rust/src/libcollections/linked_list.rs

1117 lines
31 KiB
Rust
Raw Normal View History

2015-01-11 16:02:51 -06:00
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2013-07-10 09:06:09 -05:00
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A doubly-linked list with owned nodes.
//!
//! The `LinkedList` allows pushing and popping elements at either end and is thus
//! efficiently usable as a double-ended queue.
// LinkedList is constructed like a singly-linked list over the field `next`.
// including the last link being None; each Node owns its `next` field.
//
// Backlinks over LinkedList::prev are raw pointers that form a full chain in
// the reverse direction.
2015-01-23 23:48:20 -06:00
#![stable(feature = "rust1", since = "1.0.0")]
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-29 20:50:12 -05:00
use core::prelude::*;
use alloc::boxed::Box;
use core::cmp::Ordering;
2014-06-07 08:01:44 -05:00
use core::fmt;
use core::hash::{Hasher, Hash};
use core::iter::{self, FromIterator};
std: Recreate a `collections` module As with the previous commit with `librand`, this commit shuffles around some `collections` code. The new state of the world is similar to that of librand: * The libcollections crate now only depends on libcore and liballoc. * The standard library has a new module, `std::collections`. All functionality of libcollections is reexported through this module. I would like to stress that this change is purely cosmetic. There are very few alterations to these primitives. There are a number of notable points about the new organization: * std::{str, slice, string, vec} all moved to libcollections. There is no reason that these primitives shouldn't be necessarily usable in a freestanding context that has allocation. These are all reexported in their usual places in the standard library. * The `hashmap`, and transitively the `lru_cache`, modules no longer reside in `libcollections`, but rather in libstd. The reason for this is because the `HashMap::new` contructor requires access to the OSRng for initially seeding the hash map. Beyond this requirement, there is no reason that the hashmap could not move to libcollections. I do, however, have a plan to move the hash map to the collections module. The `HashMap::new` function could be altered to require that the `H` hasher parameter ascribe to the `Default` trait, allowing the entire `hashmap` module to live in libcollections. The key idea would be that the default hasher would be different in libstd. Something along the lines of: // src/libstd/collections/mod.rs pub type HashMap<K, V, H = RandomizedSipHasher> = core_collections::HashMap<K, V, H>; This is not possible today because you cannot invoke static methods through type aliases. If we modified the compiler, however, to allow invocation of static methods through type aliases, then this type definition would essentially be switching the default hasher from `SipHasher` in libcollections to a libstd-defined `RandomizedSipHasher` type. This type's `Default` implementation would randomly seed the `SipHasher` instance, and otherwise perform the same as `SipHasher`. This future state doesn't seem incredibly far off, but until that time comes, the hashmap module will live in libstd to not compromise on functionality. * In preparation for the hashmap moving to libcollections, the `hash` module has moved from libstd to libcollections. A previously snapshotted commit enables a distinct `Writer` trait to live in the `hash` module which `Hash` implementations are now parameterized over. Due to using a custom trait, the `SipHasher` implementation has lost its specialized methods for writing integers. These can be re-added backwards-compatibly in the future via default methods if necessary, but the FNV hashing should satisfy much of the need for speedier hashing. A list of breaking changes: * HashMap::{get, get_mut} no longer fails with the key formatted into the error message with `{:?}`, instead, a generic message is printed. With backtraces, it should still be not-too-hard to track down errors. * The HashMap, HashSet, and LruCache types are now available through std::collections instead of the collections crate. * Manual implementations of hash should be parameterized over `hash::Writer` instead of just `Writer`. [breaking-change]
2014-05-29 20:50:12 -05:00
use core::mem;
use core::ptr;
/// A doubly-linked list.
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct LinkedList<T> {
2015-02-04 20:17:19 -06:00
length: usize,
list_head: Link<T>,
list_tail: Rawlink<Node<T>>,
}
type Link<T> = Option<Box<Node<T>>>;
struct Rawlink<T> {
p: *mut T,
}
impl<T> Copy for Rawlink<T> {}
unsafe impl<T:Send> Send for Rawlink<T> {}
unsafe impl<T:Sync> Sync for Rawlink<T> {}
struct Node<T> {
next: Link<T>,
prev: Rawlink<Node<T>>,
value: T,
}
/// An iterator over references to the items of a `LinkedList`.
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T:'a> {
head: &'a Link<T>,
tail: Rawlink<Node<T>>,
2015-02-04 20:17:19 -06:00
nelem: usize,
}
2014-12-30 18:07:53 -06:00
// FIXME #19839: deriving is too aggressive on the bounds (T doesn't need to be Clone).
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Clone for Iter<'a, T> {
2014-12-30 18:07:53 -06:00
fn clone(&self) -> Iter<'a, T> {
Iter {
head: self.head.clone(),
tail: self.tail,
nelem: self.nelem,
}
}
}
/// An iterator over mutable references to the items of a `LinkedList`.
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IterMut<'a, T:'a> {
list: &'a mut LinkedList<T>,
head: Rawlink<Node<T>>,
tail: Rawlink<Node<T>>,
2015-02-04 20:17:19 -06:00
nelem: usize,
}
/// An iterator over mutable references to the items of a `LinkedList`.
