),
}
}
fn encode_info_for_mod(&mut self,
FromId(id, (md, attrs, vis)): FromId<(&hir::Mod,
&[ast::Attribute],
&hir::Visibility)>)
-> Entry<'tcx> {
let tcx = self.tcx;
let hir_id = tcx.hir.node_to_hir_id(id);
let def_id = tcx.hir.local_def_id(id);
debug!("IsolatedEncoder::encode_info_for_mod({:?})", def_id);
let data = ModData {
reexports: match tcx.module_exports(hir_id) {
Some(ref exports) if *vis == hir::Public => {
self.lazy_seq_from_slice(exports.as_slice())
}
_ => LazySeq::empty(),
},
};
Entry {
kind: EntryKind::Mod(self.lazy(&data)),
visibility: self.lazy(&ty::Visibility::from_hir(vis, id, tcx)),
span: self.lazy(&tcx.def_span(def_id)),
attributes: self.encode_attributes(attrs),
children: self.lazy_seq(md.item_ids.iter().map(|item_id| {
tcx.hir.local_def_id(item_id.id).index
})),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: None,
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: None,
predicates: None,
ast: None,
mir: None
}
}
2016-08-12 16:18:22 -04:00
/// Encode data for the given field of the given variant of the
/// given ADT. The indices of the variant/field are untracked:
/// this is ok because we will have to lookup the adt-def by its
/// id, and that gives us the right to access any information in
/// the adt-def (including, e.g., the length of the various
/// vectors).
fn encode_field(&mut self,
(adt_def_id, Untracked((variant_index, field_index))): (DefId,
Untracked<(usize,
usize)>))
-> Entry<'tcx> {
let tcx = self.tcx;
let variant = &tcx.adt_def(adt_def_id).variants[variant_index];
2016-08-12 16:18:22 -04:00
let field = &variant.fields[field_index];
let def_id = field.did;
debug!("IsolatedEncoder::encode_field({:?})", def_id);
let variant_id = tcx.hir.as_local_node_id(variant.did).unwrap();
let variant_data = tcx.hir.expect_variant_data(variant_id);
Entry {
kind: EntryKind::Field,
visibility: self.lazy(&field.vis),
span: self.lazy(&tcx.def_span(def_id)),
attributes: self.encode_attributes(&variant_data.fields()[field_index].attrs),
children: LazySeq::empty(),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: None,
mir: None,
}
}
fn encode_struct_ctor(&mut self, (adt_def_id, def_id): (DefId, DefId)) -> Entry<'tcx> {
debug!("IsolatedEncoder::encode_struct_ctor({:?})", def_id);
let tcx = self.tcx;
let variant = tcx.adt_def(adt_def_id).struct_variant();
let data = VariantData {
ctor_kind: variant.ctor_kind,
discr: variant.discr,
struct_ctor: Some(def_id.index),
ctor_sig: if variant.ctor_kind == CtorKind::Fn {
Some(self.lazy(&tcx.fn_sig(def_id)))
} else {
None
}
};
let struct_id = tcx.hir.as_local_node_id(adt_def_id).unwrap();
let struct_vis = &tcx.hir.expect_item(struct_id).vis;
let mut ctor_vis = ty::Visibility::from_hir(struct_vis, struct_id, tcx);
for field in &variant.fields {
if ctor_vis.is_at_least(field.vis, tcx) {
ctor_vis = field.vis;
}
}
let repr_options = get_repr_options(&tcx, adt_def_id);
Entry {
kind: EntryKind::Struct(self.lazy(&data), repr_options),
visibility: self.lazy(&ctor_vis),
span: self.lazy(&tcx.def_span(def_id)),
attributes: LazySeq::empty(),
children: LazySeq::empty(),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: if variant.ctor_kind == CtorKind::Fn {
self.encode_variances_of(def_id)
} else {
LazySeq::empty()
},
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: None,
mir: self.encode_optimized_mir(def_id),
}
}
fn encode_generics(&mut self, def_id: DefId) -> Lazy<ty::Generics> {
debug!("IsolatedEncoder::encode_generics({:?})", def_id);
let tcx = self.tcx;
self.lazy(tcx.generics_of(def_id))
}
fn encode_predicates(&mut self, def_id: DefId) -> Lazy<ty::GenericPredicates<'tcx>> {
debug!("IsolatedEncoder::encode_predicates({:?})", def_id);
let tcx = self.tcx;
self.lazy(&tcx.predicates_of(def_id))
}
fn encode_info_for_trait_item(&mut self, def_id: DefId) -> Entry<'tcx> {
debug!("IsolatedEncoder::encode_info_for_trait_item({:?})", def_id);
let tcx = self.tcx;
let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
let ast_item = tcx.hir.expect_trait_item(node_id);
let trait_item = tcx.associated_item(def_id);
let container = match trait_item.defaultness {
hir::Defaultness::Default { has_value: true } =>
AssociatedContainer::TraitWithDefault,
hir::Defaultness::Default { has_value: false } =>
AssociatedContainer::TraitRequired,
hir::Defaultness::Final =>
span_bug!(ast_item.span, "traits cannot have final items"),
};
let kind = match trait_item.kind {
ty::AssociatedKind::Const => {
EntryKind::AssociatedConst(container, 0)
}
ty::AssociatedKind::Method => {
