rust/tests/ui/asm/aarch64/srcloc.stderr

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

291 lines
5.7 KiB
Plaintext
Raw Normal View History

error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:12:15
2020-05-26 20:07:59 +01:00
|
LL | asm!("invalid_instruction");
| ^
|
note: instantiated into assembly here
--> <inline asm>:1:2
2020-05-26 20:07:59 +01:00
|
LL | invalid_instruction
| ^
2020-05-26 20:07:59 +01:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:16:13
2020-05-26 20:07:59 +01:00
|
LL | invalid_instruction
| ^
|
note: instantiated into assembly here
--> <inline asm>:2:13
2020-05-26 20:07:59 +01:00
|
LL | invalid_instruction
| ^
2020-05-26 20:07:59 +01:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:21:13
2020-05-26 20:07:59 +01:00
|
LL | invalid_instruction
| ^
|
note: instantiated into assembly here
--> <inline asm>:2:13
2020-05-26 20:07:59 +01:00
|
LL | invalid_instruction
| ^
2020-05-26 20:07:59 +01:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:27:13
2020-05-26 20:07:59 +01:00
|
LL | invalid_instruction
| ^
|
note: instantiated into assembly here
--> <inline asm>:3:13
2020-05-26 20:07:59 +01:00
|
LL | invalid_instruction
| ^
2020-05-26 20:07:59 +01:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:34:13
2020-05-26 20:07:59 +01:00
|
LL | invalid_instruction
| ^
|
note: instantiated into assembly here
--> <inline asm>:3:13
2020-05-26 20:07:59 +01:00
|
LL | invalid_instruction
| ^
2020-05-26 20:07:59 +01:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:39:14
2020-05-26 20:07:59 +01:00
|
LL | asm!(concat!("invalid", "_", "instruction"));
| ^
|
note: instantiated into assembly here
--> <inline asm>:1:2
2020-05-26 20:07:59 +01:00
|
LL | invalid_instruction
| ^
2020-05-26 20:07:59 +01:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:43:14
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | "invalid_instruction",
| ^
|
note: instantiated into assembly here
--> <inline asm>:1:2
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:49:14
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | "invalid_instruction",
| ^
|
note: instantiated into assembly here
--> <inline asm>:2:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:56:14
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | "invalid_instruction",
| ^
|
note: instantiated into assembly here
--> <inline asm>:3:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:63:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!("invalid", "_", "instruction"),
| ^
|
note: instantiated into assembly here
--> <inline asm>:2:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:70:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!("invalid", "_", "instruction"),
| ^
|
note: instantiated into assembly here
--> <inline asm>:2:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:77:14
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | "invalid_instruction1",
| ^
|
note: instantiated into assembly here
--> <inline asm>:1:2
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction1
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:78:14
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | "invalid_instruction2",
| ^
|
note: instantiated into assembly here
--> <inline asm>:2:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction2
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:84:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!(
| ^
|
note: instantiated into assembly here
--> <inline asm>:1:2
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction1
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:84:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!(
| ^
|
note: instantiated into assembly here
--> <inline asm>:2:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction2
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:93:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!(
| ^
|
note: instantiated into assembly here
--> <inline asm>:1:2
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction1
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:93:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!(
| ^
|
note: instantiated into assembly here
--> <inline asm>:2:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction2
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:97:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!(
| ^
|
note: instantiated into assembly here
--> <inline asm>:3:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction3
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:97:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!(
| ^
|
note: instantiated into assembly here
--> <inline asm>:4:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction4
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:108:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!(
| ^
|
note: instantiated into assembly here
--> <inline asm>:1:2
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction1
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:108:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!(
| ^
|
note: instantiated into assembly here
--> <inline asm>:2:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction2
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:112:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!(
| ^
|
note: instantiated into assembly here
--> <inline asm>:4:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction3
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:112:13
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | concat!(
| ^
|
note: instantiated into assembly here
--> <inline asm>:5:1
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
|
LL | invalid_instruction4
| ^
asm: Allow multiple template strings; interpret them as newline-separated Allow the `asm!` macro to accept a series of template arguments, and interpret them as if they were concatenated with a '\n' between them. This allows writing an `asm!` where each line of assembly appears in a separate template string argument. This syntax makes it possible for rustfmt to reliably format and indent each line of assembly, without risking changes to the inside of a template string. It also avoids the complexity of having the user carefully format and indent a multi-line string (including where to put the surrounding quotes), and avoids the extra indentation and lines of a call to `concat!`. For example, rewriting the second example from the [blog post on the new inline assembly syntax](https://blog.rust-lang.org/inside-rust/2020/06/08/new-inline-asm.html) using multiple template strings: ```rust fn main() { let mut bits = [0u8; 64]; for value in 0..=1024u64 { let popcnt; unsafe { asm!( " popcnt {popcnt}, {v}", "2:", " blsi rax, {v}", " jz 1f", " xor {v}, rax", " tzcnt rax, rax", " stosb", " jmp 2b", "1:", v = inout(reg) value => _, popcnt = out(reg) popcnt, out("rax") _, // scratch inout("rdi") bits.as_mut_ptr() => _, ); } println!("bits of {}: {:?}", value, &bits[0..popcnt]); } } ``` Note that all the template strings must appear before all other arguments; you cannot, for instance, provide a series of template strings intermixed with the corresponding operands. In order to get srcloc mappings right for macros that generate multi-line string literals, create one line_span for each line in the string literal, each pointing to the macro. Make `rustc_parse_format::Parser::curarg` `pub`, so that we can propagate it from one template string argument to the next.
2020-06-14 23:33:55 -07:00
error: unrecognized instruction mnemonic
--> $DIR/srcloc.rs:125:14
|
LL | "invalid_instruction"
| ^
|
note: instantiated into assembly here
--> <inline asm>:4:1
|
LL | invalid_instruction
| ^
error: aborting due to 24 previous errors
2020-05-26 20:07:59 +01:00