#[derive(Clone)]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<T> {
list: LinkedList<T>
2012-08-27 16:22:25 -05:00
}
/// Rawlink is a type like Option<T> but for holding a raw pointer
impl<T> Rawlink<T> {
/// Like Option::None for Rawlink
fn none() -> Rawlink<T> {
2014-09-14 22:27:36 -05:00
Rawlink{p: ptr::null_mut()}
}
/// Like Option::Some for Rawlink
fn some(n: &mut T) -> Rawlink<T> {
2014-02-14 17:42:01 -06:00
Rawlink{p: n}
}
/// Convert the `Rawlink` into an Option value
fn resolve_immut<'a>(&self) -> Option<&'a T> {
unsafe {
self.p.as_ref()
}
}
/// Convert the `Rawlink` into an Option value
fn resolve<'a>(&mut self) -> Option<&'a mut T> {
unsafe {
self.p.as_mut()
}
}
/// Return the `Rawlink` and replace with `Rawlink::none()`
fn take(&mut self) -> Rawlink<T> {
core: Remove the cast module This commit revisits the `cast` module in libcore and libstd, and scrutinizes all functions inside of it. The result was to remove the `cast` module entirely, folding all functionality into the `mem` module. Specifically, this is the fate of each function in the `cast` module. * transmute - This function was moved to `mem`, but it is now marked as #[unstable]. This is due to planned changes to the `transmute` function and how it can be invoked (see the #[unstable] comment). For more information, see RFC 5 and #12898 * transmute_copy - This function was moved to `mem`, with clarification that is is not an error to invoke it with T/U that are different sizes, but rather that it is strongly discouraged. This function is now #[stable] * forget - This function was moved to `mem` and marked #[stable] * bump_box_refcount - This function was removed due to the deprecation of managed boxes as well as its questionable utility. * transmute_mut - This function was previously deprecated, and removed as part of this commit. * transmute_mut_unsafe - This function doesn't serve much of a purpose when it can be achieved with an `as` in safe code, so it was removed. * transmute_lifetime - This function was removed because it is likely a strong indication that code is incorrect in the first place. * transmute_mut_lifetime - This function was removed for the same reasons as `transmute_lifetime` * copy_lifetime - This function was moved to `mem`, but it is marked `#[unstable]` now due to the likelihood of being removed in the future if it is found to not be very useful. * copy_mut_lifetime - This function was also moved to `mem`, but had the same treatment as `copy_lifetime`. * copy_lifetime_vec - This function was removed because it is not used today, and its existence is not necessary with DST (copy_lifetime will suffice). In summary, the cast module was stripped down to these functions, and then the functions were moved to the `mem` module. transmute - #[unstable] transmute_copy - #[stable] forget - #[stable] copy_lifetime - #[unstable] copy_mut_lifetime - #[unstable] [breaking-change]
2014-05-09 12:34:51 -05:00
mem::replace(self, Rawlink::none())
}
}
impl<T> Clone for Rawlink<T> {
#[inline]
fn clone(&self) -> Rawlink<T> {
Rawlink{p: self.p}
}
}
impl<T> Node<T> {
fn new(v: T) -> Node<T> {
Node{value: v, next: None, prev: Rawlink::none()}
}
}
/// Set the .prev field on `next`, then return `Some(next)`
fn link_with_prev<T>(mut next: Box<Node<T>>, prev: Rawlink<Node<T>>)
-> Link<T> {
next.prev = prev;
Some(next)
}
// private methods
impl<T> LinkedList<T> {
/// Add a Node first in the list
#[inline]
fn push_front_node(&mut self, mut new_head: Box<Node<T>>) {
match self.list_head {
None => {
self.list_tail = Rawlink::some(&mut *new_head);
self.list_head = link_with_prev(new_head, Rawlink::none());
}
Some(ref mut head) => {
new_head.prev = Rawlink::none();
head.prev = Rawlink::some(&mut *new_head);
core: Remove the cast module This commit revisits the `cast` module in libcore and libstd, and scrutinizes all functions inside of it. The result was to remove the `cast` module entirely, folding all functionality into the `mem` module. Specifically, this is the fate of each function in the `cast` module. * transmute - This function was moved to `mem`, but it is now marked as #[unstable]. This is due to planned changes to the `transmute` function and how it can be invoked (see the #[unstable] comment). For more information, see RFC 5 and #12898 * transmute_copy - This function was moved to `mem`, with clarification that is is not an error to invoke it with T/U that are different sizes, but rather that it is strongly discouraged. This function is now #[stable] * forget - This function was moved to `mem` and marked #[stable] * bump_box_refcount - This function was