let fn_data = if let hir::TraitItemKind::Method(_, ref m) = ast_item.node {
let arg_names = match *m {
hir::TraitMethod::Required(ref names) => {
self.encode_fn_arg_names(names)
}
hir::TraitMethod::Provided(body) => {
self.encode_fn_arg_names_for_body(body)
}
};
FnData {
constness: hir::Constness::NotConst,
arg_names,
sig: self.lazy(&tcx.fn_sig(def_id)),
}
} else {
bug!()
};
EntryKind::Method(self.lazy(&MethodData {
fn_data,
container,
has_self: trait_item.method_has_self_argument,
}))
}
ty::AssociatedKind::Type => EntryKind::AssociatedType(container),
};
Entry {
kind,
visibility: self.lazy(&trait_item.vis),
span: self.lazy(&ast_item.span),
attributes: self.encode_attributes(&ast_item.attrs),
children: LazySeq::empty(),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: match trait_item.kind {
ty::AssociatedKind::Const |
ty::AssociatedKind::Method => {
Some(self.encode_item_type(def_id))
}
ty::AssociatedKind::Type => {
if trait_item.defaultness.has_value() {
Some(self.encode_item_type(def_id))
} else {
None
}
}
},
inherent_impls: LazySeq::empty(),
variances: if trait_item.kind == ty::AssociatedKind::Method {
self.encode_variances_of(def_id)
} else {
LazySeq::empty()
},
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: if let hir::TraitItemKind::Const(_, Some(body)) = ast_item.node {
Some(self.encode_body(body))
} else {
None
},
mir: self.encode_optimized_mir(def_id),
}
}
fn encode_info_for_impl_item(&mut self, def_id: DefId) -> Entry<'tcx> {
debug!("IsolatedEncoder::encode_info_for_impl_item({:?})", def_id);
let tcx = self.tcx;
let node_id = self.tcx.hir.as_local_node_id(def_id).unwrap();
let ast_item = self.tcx.hir.expect_impl_item(node_id);
let impl_item = self.tcx.associated_item(def_id);
let container = match impl_item.defaultness {
hir::Defaultness::Default { has_value: true } => AssociatedContainer::ImplDefault,
hir::Defaultness::Final => AssociatedContainer::ImplFinal,
hir::Defaultness::Default { has_value: false } =>
span_bug!(ast_item.span, "impl items always have values (currently)"),
};
let kind = match impl_item.kind {
ty::AssociatedKind::Const => {
EntryKind::AssociatedConst(container,
self.tcx.at(ast_item.span).mir_const_qualif(def_id).0)
}
ty::AssociatedKind::Method => {
let fn_data = if let hir::ImplItemKind::Method(ref sig, body) = ast_item.node {
FnData {
constness: sig.constness,
arg_names: self.encode_fn_arg_names_for_body(body),
sig: self.lazy(&tcx.fn_sig(def_id)),
}
} else {
bug!()
};
EntryKind::Method(self.lazy(&MethodData {
fn_data,
container,
has_self: impl_item.method_has_self_argument,
}))
}
ty::AssociatedKind::Type => EntryKind::AssociatedType(container)
};
let (ast, mir) = if let hir::ImplItemKind::Const(_, body) = ast_item.node {
(Some(body), true)
} else if let hir::ImplItemKind::Method(ref sig, body) = ast_item.node {
let generics = self.tcx.generics_of(def_id);
let types = generics.parent_types as usize + generics.types.len();
let needs_inline = types > 0 || attr::requests_inline(&ast_item.attrs);
let is_const_fn = sig.constness == hir::Constness::Const;
let ast = if is_const_fn { Some(body) } else { None };
let always_encode_mir = self.tcx.sess.opts.debugging_opts.always_encode_mir;
(ast, needs_inline || is_const_fn || always_encode_mir)
} else {
(None, false)
};
Entry {
kind,
visibility: self.lazy(&impl_item.vis),
span: self.lazy(&ast_item.span),
attributes: self.encode_attributes(&ast_item.attrs),
children: LazySeq::empty(),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: if impl_item.kind == ty::AssociatedKind::Method {
self.encode_variances_of(def_id)
} else {
LazySeq::empty()
},
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: ast.map(|body| self.encode_body(body)),
mir: if mir { self.encode_optimized_mir(def_id) } else { None },
}
}
fn encode_fn_arg_names_for_body(&mut self, body_id: hir::BodyId)
-> LazySeq<ast::Name> {
let _ignore = self.tcx.dep_graph.in_ignore();
let body = self.tcx.hir.body(body_id);
self.lazy_seq(body.arguments.iter().map(|arg| {
match arg.pat.node {
PatKind::Binding(_, _, name, _) => name.node,
_ => Symbol::intern("")
}
}))
}
fn encode_fn_arg_names(&mut self, names: &[Spanned<ast::Name>])
-> LazySeq<ast::Name> {
self.lazy_seq(names.iter().map(|name| name.node))
}
fn encode_optimized_mir(&mut self, def_id: DefId) -> Option<Lazy<mir::Mir<'tcx>>> {
debug!("EntryBuilder::encode_mir({:?})", def_id);
if self.tcx.mir_keys(LOCAL_CRATE).contains(&def_id) {
let mir = self.tcx.optimized_mir(def_id);
Some(self.lazy(&mir))
} else {
None
}
}
// Encodes the inherent implementations of a structure, enumeration, or trait.