removed due to the deprecation of managed boxes as well as its questionable utility. * transmute_mut - This function was previously deprecated, and removed as part of this commit. * transmute_mut_unsafe - This function doesn't serve much of a purpose when it can be achieved with an `as` in safe code, so it was removed. * transmute_lifetime - This function was removed because it is likely a strong indication that code is incorrect in the first place. * transmute_mut_lifetime - This function was removed for the same reasons as `transmute_lifetime` * copy_lifetime - This function was moved to `mem`, but it is marked `#[unstable]` now due to the likelihood of being removed in the future if it is found to not be very useful. * copy_mut_lifetime - This function was also moved to `mem`, but had the same treatment as `copy_lifetime`. * copy_lifetime_vec - This function was removed because it is not used today, and its existence is not necessary with DST (copy_lifetime will suffice). In summary, the cast module was stripped down to these functions, and then the functions were moved to the `mem` module. transmute - #[unstable] transmute_copy - #[stable] forget - #[stable] copy_lifetime - #[unstable] copy_mut_lifetime - #[unstable] [breaking-change]
2014-05-09 12:34:51 -05:00
mem::swap(head, &mut new_head);
head.next = Some(new_head);
}
}
self.length += 1;
}
/// Remove the first Node and return it, or None if the list is empty
#[inline]
fn pop_front_node(&mut self) -> Option<Box<Node<T>>> {
self.list_head.take().map(|mut front_node| {
self.length -= 1;
match front_node.next.take() {
Some(node) => self.list_head = link_with_prev(node, Rawlink::none()),
None => self.list_tail = Rawlink::none()
}
front_node
})
}
/// Add a Node last in the list
#[inline]
fn push_back_node(&mut self, mut new_tail: Box<Node<T>>) {
match self.list_tail.resolve() {
None => return self.push_front_node(new_tail),
Some(tail) => {
self.list_tail = Rawlink::some(&mut *new_tail);
tail.next = link_with_prev(new_tail, Rawlink::some(tail));
}
}
self.length += 1;
}
/// Remove the last Node and return it, or None if the list is empty
#[inline]
fn pop_back_node(&mut self) -> Option<Box<Node<T>>> {
self.list_tail.resolve().map_or(None, |tail| {
self.length -= 1;
self.list_tail = tail.prev;
match tail.prev.resolve() {
None => self.list_head.take(),
Some(tail_prev) => tail_prev.next.take()
}
})
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Default for LinkedList<T> {
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
fn default() -> LinkedList<T> { LinkedList::new() }
}
impl<T> LinkedList<T> {
/// Creates an empty `LinkedList`.
2013-07-10 08:27:15 -05:00
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn new() -> LinkedList<T> {
LinkedList{list_head: None, list_tail: Rawlink::none(), length: 0}
2013-07-10 08:27:15 -05:00
}
2015-01-01 02:30:11 -06:00
/// Moves all elements from `other` to the end of the list.
///
2015-01-01 02:30:11 -06:00
/// This reuses all the nodes from `other` and moves them into `self`. After
/// this operation, `other` becomes empty.
///
/// This operation should compute in O(1) time and O(1) memory.
///
/// # Examples
///
2015-01-11 16:02:51 -06:00
/// ```
/// use std::collections::LinkedList;
///
/// let mut a = LinkedList::new();
/// let mut b = LinkedList::new();
2015-01-25 15:05:03 -06:00
/// a.push_back(1);
/// a.push_back(2);
2015-01-25 15:05:03 -06:00
/// b.push_back(3);
/// b.push_back(4);
///
2015-01-01 02:30:11 -06:00
/// a.append(&mut b);
///
/// for e in a.iter() {
/// println!("{}", e); // prints 1, then 2, then 3, then 4
/// }
2015-01-01 02:30:11 -06:00
/// println!("{}", b.len()); // prints 0
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn append(&mut self, other: &mut LinkedList<T>) {
match self.list_tail.resolve() {
2015-01-01 02:30:11 -06:00
None => {
self.length = other.length;
self.list_head = other.list_head.take();
self.list_tail = other.list_tail.take();
},
Some(tail) => {
// Carefully empty `other`.
let o_tail = other.list_tail.take();
let o_length = other.length;
match other.list_head.take() {
None => return,
Some(node) => {
tail.next = link_with_prev(node, self.list_tail);
self.list_tail = o_tail;
self.length += o_length;
}
}
2012-09-21 21:37:57 -05:00
}
}
2015-01-01 02:30:11 -06:00
other.length = 0;
}
2014-08-04 05:48:39 -05:00
/// Provides a forward iterator.
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-30 18:07:53 -06:00
pub fn iter(&self) -> Iter<T> {
Iter{nelem: self.len(), head: &self.list_head, tail: self.list_tail}
}
2014-08-04 05:48:39 -05:00
/// Provides a forward iterator with mutable references.
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2014-12-30 18:07:53 -06:00
pub fn iter_mut(&mut self) -> IterMut<T> {
let head_raw = match self.list_head {
Some(ref mut h) => Rawlink::some(&mut **h),
None => Rawlink::none(),
};
IterMut{
nelem: self.len(),
head: head_raw,
tail: self.list_tail,
list: self
}
}
Deprecate the rev_iter pattern in all places where a DoubleEndedIterator is provided (everywhere but treemap) This commit deprecates rev_iter, mut_rev_iter, move_rev_iter everywhere (except treemap) and also deprecates related functions like rsplit, rev_components, and rev_str_components. In every case, these functions can be replaced with the non-reversed form followed by a call to .rev(). To make this more concrete, a translation table for all functional changes necessary follows: * container.rev_iter() -> container.iter().rev() * container.mut_rev_iter() -> container.mut_iter().rev() * container.move_rev_iter() -> container.move_iter().rev() * sliceorstr.rsplit(sep) -> sliceorstr.split(sep).rev() * path.rev_components() -> path.components().rev() * path.rev_str_components() -> path.str_components().rev() In terms of the type system, this change also deprecates any specialized reversed iterator types (except in treemap), opting instead to use Rev directly if any type annotations are needed. However, since methods directly returning reversed iterators are now discouraged, the need for such annotations should be small. However, in those cases, the general pattern for conversion is to take whatever follows Rev in the original reversed name and surround it with Rev<>: * RevComponents<'a> -> Rev<Components<'a>> * RevStrComponents<'a> -> Rev<StrComponents<'a>> * RevItems<'a, T> -> Rev<Items<'a, T>> * etc. The reasoning behind this change is that it makes the standard API much simpler without reducing readability, performance, or power. The presence of functions such as rev_iter adds more boilerplate code to libraries (all of which simply call .iter().rev()), clutters up the documentation, and only helps code by saving two characters. Additionally, the numerous type synonyms that were used to make the type signatures look nice like RevItems add even more boilerplate and clutter up the docs even more. With this change, all that cruft goes away. [breaking-change]
2014-04-20 23:59:12 -05:00
/// Returns `true` if the `LinkedList` is empty.
///
/// This operation should compute in O(1) time.
2015-01-11 16:02:51 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
2015-01-11 16:02:51 -06:00
///
/// let mut dl = LinkedList::new();
2015-01-11 16:02:51 -06:00
/// assert!(dl.is_empty());
///
/// dl.push_front("foo");
/// assert!(!dl.is_empty());
/// ```
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_empty(&self) -> bool {
self.list_head.is_none()
}
/// Returns the length of the `LinkedList`.
///
/// This operation should compute in O(1) time.
2015-01-11 16:02:51 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
2015-01-11 16:02:51 -06:00
///
/// let mut dl = LinkedList::new();
2015-01-11 16:02:51 -06:00
///
2015-01-31 10:23:42 -06:00
/// dl.push_front(2);
2015-01-11 16:02:51 -06:00
/// assert_eq!(dl.len(), 1);
///
/// dl.push_front(1);
/// assert_eq!(dl.len(), 2);
///
/// dl.push_back(3);
/// assert_eq!(dl.len(), 3);
///
/// ```
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-02-04 20:17:19 -06:00
pub fn len(&self) -> usize {
self.length
}
/// Removes all elements from the `LinkedList`.
///
/// This operation should compute in O(n) time.
2015-01-11 16:02:51 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
2015-01-11 16:02:51 -06:00
///
/// let mut dl = LinkedList::new();
2015-01-11 16:02:51 -06:00
///
2015-01-31 10:23:42 -06:00
/// dl.push_front(2);
2015-01-11 16:02:51 -06:00
/// dl.push_front(1);
/// assert_eq!(dl.len(), 2);
2015-01-31 10:23:42 -06:00
/// assert_eq!(dl.front(), Some(&1));
2015-01-11 16:02:51 -06:00
///
/// dl.clear();
/// assert_eq!(dl.len(), 0);
/// assert_eq!(dl.front(), None);
///
/// ```
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn clear(&mut self) {
*self = LinkedList::new()
}
/// Provides a reference to the front element, or `None` if the list is
/// empty.
2015-01-11 16:02:51 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
2015-01-11 16:02:51 -06:00
///
/// let mut dl = LinkedList::new();
2015-01-11 16:02:51 -06:00
/// assert_eq!(dl.front(), None);
///
/// dl.push_front(1);
2015-01-31 10:23:42 -06:00
/// assert_eq!(dl.front(), Some(&1));
2015-01-11 16:02:51 -06:00
///
/// ```
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn front(&self) -> Option<&T> {
self.list_head.as_ref().map(|head| &head.value)
}
/// Provides a mutable reference to the front element, or `None` if the list
/// is empty.
2015-01-11 16:02:51 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
2015-01-11 16:02:51 -06:00
///
/// let mut dl = LinkedList::new();
2015-01-11 16:02:51 -06:00
/// assert_eq!(dl.front(), None);
///
/// dl.push_front(1);
2015-01-31 10:23:42 -06:00
/// assert_eq!(dl.front(), Some(&1));
2015-01-11 16:02:51 -06:00
///
/// match dl.front_mut() {
/// None => {},
2015-01-31 10:23:42 -06:00
/// Some(x) => *x = 5,
2015-01-11 16:02:51 -06:00
/// }
2015-01-31 10:23:42 -06:00
/// assert_eq!(dl.front(), Some(&5));
2015-01-11 16:02:51 -06:00
///
/// ```
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn front_mut(&mut self) -> Option<&mut T> {
self.list_head.as_mut().map(|head| &mut head.value)
}
/// Provides a reference to the back element, or `None` if the list is
/// empty.