fn encode_inherent_implementations(&mut self, def_id: DefId) -> LazySeq<DefIndex> {
debug!("IsolatedEncoder::encode_inherent_implementations({:?})", def_id);
let implementations = self.tcx.inherent_impls(def_id);
if implementations.is_empty() {
LazySeq::empty()
} else {
self.lazy_seq(implementations.iter().map(|&def_id| {
assert!(def_id.is_local());
def_id.index
}))
}
}
fn encode_stability(&mut self, def_id: DefId) -> Option<Lazy<attr::Stability>> {
debug!("IsolatedEncoder::encode_stability({:?})", def_id);
self.tcx.lookup_stability(def_id).map(|stab| self.lazy(stab))
}
fn encode_deprecation(&mut self, def_id: DefId) -> Option<Lazy<attr::Deprecation>> {
debug!("IsolatedEncoder::encode_deprecation({:?})", def_id);
self.tcx.lookup_deprecation(def_id).map(|depr| self.lazy(&depr))
}
2016-10-29 14:39:24 +02:00
fn encode_info_for_item(&mut self, (def_id, item): (DefId, &'tcx hir::Item)) -> Entry<'tcx> {
let tcx = self.tcx;
debug!("IsolatedEncoder::encode_info_for_item({:?})", def_id);
let kind = match item.node {
hir::ItemStatic(_, hir::MutMutable, _) => EntryKind::MutStatic,
hir::ItemStatic(_, hir::MutImmutable, _) => EntryKind::ImmStatic,
hir::ItemConst(..) => {
EntryKind::Const(tcx.at(item.span).mir_const_qualif(def_id).0)
}
hir::ItemFn(_, _, constness, .., body) => {
let data = FnData {
constness,
arg_names: self.encode_fn_arg_names_for_body(body),
sig: self.lazy(&tcx.fn_sig(def_id)),
};
EntryKind::Fn(self.lazy(&data))
}
hir::ItemMod(ref m) => {
return self.encode_info_for_mod(FromId(item.id, (m, &item.attrs, &item.vis)));
}
hir::ItemForeignMod(_) => EntryKind::ForeignMod,
2017-03-15 21:27:40 -05:00
hir::ItemGlobalAsm(..) => EntryKind::GlobalAsm,
hir::ItemTy(..) => EntryKind::Type,
hir::ItemEnum(..) => EntryKind::Enum(get_repr_options(&tcx, def_id)),
hir::ItemStruct(ref struct_def, _) => {
let variant = tcx.adt_def(def_id).struct_variant();
// Encode def_ids for each field and method
// for methods, write all the stuff get_trait_method
// needs to know
let struct_ctor = if !struct_def.is_struct() {
Some(tcx.hir.local_def_id(struct_def.id()).index)
} else {
None
};
let repr_options = get_repr_options(&tcx, def_id);
EntryKind::Struct(self.lazy(&VariantData {
ctor_kind: variant.ctor_kind,
discr: variant.discr,
struct_ctor,
ctor_sig: None,
}), repr_options)
}
2016-08-22 15:17:05 +03:00
hir::ItemUnion(..) => {
let variant = tcx.adt_def(def_id).struct_variant();
let repr_options = get_repr_options(&tcx, def_id);
2016-08-22 15:17:05 +03:00
EntryKind::Union(self.lazy(&VariantData {
ctor_kind: variant.ctor_kind,
discr: variant.discr,
struct_ctor: None,
ctor_sig: None,
}), repr_options)
2016-08-22 15:17:05 +03:00
}
hir::ItemDefaultImpl(..) => {
let data = ImplData {
polarity: hir::ImplPolarity::Positive,
defaultness: hir::Defaultness::Final,
parent_impl: None,
coerce_unsized_info: None,
trait_ref: tcx.impl_trait_ref(def_id).map(|trait_ref| self.lazy(&trait_ref)),
};
EntryKind::DefaultImpl(self.lazy(&data))
}
hir::ItemImpl(_, polarity, defaultness, ..) => {
let trait_ref = tcx.impl_trait_ref(def_id);
let parent = if let Some(trait_ref) = trait_ref {
let trait_def = tcx.trait_def(trait_ref.def_id);
trait_def.ancestors(tcx, def_id).skip(1).next().and_then(|node| {
match node {
specialization_graph::Node::Impl(parent) => Some(parent),
_ => None,
}
})
} else {
None
};
// if this is an impl of `CoerceUnsized`, create its
// "unsized info", else just store None
let coerce_unsized_info =
trait_ref.and_then(|t| {
if Some(t.def_id) == tcx.lang_items().coerce_unsized_trait() {
Some(tcx.at(item.span).coerce_unsized_info(def_id))
} else {
None
}
});
let data = ImplData {
polarity,
defaultness,
parent_impl: parent,
coerce_unsized_info,
trait_ref: trait_ref.map(|trait_ref| self.lazy(&trait_ref)),
};
EntryKind::Impl(self.lazy(&data))
}
2016-08-26 19:23:42 +03:00
hir::ItemTrait(..) => {
let trait_def = tcx.trait_def(def_id);
let data = TraitData {
unsafety: trait_def.unsafety,
paren_sugar: trait_def.paren_sugar,
has_default_impl: tcx.trait_has_default_impl(def_id),
super_predicates: self.lazy(&tcx.super_predicates_of(def_id)),
};
EntryKind::Trait(self.lazy(&data))
}
hir::ItemExternCrate(_) |
hir::ItemUse(..) => bug!("cannot encode info for item {:?}", item),
};
Entry {
kind,
visibility: self.lazy(&ty::Visibility::from_hir(&item.vis, item.id, tcx)),
span: self.lazy(&item.span),
attributes: self.encode_attributes(&item.attrs),
children: match item.node {
hir::ItemForeignMod(ref fm) => {
self.lazy_seq(fm.items
.iter()
.map(|foreign_item| tcx.hir.local_def_id(foreign_item.id).index))
}
hir::ItemEnum(..) => {
let def = self.tcx.adt_def(def_id);
self.lazy_seq(def.variants.iter().map(|v| {
assert!(v.did.is_local());
v.did.index
}))
}
hir::ItemStruct(..) |
hir::ItemUnion(..) => {
let def = self.tcx.adt_def(def_id);
self.lazy_seq(def.struct_variant().fields.iter().map(|f| {
assert!(f.did.is_local());
f.did.index
}))
}
hir::ItemImpl(..) |
hir::ItemTrait(..) => {
self.lazy_seq(tcx.associated_item_def_ids(def_id).iter().map(|&def_id| {
assert!(def_id.is_local());
def_id.index
}))
}
_ => LazySeq::empty(),
},
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: match item.node {
hir::ItemStatic(..) |
hir::ItemConst(..) |
hir::ItemFn(..) |
hir::ItemTy(..) |
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemUnion(..) |
hir::ItemImpl(..) => Some(self.encode_item_type(def_id)),
_ => None,
},
inherent_impls: self.encode_inherent_implementations(def_id),
variances: match item.node {
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemUnion(..) |
hir::ItemFn(..) => self.encode_variances_of(def_id),
_ => LazySeq::empty(),
},
generics: match item.node {
hir::ItemStatic(..) |
hir::ItemConst(..) |
hir::ItemFn(..) |
hir::ItemTy(..) |
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemUnion(..) |
hir::ItemImpl(..) |
hir::ItemTrait(..) => Some(self.encode_generics(def_id)),
_ => None,
},
predicates: match item.node {
hir::ItemStatic(..) |
hir::ItemConst(..) |
hir::ItemFn(..) |
hir::ItemTy(..) |
hir::ItemEnum(..) |
hir::ItemStruct(..) |
hir::ItemUnion(..) |
hir::ItemImpl(..) |
hir::ItemTrait(..) => Some(self.encode_predicates(def_id)),
_ => None,
},
ast: match item.node {
hir::ItemConst(_, body) |
hir::ItemFn(_, _, hir::Constness::Const, _, _, body) => {
Some(self.encode_body(body))
}
_ => None,
},
mir: match item.node {
hir::ItemStatic(..) if self.tcx.sess.opts.debugging_opts.always_encode_mir => {
self.encode_optimized_mir(def_id)
}
hir::ItemConst(..) => self.encode_optimized_mir(def_id),
hir::ItemFn(_, _, constness, _, ref generics, _) => {
let tps_len = generics.ty_params.len();
let needs_inline = tps_len > 0 || attr::requests_inline(&item.attrs);
let always_encode_mir = self.tcx.sess.opts.debugging_opts.always_encode_mir;
if needs_inline || constness == hir::Constness::Const || always_encode_mir {
self.encode_optimized_mir(def_id)
} else {
None
}
}
_ => None,
},
}
}
2016-10-28 06:52:45 +00:00
/// Serialize the text of exported macros
fn encode_info_for_macro_def(&mut self, macro_def: &hir::MacroDef) -> Entry<'tcx> {
2017-02-21 05:05:59 +00:00
use syntax::print::pprust;
let def_id = self.tcx.hir.local_def_id(macro_def.id);
2016-10-28 06:52:45 +00:00
Entry {
kind: EntryKind::MacroDef(self.lazy(&MacroDef {
2017-02-21 05:05:59 +00:00
body: pprust::tts_to_string(&macro_def.body.trees().collect::<Vec<_>>()),
2017-03-22 08:39:51 +00:00
legacy: macro_def.legacy,
})),
visibility: self.lazy(&ty::Visibility::Public),
span: self.lazy(&macro_def.span),
attributes: self.encode_attributes(&macro_def.attrs),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
2016-10-28 06:52:45 +00:00
children: LazySeq::empty(),
ty: None,
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: None,
predicates: None,
ast: None,
mir: None,
}
}
fn encode_info_for_ty_param(&mut self,
(def_id, Untracked(has_default)): (DefId, Untracked<bool>))
-> Entry<'tcx> {
debug!("IsolatedEncoder::encode_info_for_ty_param({:?})", def_id);
let tcx = self.tcx;
Entry {
kind: EntryKind::Type,
visibility: self.lazy(&ty::Visibility::Public),
span: self.lazy(&tcx.def_span(def_id)),
attributes: LazySeq::empty(),
children: LazySeq::empty(),
stability: None,
deprecation: None,
ty: if has_default {
Some(self.encode_item_type(def_id))