2015-01-11 16:02:51 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
2015-01-11 16:02:51 -06:00
///
/// let mut dl = LinkedList::new();
2015-01-11 16:02:51 -06:00
/// assert_eq!(dl.back(), None);
///
/// dl.push_back(1);
2015-01-31 10:23:42 -06:00
/// assert_eq!(dl.back(), Some(&1));
2015-01-11 16:02:51 -06:00
///
/// ```
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn back(&self) -> Option<&T> {
self.list_tail.resolve_immut().as_ref().map(|tail| &tail.value)
}
/// Provides a mutable reference to the back element, or `None` if the list
/// is empty.
2015-01-11 16:02:51 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
2015-01-11 16:02:51 -06:00
///
/// let mut dl = LinkedList::new();
2015-01-11 16:02:51 -06:00
/// assert_eq!(dl.back(), None);
///
/// dl.push_back(1);
2015-01-31 10:23:42 -06:00
/// assert_eq!(dl.back(), Some(&1));
2015-01-11 16:02:51 -06:00
///
/// match dl.back_mut() {
/// None => {},
2015-01-31 10:23:42 -06:00
/// Some(x) => *x = 5,
2015-01-11 16:02:51 -06:00
/// }
2015-01-31 10:23:42 -06:00
/// assert_eq!(dl.back(), Some(&5));
2015-01-11 16:02:51 -06:00
///
/// ```
#[inline]
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn back_mut(&mut self) -> Option<&mut T> {
self.list_tail.resolve().map(|tail| &mut tail.value)
}
/// Adds an element first in the list.
///
/// This operation should compute in O(1) time.
2015-01-11 16:02:51 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
2015-01-11 16:02:51 -06:00
///
/// let mut dl = LinkedList::new();
2015-01-11 16:02:51 -06:00
///
2015-01-31 10:23:42 -06:00
/// dl.push_front(2);
/// assert_eq!(dl.front().unwrap(), &2);
2015-01-11 16:02:51 -06:00
///
/// dl.push_front(1);
/// assert_eq!(dl.front().unwrap(), &1);
///
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_front(&mut self, elt: T) {
self.push_front_node(box Node::new(elt))
}
/// Removes the first element and returns it, or `None` if the list is
/// empty.
///
/// This operation should compute in O(1) time.
2015-01-11 16:02:51 -06:00
///
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
2015-01-11 16:02:51 -06:00
///
/// let mut d = LinkedList::new();
2015-01-11 16:02:51 -06:00
/// assert_eq!(d.pop_front(), None);
///
2015-01-31 10:23:42 -06:00
/// d.push_front(1);
2015-01-11 16:02:51 -06:00
/// d.push_front(3);
/// assert_eq!(d.pop_front(), Some(3));
/// assert_eq!(d.pop_front(), Some(1));
/// assert_eq!(d.pop_front(), None);
///
/// ```
///
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop_front(&mut self) -> Option<T> {
self.pop_front_node().map(|box Node{value, ..}| value)
}
/// Appends an element to the back of a list
///
/// # Examples
///
2015-01-11 16:02:51 -06:00
/// ```
/// use std::collections::LinkedList;
///
/// let mut d = LinkedList::new();
2015-01-25 15:05:03 -06:00
/// d.push_back(1);
/// d.push_back(3);
/// assert_eq!(3, *d.back().unwrap());
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn push_back(&mut self, elt: T) {
self.push_back_node(box Node::new(elt))
}
/// Removes the last element from a list and returns it, or `None` if
/// it is empty.
///
/// # Examples
///
2015-01-11 16:02:51 -06:00
/// ```
/// use std::collections::LinkedList;
///
/// let mut d = LinkedList::new();
/// assert_eq!(d.pop_back(), None);
2015-01-25 15:05:03 -06:00
/// d.push_back(1);
/// d.push_back(3);
/// assert_eq!(d.pop_back(), Some(3));
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn pop_back(&mut self) -> Option<T> {
self.pop_back_node().map(|box Node{value, ..}| value)
}
2015-01-01 02:30:11 -06:00
/// Splits the list into two at the given index. Returns everything after the given index,
/// including the index.
///
2015-02-12 16:11:08 -06:00
/// # Panics
///
/// Panics if `at > len`.
///
2015-01-01 02:30:11 -06:00
/// This operation should compute in O(n) time.