} else {
None
},
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: None,
predicates: None,
ast: None,
mir: None,
}
}
fn encode_info_for_anon_ty(&mut self, def_id: DefId) -> Entry<'tcx> {
debug!("IsolatedEncoder::encode_info_for_anon_ty({:?})", def_id);
let tcx = self.tcx;
Entry {
kind: EntryKind::Type,
visibility: self.lazy(&ty::Visibility::Public),
span: self.lazy(&tcx.def_span(def_id)),
attributes: LazySeq::empty(),
children: LazySeq::empty(),
stability: None,
deprecation: None,
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: None,
mir: None,
}
}
fn encode_info_for_closure(&mut self, def_id: DefId) -> Entry<'tcx> {
debug!("IsolatedEncoder::encode_info_for_closure({:?})", def_id);
let tcx = self.tcx;
2016-08-14 18:50:53 -04:00
2016-12-26 14:34:03 +01:00
let kind = if let Some(sig) = self.tcx.generator_sig(def_id) {
let layout = self.tcx.generator_layout(def_id);
let data = GeneratorData {
sig,
layout: layout.clone(),
};
EntryKind::Generator(self.lazy(&data))
} else {
let data = ClosureData {
kind: tcx.closure_kind(def_id),
sig: self.lazy(&tcx.fn_sig(def_id)),
};
EntryKind::Closure(self.lazy(&data))
};
Entry {
2016-12-26 14:34:03 +01:00
kind,
visibility: self.lazy(&ty::Visibility::Public),
span: self.lazy(&tcx.def_span(def_id)),
attributes: self.encode_attributes(&tcx.get_attrs(def_id)),
children: LazySeq::empty(),
stability: None,
deprecation: None,
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: None,
ast: None,
mir: self.encode_optimized_mir(def_id),
}
}
fn encode_info_for_embedded_const(&mut self, def_id: DefId) -> Entry<'tcx> {
debug!("IsolatedEncoder::encode_info_for_embedded_const({:?})", def_id);
let tcx = self.tcx;
let id = tcx.hir.as_local_node_id(def_id).unwrap();
let body = tcx.hir.body_owned_by(id);
Entry {
kind: EntryKind::Const(tcx.mir_const_qualif(def_id).0),
visibility: self.lazy(&ty::Visibility::Public),
span: self.lazy(&tcx.def_span(def_id)),
attributes: LazySeq::empty(),
children: LazySeq::empty(),
stability: None,
deprecation: None,
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: LazySeq::empty(),
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: Some(self.encode_body(body)),
mir: self.encode_optimized_mir(def_id),
}
}
fn encode_attributes(&mut self, attrs: &[ast::Attribute]) -> LazySeq<ast::Attribute> {
// NOTE: This must use lazy_seq_from_slice(), not lazy_seq() because
// we rely on the HashStable specialization for [Attribute]
// to properly filter things out.
self.lazy_seq_from_slice(attrs)
}
fn encode_native_libraries(&mut self, _: ()) -> LazySeq<NativeLibrary> {
let used_libraries = self.tcx.native_libraries(LOCAL_CRATE);
self.lazy_seq(used_libraries.iter().cloned())
}
fn encode_crate_deps(&mut self, _: ()) -> LazySeq<CrateDep> {
let crates = self.tcx.crates();
let mut deps = crates
.iter()
.map(|&cnum| {
let dep = CrateDep {
name: self.tcx.original_crate_name(cnum),
2017-08-28 17:30:27 -07:00
hash: self.tcx.crate_hash(cnum),
kind: self.tcx.dep_kind(cnum),
};
(cnum, dep)
})
.collect::<Vec<_>>();
deps.sort_by_key(|&(cnum, _)| cnum);
{
// Sanity-check the crate numbers
let mut expected_cnum = 1;
for &(n, _) in &deps {
assert_eq!(n, CrateNum::new(expected_cnum));
expected_cnum += 1;
}
}
// We're just going to write a list of crate 'name-hash-version's, with
// the assumption that they are numbered 1 to n.
// FIXME (#2166): This is not nearly enough to support correct versioning
// but is enough to get transitive crate dependencies working.
self.lazy_seq_ref(deps.iter().map(|&(_, ref dep)| dep))
}
fn encode_lang_items(&mut self, _: ()) -> LazySeq<(DefIndex, usize)> {
let tcx = self.tcx;
let lang_items = tcx.lang_items();
let lang_items = lang_items.items().iter();
self.lazy_seq(lang_items.enumerate().filter_map(|(i, &opt_def_id)| {
if let Some(def_id) = opt_def_id {
if def_id.is_local() {
return Some((def_id.index, i));
}
}
None
}))
}
fn encode_lang_items_missing(&mut self, _: ()) -> LazySeq<lang_items::LangItem> {
let tcx = self.tcx;
self.lazy_seq_ref(&tcx.lang_items().missing)
}
/// Encodes an index, mapping each trait to its (local) implementations.
fn encode_impls(&mut self, _: ()) -> LazySeq<TraitImpls> {
debug!("IsolatedEncoder::encode_impls()");
let tcx = self.tcx;
let mut visitor = ImplVisitor {
tcx,
impls: FxHashMap(),
};
tcx.hir.krate().visit_all_item_likes(&mut visitor);
let mut all_impls: Vec<_> = visitor.impls.into_iter().collect();
// Bring everything into deterministic order for hashing
all_impls.sort_unstable_by_key(|&(trait_def_id, _)| {
tcx.def_path_hash(trait_def_id)
});
let all_impls: Vec<_> = all_impls
.into_iter()
.map(|(trait_def_id, mut impls)| {
// Bring everything into deterministic order for hashing
impls.sort_unstable_by_key(|&def_index| {
tcx.hir.definitions().def_path_hash(def_index)
});
TraitImpls {
trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index),
impls: self.lazy_seq_from_slice(&impls[..]),
}
})
.collect();
self.lazy_seq_from_slice(&all_impls[..])
}
// Encodes all symbols exported from this crate into the metadata.
//
// This pass is seeded off the reachability list calculated in the
// middle::reachable module but filters out items that either don't have a
// symbol associated with them (they weren't translated) or if they're an FFI
// definition (as that's not defined in this crate).
fn encode_exported_symbols(&mut self, exported_symbols: &NodeSet) -> LazySeq<DefIndex> {
let tcx = self.tcx;
self.lazy_seq(exported_symbols.iter().map(|&id| tcx.hir.local_def_id(id).index))
}
fn encode_dylib_dependency_formats(&mut self, _: ()) -> LazySeq<Option<LinkagePreference>> {
match self.tcx.sess.dependency_formats.borrow().get(&config::CrateTypeDylib) {
Some(arr) => {
self.lazy_seq(arr.iter().map(|slot| {
match *slot {
Linkage::NotLinked |
Linkage::IncludedFromDylib => None,
Linkage::Dynamic => Some(LinkagePreference::RequireDynamic),
Linkage::Static => Some(LinkagePreference::RequireStatic),
}
}))
}
None => LazySeq::empty(),
}
}
fn encode_info_for_foreign_item(&mut self,
(def_id, nitem): (DefId, &hir::ForeignItem))
-> Entry<'tcx> {
let tcx = self.tcx;
debug!("IsolatedEncoder::encode_info_for_foreign_item({:?})", def_id);
let kind = match nitem.node {
hir::ForeignItemFn(_, ref names, _) => {
let data = FnData {
constness: hir::Constness::NotConst,
arg_names: self.encode_fn_arg_names(names),
sig: self.lazy(&tcx.fn_sig(def_id)),
};
EntryKind::ForeignFn(self.lazy(&data))
}
hir::ForeignItemStatic(_, true) => EntryKind::ForeignMutStatic,
hir::ForeignItemStatic(_, false) => EntryKind::ForeignImmStatic,
};
Entry {
kind,
visibility: self.lazy(&ty::Visibility::from_hir(&nitem.vis, nitem.id, tcx)),
span: self.lazy(&nitem.span),
attributes: self.encode_attributes(&nitem.attrs),
children: LazySeq::empty(),
stability: self.encode_stability(def_id),
deprecation: self.encode_deprecation(def_id),
ty: Some(self.encode_item_type(def_id)),
inherent_impls: LazySeq::empty(),
variances: match nitem.node {
hir::ForeignItemFn(..) => self.encode_variances_of(def_id),
_ => LazySeq::empty(),
},
generics: Some(self.encode_generics(def_id)),
predicates: Some(self.encode_predicates(def_id)),
ast: None,
mir: None,
}
}
}
struct EncodeVisitor<'a, 'b: 'a, 'tcx: 'b> {
index: IndexBuilder<'a, 'b, 'tcx>,
}
impl<'a, 'b, 'tcx> Visitor<'tcx> for EncodeVisitor<'a, 'b, 'tcx> {
fn nested_visit_map<'this>(&'this mut self) -> NestedVisitorMap<'this, 'tcx> {
NestedVisitorMap::OnlyBodies(&self.index.tcx.hir)
}
fn visit_expr(&mut self, ex: &'tcx hir::Expr) {
intravisit::walk_expr(self, ex);
self.index.encode_info_for_expr(ex);
}
fn visit_item(&mut self, item: &'tcx hir::Item) {
intravisit::walk_item(self, item);
let def_id = self.index.tcx.hir.local_def_id(item.id);
match item.node {
hir::ItemExternCrate(_) |
hir::ItemUse(..) => (), // ignore these
_ => self.index.record(def_id, IsolatedEncoder::encode_info_for_item, (def_id, item)),
}
self.index.encode_addl_info_for_item(item);
}
fn visit_foreign_item(&mut self, ni: &'tcx hir::ForeignItem) {
intravisit::walk_foreign_item(self, ni);
let def_id = self.index.tcx.hir.local_def_id(ni.id);
self.index.record(def_id,
IsolatedEncoder::encode_info_for_foreign_item,
(def_id, ni));
}
fn visit_variant(&mut self,
v: &'tcx hir::Variant,
g: &'tcx hir::Generics,
id: ast::NodeId) {
intravisit::walk_variant(self, v, g, id);
if let Some(discr) = v.node.disr_expr {
let def_id = self.index.tcx.hir.body_owner_def_id(discr);
self.index.record(def_id, IsolatedEncoder::encode_info_for_embedded_const, def_id);
}
}
fn visit_generics(&mut self, generics: &'tcx hir::Generics) {
intravisit::walk_generics(self, generics);
self.index.encode_info_for_generics(generics);
}