2015-02-12 16:11:08 -06:00
///
2015-01-11 16:02:51 -06:00
/// # Examples
///
/// ```
/// use std::collections::LinkedList;
2015-01-11 16:02:51 -06:00
///
/// let mut d = LinkedList::new();
2015-01-11 16:02:51 -06:00
///
2015-01-31 10:23:42 -06:00
/// d.push_front(1);
2015-01-11 16:02:51 -06:00
/// d.push_front(2);
/// d.push_front(3);
///
/// let mut splitted = d.split_off(2);
///
/// assert_eq!(splitted.pop_front(), Some(1));
/// assert_eq!(splitted.pop_front(), None);
/// ```
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
pub fn split_off(&mut self, at: usize) -> LinkedList<T> {
2015-01-01 02:30:11 -06:00
let len = self.len();
2015-02-12 16:11:08 -06:00
assert!(at <= len, "Cannot split off at a nonexistent index");
2015-01-01 02:30:11 -06:00
if at == 0 {
return mem::replace(self, LinkedList::new());
2015-02-12 16:11:08 -06:00
} else if at == len {
return LinkedList::new();
2015-01-01 02:30:11 -06:00
}
// Below, we iterate towards the `i-1`th node, either from the start or the end,
// depending on which would be faster.
let mut split_node = if at - 1 <= len - 1 - (at - 1) {
let mut iter = self.iter_mut();
// instead of skipping using .skip() (which creates a new struct),
// we skip manually so we can access the head field without
// depending on implementation details of Skip
for _ in 0..at - 1 {
2015-01-01 02:30:11 -06:00
iter.next();
}
iter.head
} else {
// better off starting from the end
let mut iter = self.iter_mut();
for _ in 0..len - 1 - (at - 1) {
2015-01-01 02:30:11 -06:00
iter.next_back();
}
iter.tail
};
let mut splitted_list = LinkedList {
2015-01-01 02:30:11 -06:00
list_head: None,
list_tail: self.list_tail,
length: len - at
};
mem::swap(&mut split_node.resolve().unwrap().next, &mut splitted_list.list_head);
self.list_tail = split_node;
self.length = at;
splitted_list
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Drop for LinkedList<T> {
2013-09-16 20:18:07 -05:00
fn drop(&mut self) {
// Dissolve the linked_list in backwards direction
// Just dropping the list_head can lead to stack exhaustion
// when length is >> 1_000_000
2013-09-16 20:18:07 -05:00
let mut tail = self.list_tail;
loop {
match tail.resolve() {
None => break,
Some(prev) => {
prev.next.take(); // release Box<Node<T>>
tail = prev.prev;
}
}
}
2013-09-16 20:18:07 -05:00
self.length = 0;
self.list_head = None;
self.list_tail = Rawlink::none();
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, A> Iterator for Iter<'a, A> {
type Item = &'a A;
#[inline]
fn next(&mut self) -> Option<&'a A> {
if self.nelem == 0 {
return None;
}
self.head.as_ref().map(|head| {
self.nelem -= 1;
self.head = &head.next;
&head.value
})
}
#[inline]
2015-02-04 20:17:19 -06:00
fn size_hint(&self) -> (usize, Option<usize>) {
(self.nelem, Some(self.nelem))
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
#[inline]
fn next_back(&mut self) -> Option<&'a A> {
if self.nelem == 0 {
return None;
}
self.tail.resolve_immut().as_ref().map(|prev| {
self.nelem -= 1;
self.tail = prev.prev;
&prev.value
})
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, A> ExactSizeIterator for Iter<'a, A> {}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, A> Iterator for IterMut<'a, A> {
type Item = &'a mut A;
#[inline]
fn next(&mut self) -> Option<&'a mut A> {
if self.nelem == 0 {
return None;
}
self.head.resolve().map(|next| {
self.nelem -= 1;
self.head = match next.next {
Some(ref mut node) => Rawlink::some(&mut **node),
None => Rawlink::none(),
};
&mut next.value
})
}
#[inline]
2015-02-04 20:17:19 -06:00
fn size_hint(&self) -> (usize, Option<usize>) {
(self.nelem, Some(self.nelem))
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut A> {
if self.nelem == 0 {
return None;
}
self.tail.resolve().map(|prev| {
self.nelem -= 1;
self.tail = prev.prev;
&mut prev.value
})
2013-01-24 17:40:46 -06:00
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<'a, A> ExactSizeIterator for IterMut<'a, A> {}
// private methods for IterMut
impl<'a, A> IterMut<'a, A> {
fn insert_next_node(&mut self, mut ins_node: Box<Node<A>>) {
// Insert before `self.head` so that it is between the
// previously yielded element and self.head.
//
// The inserted node will not appear in further iteration.
match self.head.resolve() {
None => { self.list.push_back_node(ins_node); }
Some(node) => {
let prev_node = match node.prev.resolve() {
None => return self.list.push_front_node(ins_node),
Some(prev) => prev,
};
2014-08-18 19:52:38 -05:00
let node_own = prev_node.next.take().unwrap();
ins_node.next = link_with_prev(node_own, Rawlink::some(&mut *ins_node));
prev_node.next = link_with_prev(ins_node, Rawlink::some(prev_node));
self.list.length += 1;
}
}
2013-01-24 17:40:46 -06:00
}
}
2014-12-23 16:27:27 -06:00
impl<'a, A> IterMut<'a, A> {
/// Inserts `elt` just after the element most recently returned by `.next()`.
/// The inserted element does not appear in the iteration.