fn visit_ty(&mut self, ty: &'tcx hir::Ty) {
intravisit::walk_ty(self, ty);
self.index.encode_info_for_ty(ty);
}
fn visit_macro_def(&mut self, macro_def: &'tcx hir::MacroDef) {
let def_id = self.index.tcx.hir.local_def_id(macro_def.id);
self.index.record(def_id, IsolatedEncoder::encode_info_for_macro_def, macro_def);
}
}
impl<'a, 'b, 'tcx> IndexBuilder<'a, 'b, 'tcx> {
fn encode_fields(&mut self, adt_def_id: DefId) {
let def = self.tcx.adt_def(adt_def_id);
for (variant_index, variant) in def.variants.iter().enumerate() {
for (field_index, field) in variant.fields.iter().enumerate() {
self.record(field.did,
IsolatedEncoder::encode_field,
(adt_def_id, Untracked((variant_index, field_index))));
}
}
}
fn encode_info_for_generics(&mut self, generics: &hir::Generics) {
for ty_param in &generics.ty_params {
let def_id = self.tcx.hir.local_def_id(ty_param.id);
let has_default = Untracked(ty_param.default.is_some());
self.record(def_id, IsolatedEncoder::encode_info_for_ty_param, (def_id, has_default));
}
}
fn encode_info_for_ty(&mut self, ty: &hir::Ty) {
if let hir::TyImplTrait(_) = ty.node {
let def_id = self.tcx.hir.local_def_id(ty.id);
self.record(def_id, IsolatedEncoder::encode_info_for_anon_ty, def_id);
}
}
fn encode_info_for_expr(&mut self, expr: &hir::Expr) {
match expr.node {
hir::ExprClosure(..) => {
let def_id = self.tcx.hir.local_def_id(expr.id);
self.record(def_id, IsolatedEncoder::encode_info_for_closure, def_id);
}
_ => {}
}
}
/// In some cases, along with the item itself, we also
/// encode some sub-items. Usually we want some info from the item
/// so it's easier to do that here then to wait until we would encounter
/// normally in the visitor walk.
fn encode_addl_info_for_item(&mut self, item: &hir::Item) {
let def_id = self.tcx.hir.local_def_id(item.id);
match item.node {
hir::ItemStatic(..) |
hir::ItemConst(..) |
hir::ItemFn(..) |
hir::ItemMod(..) |
hir::ItemForeignMod(..) |
hir::ItemGlobalAsm(..) |
hir::ItemExternCrate(..) |
hir::ItemUse(..) |
hir::ItemDefaultImpl(..) |
hir::ItemTy(..) => {
// no sub-item recording needed in these cases
}
hir::ItemEnum(..) => {
self.encode_fields(def_id);
let def = self.tcx.adt_def(def_id);
for (i, variant) in def.variants.iter().enumerate() {
self.record(variant.did,
IsolatedEncoder::encode_enum_variant_info,
(def_id, Untracked(i)));
}
}
hir::ItemStruct(ref struct_def, _) => {
self.encode_fields(def_id);
// If the struct has a constructor, encode it.
if !struct_def.is_struct() {
let ctor_def_id = self.tcx.hir.local_def_id(struct_def.id());
self.record(ctor_def_id,
IsolatedEncoder::encode_struct_ctor,
(def_id, ctor_def_id));
}
}
hir::ItemUnion(..) => {
self.encode_fields(def_id);
}
hir::ItemImpl(..) => {
for &trait_item_def_id in self.tcx.associated_item_def_ids(def_id).iter() {
self.record(trait_item_def_id,
IsolatedEncoder::encode_info_for_impl_item,
trait_item_def_id);
}
}
hir::ItemTrait(..) => {
for &item_def_id in self.tcx.associated_item_def_ids(def_id).iter() {
self.record(item_def_id,
IsolatedEncoder::encode_info_for_trait_item,
item_def_id);
}
}
rustc: Implement custom panic runtimes This commit is an implementation of [RFC 1513] which allows applications to alter the behavior of panics at compile time. A new compiler flag, `-C panic`, is added and accepts the values `unwind` or `panic`, with the default being `unwind`. This model affects how code is generated for the local crate, skipping generation of landing pads with `-C panic=abort`. [RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md Panic implementations are then provided by crates tagged with `#![panic_runtime]` and lazily required by crates with `#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic runtime must match the final product, and if the panic strategy is not `abort` then the entire DAG must have the same panic strategy. With the `-C panic=abort` strategy, users can expect a stable method to disable generation of landing pads, improving optimization in niche scenarios, decreasing compile time, and decreasing output binary size. With the `-C panic=unwind` strategy users can expect the existing ability to isolate failure in Rust code from the outside world. Organizationally, this commit dismantles the `sys_common::unwind` module in favor of some bits moving part of it to `libpanic_unwind` and the rest into the `panicking` module in libstd. The custom panic runtime support is pretty similar to the custom allocator support with the only major difference being how the panic runtime is injected (takes the `-C panic` flag into account).
2016-04-08 16:18:40 -07:00
}
}
}
struct ImplVisitor<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
impls: FxHashMap<DefId, Vec<DefIndex>>,
}
impl<'a, 'tcx, 'v> ItemLikeVisitor<'v> for ImplVisitor<'a, 'tcx> {
fn visit_item(&mut self, item: &hir::Item) {
if let hir::ItemImpl(..) = item.node {
let impl_id = self.tcx.hir.local_def_id(item.id);
if let Some(trait_ref) = self.tcx.impl_trait_ref(impl_id) {
self.impls
.entry(trait_ref.def_id)
.or_insert(vec![])
.push(impl_id.index);
}
}
}
fn visit_trait_item(&mut self, _trait_item: &'v hir::TraitItem) {}
fn visit_impl_item(&mut self, _impl_item: &'v hir::ImplItem) {
// handled in `visit_item` above
rustc: Implement custom panic runtimes This commit is an implementation of [RFC 1513] which allows applications to alter the behavior of panics at compile time. A new compiler flag, `-C panic`, is added and accepts the values `unwind` or `panic`, with the default being `unwind`. This model affects how code is generated for the local crate, skipping generation of landing pads with `-C panic=abort`. [RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md Panic implementations are then provided by crates tagged with `#![panic_runtime]` and lazily required by crates with `#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic runtime must match the final product, and if the panic strategy is not `abort` then the entire DAG must have the same panic strategy. With the `-C panic=abort` strategy, users can expect a stable method to disable generation of landing pads, improving optimization in niche scenarios, decreasing compile time, and decreasing output binary size. With the `-C panic=unwind` strategy users can expect the existing ability to isolate failure in Rust code from the outside world. Organizationally, this commit dismantles the `sys_common::unwind` module in favor of some bits moving part of it to `libpanic_unwind` and the rest into the `panicking` module in libstd. The custom panic runtime support is pretty similar to the custom allocator support with the only major difference being how the panic runtime is injected (takes the `-C panic` flag into account).
2016-04-08 16:18:40 -07:00
}
}
// NOTE(eddyb) The following comment was preserved for posterity, even
// though it's no longer relevant as EBML (which uses nested & tagged
// "documents") was replaced with a scheme that can't go out of bounds.
//
// And here we run into yet another obscure archive bug: in which metadata
// loaded from archives may have trailing garbage bytes. Awhile back one of
// our tests was failing sporadically on the macOS 64-bit builders (both nopt
// and opt) by having ebml generate an out-of-bounds panic when looking at
// metadata.
//
// Upon investigation it turned out that the metadata file inside of an rlib
// (and ar archive) was being corrupted. Some compilations would generate a
// metadata file which would end in a few extra bytes, while other
// compilations would not have these extra bytes appended to the end. These
// extra bytes were interpreted by ebml as an extra tag, so they ended up
// being interpreted causing the out-of-bounds.
//
// The root cause of why these extra bytes were appearing was never
// discovered, and in the meantime the solution we're employing is to insert
// the length of the metadata to the start of the metadata. Later on this
// will allow us to slice the metadata to the precise length that we just
// generated regardless of trailing bytes that end up in it.
pub fn encode_metadata<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
link_meta: &LinkMeta,
exported_symbols: &NodeSet)
-> (EncodedMetadata, EncodedMetadataHashes)
{
let mut cursor = Cursor::new(vec![]);
cursor.write_all(METADATA_HEADER).unwrap();
// Will be filled with the root position after encoding everything.
cursor.write_all(&[0, 0, 0, 0]).unwrap();
let compute_ich = (tcx.sess.opts.debugging_opts.query_dep_graph ||
tcx.sess.opts.debugging_opts.incremental_cc) &&
tcx.sess.opts.build_dep_graph();
let (root, metadata_hashes) = {
let mut ecx = EncodeContext {
opaque: opaque::Encoder::new(&mut cursor),
tcx,
link_meta,
exported_symbols,
lazy_state: LazyState::NoNode,
type_shorthands: Default::default(),
predicate_shorthands: Default::default(),
metadata_hashes: EncodedMetadataHashes::new(),
compute_ich,
};
// Encode the rustc version string in a predictable location.
rustc_version().encode(&mut ecx).unwrap();
// Encode all the entries and extra information in the crate,
// culminating in the `CrateRoot` which points to all of it.
let root = ecx.encode_crate_root();
(root, ecx.metadata_hashes)
};
let mut result = cursor.into_inner();
// Encode the root position.
let header = METADATA_HEADER.len();
let pos = root.position;
result[header + 0] = (pos >> 24) as u8;
result[header + 1] = (pos >> 16) as u8;
result[header + 2] = (pos >> 8) as u8;
result[header + 3] = (pos >> 0) as u8;
2012-08-27 16:53:54 -07:00
(EncodedMetadata { raw_data: result }, metadata_hashes)
}
pub fn get_repr_options<'a, 'tcx, 'gcx>(tcx: &TyCtxt<'a, 'tcx, 'gcx>, did: DefId) -> ReprOptions {
let ty = tcx.type_of(did);
match ty.sty {
ty::TyAdt(ref def, _) => return def.repr,
_ => bug!("{} is not an ADT", ty),
}
}