///
/// # Examples
///
2015-01-11 16:02:51 -06:00
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::LinkedList;
2014-12-23 16:27:27 -06:00
///
/// let mut list: LinkedList<_> = vec![1, 3, 4].into_iter().collect();
2014-12-23 16:27:27 -06:00
///
/// {
/// let mut it = list.iter_mut();
/// assert_eq!(it.next().unwrap(), &1);
/// // insert `2` after `1`
/// it.insert_next(2);
/// }
/// {
/// let vec: Vec<_> = list.into_iter().collect();
2015-02-24 12:15:45 -06:00
/// assert_eq!(vec, [1, 2, 3, 4]);
2014-12-23 16:27:27 -06:00
/// }
/// ```
#[inline]
#[unstable(feature = "collections",
reason = "this is probably better handled by a cursor type -- we'll see")]
2014-12-23 16:27:27 -06:00
pub fn insert_next(&mut self, elt: A) {
2014-04-25 03:08:02 -05:00
self.insert_next_node(box Node::new(elt))
}
2014-12-23 16:27:27 -06:00
/// Provides a reference to the next element, without changing the iterator.
///
/// # Examples
///
2015-01-11 16:02:51 -06:00
/// ```
2015-03-13 17:28:35 -05:00
/// # #![feature(collections)]
/// use std::collections::LinkedList;
2014-12-23 16:27:27 -06:00
///
/// let mut list: LinkedList<_> = vec![1, 2, 3].into_iter().collect();
2014-12-23 16:27:27 -06:00
///
/// let mut it = list.iter_mut();
/// assert_eq!(it.next().unwrap(), &1);
/// assert_eq!(it.peek_next().unwrap(), &2);
/// // We just peeked at 2, so it was not consumed from the iterator.
/// assert_eq!(it.next().unwrap(), &2);
/// ```
#[inline]
#[unstable(feature = "collections",
reason = "this is probably better handled by a cursor type -- we'll see")]
2014-12-23 16:27:27 -06:00
pub fn peek_next(&mut self) -> Option<&mut A> {
if self.nelem == 0 {
return None
}
self.head.resolve().map(|head| &mut head.value)
}
}
2013-01-24 17:40:46 -06:00
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<A> Iterator for IntoIter<A> {
type Item = A;
#[inline]
fn next(&mut self) -> Option<A> { self.list.pop_front() }
#[inline]
2015-02-04 20:17:19 -06:00
fn size_hint(&self) -> (usize, Option<usize>) {
(self.list.length, Some(self.list.length))
}
}
2013-01-24 17:40:46 -06:00
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
2015-01-01 22:15:35 -06:00
impl<A> DoubleEndedIterator for IntoIter<A> {
#[inline]
fn next_back(&mut self) -> Option<A> { self.list.pop_back() }
}
2013-01-24 17:40:46 -06:00
impl<A> ExactSizeIterator for IntoIter<A> {}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> FromIterator<A> for LinkedList<A> {
fn from_iter<T: IntoIterator<Item=A>>(iter: T) -> LinkedList<A> {
let mut ret = LinkedList::new();
ret.extend(iter);
ret
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> IntoIterator for LinkedList<T> {
type Item = T;
type IntoIter = IntoIter<T>;
/// Consumes the list into an iterator yielding elements by value.
#[inline]
fn into_iter(self) -> IntoIter<T> {
IntoIter{list: self}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a LinkedList<T> {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
2015-01-07 21:01:05 -06:00
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
impl<'a, T> IntoIterator for &'a mut LinkedList<T> {
type Item = &'a mut T;
type IntoIter = IterMut<'a, T>;
2015-01-07 21:01:05 -06:00
fn into_iter(mut self) -> IterMut<'a, T> {
self.iter_mut()
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A> Extend<A> for LinkedList<A> {
fn extend<T: IntoIterator<Item=A>>(&mut self, iter: T) {
for elt in iter { self.push_back(elt); }
2013-07-29 19:06:49 -05:00
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: PartialEq> PartialEq for LinkedList<A> {
fn eq(&self, other: &LinkedList<A>) -> bool {
self.len() == other.len() &&
iter::order::eq(self.iter(), other.iter())
}
fn ne(&self, other: &LinkedList<A>) -> bool {
2013-08-29 10:11:11 -05:00
self.len() != other.len() ||
iter::order::ne(self.iter(), other.iter())
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Eq> Eq for LinkedList<A> {}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: PartialOrd> PartialOrd for LinkedList<A> {
fn partial_cmp(&self, other: &LinkedList<A>) -> Option<Ordering> {
iter::order::partial_cmp(self.iter(), other.iter())
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Ord> Ord for LinkedList<A> {
#[inline]
fn cmp(&self, other: &LinkedList<A>) -> Ordering {
iter::order::cmp(self.iter(), other.iter())
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Clone> Clone for LinkedList<A> {
fn clone(&self) -> LinkedList<A> {
self.iter().cloned().collect()
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: fmt::Debug> fmt::Debug for LinkedList<A> {
2014-06-07 08:01:44 -05:00
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_list().entries(self.iter()).finish()
2014-06-07 08:01:44 -05:00
}
}
2015-01-23 23:48:20 -06:00
#[stable(feature = "rust1", since = "1.0.0")]
impl<A: Hash> Hash for LinkedList<A> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.len().hash(state);
for elt in self {
elt.hash(state);
}
}
}
2015-03-11 19:44:02 -05:00
#[cfg(test)]
mod tests {
2015-03-11 19:44:02 -05:00
use std::clone::Clone;
use std::iter::{Iterator, IntoIterator};
2015-03-11 19:44:02 -05:00
use std::option::Option::{Some, None, self};
2015-04-10 13:39:53 -05:00
use std::__rand::{thread_rng, Rng};
2015-03-11 19:44:02 -05:00
use std::thread;
use std::vec::Vec;
use super::{LinkedList, Node};
#[cfg(test)]
fn list_from<T: Clone>(v: &[T]) -> LinkedList<T> {
v.iter().cloned().collect()
}
pub fn check_links<T>(list: &LinkedList<T>) {
let mut len = 0;
let mut last_ptr: Option<&Node<T>> = None;
let mut node_ptr: &Node<T>;
match list.list_head {
None => { assert_eq!(0, list.length); return }
Some(ref node) => node_ptr = &**node,
}
loop {
match (last_ptr, node_ptr.prev.resolve_immut()) {
(None , None ) => {}
(None , _ ) => panic!("prev link for list_head"),
(Some(p), Some(pptr)) => {
assert_eq!(p as *const Node<T>, pptr as *const Node<T>);
}
_ => panic!("prev link is none, not good"),
}
match node_ptr.next {
Some(ref next) => {
last_ptr = Some(node_ptr);
node_ptr = &**next;
len += 1;
}
None => {
len += 1;
break;
}
}
}
assert_eq!(len, list.length);
}
#[test]
fn test_append() {
// Empty to empty
{
let mut m = LinkedList::<i32>::new();
let mut n = LinkedList::new();
m.append(&mut n);
check_links(&m);
assert_eq!(m.len(), 0);
assert_eq!(n.len(), 0);
}
// Non-empty to empty
{
let mut m = LinkedList::new();
let mut n = LinkedList::new();
n.push_back(2);
m.append(&mut n);
check_links(&m);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
assert_eq!(n.len(), 0);
check_links(&m);
}
// Empty to non-empty
{
let mut m = LinkedList::new();
let mut n = LinkedList::new();
m.push_back(2);
m.append(&mut n);
check_links(&m);
assert_eq!(m.len(), 1);
assert_eq!(m.pop_back(), Some(2));
check_links(&m);
}
// Non-empty to non-empty
let v = vec![1,2,3,4,5];
let u = vec![9,8,1,2,3,4,5];
let mut m = list_from(&v);
let mut n = list_from(&u);
m.append(&mut n);
check_links(&m);
let mut sum = v;
sum.push_all(&u);
assert_eq!(sum.len(), m.len());
for elt in sum {
assert_eq!(m.pop_front(), Some(elt))
}
assert_eq!(n.len(), 0);
// let's make sure it's working properly, since we
// did some direct changes to private members
n.push_back(3);
assert_eq!(n.len(), 1);
assert_eq!(n.pop_front(), Some(3));
check_links(&n);
}
#[test]
fn test_insert_prev() {
let mut m = list_from(&[0,2,4,6,8]);
let len = m.len();
{
let mut it = m.iter_mut();
it.insert_next(-2);
loop {
match it.next() {
None => break,
Some(elt) => {
it.insert_next(*elt + 1);
match it.peek_next() {
Some(x) => assert_eq!(*x, *elt + 2),
None => assert_eq!(8, *elt),
}
}
}
}
it.insert_next(0);
it.insert_next(1);
}
check_links(&m);
assert_eq!(m.len(), 3 + len * 2);
assert_eq!(m.into_iter().collect::<Vec<_>>(), [-2,0,1,2,3,4,5,6,7,8,9,0,1]);
}
#[test]
fn test_send() {
let n = list_from(&[1,2,3]);
thread::spawn(move || {
check_links(&n);
let a: &[_] = &[&1,&2,&3];
assert_eq!(a, &n.iter().collect::<Vec<_>>()[..]);
2015-03-11 19:44:02 -05:00
}).join().ok().unwrap();
}
#[test]
fn test_fuzz() {
for _ in 0..25 {
fuzz_test(3);
fuzz_test(16);
fuzz_test(189);
}
}
#[cfg(test)]
fn fuzz_test(sz: i32) {
let mut m: LinkedList<_> = LinkedList::new();
let mut v = vec![];
for i in 0..sz {
check_links(&m);
2015-04-10 13:39:53 -05:00
let r: u8 = thread_rng().next_u32() as u8;
2015-03-11 19:44:02 -05:00
match r % 6 {
0 => {
m.pop_back();
v.pop();
}
1 => {
if !v.is_empty() {
m.pop_front();
v.remove(0);
}
}
2 | 4 => {
m.push_front(-i);
v.insert(0, -i);
}
3 | 5 | _ => {
m.push_back(i);
v.push(i);
}
}
}
check_links(&m);
let mut i = 0;
for (a, &b) in m.into_iter().zip(v.iter()) {
i += 1;
assert_eq!(a, b);
}
assert_eq!(i, v.len());
}
}