rust/src/libstd/rt/mod.rs

101 lines
3.7 KiB
Rust
Raw Normal View History

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*! Runtime services, including the task scheduler and I/O dispatcher
2013-05-06 23:11:02 -07:00
The `rt` module provides the private runtime infrastructure necessary
to support core language features like the exchange and local heap,
the garbage collector, logging, local data and unwinding. It also
implements the default task scheduler and task model. Initialization
routines are provided for setting up runtime resources in common
configurations, including that used by `rustc` when generating
executables.
It is intended that the features provided by `rt` can be factored in a
way such that the core library can be built with different 'profiles'
for different use cases, e.g. excluding the task scheduler. A number
of runtime features though are critical to the functioning of the
language and an implementation must be provided regardless of the
execution environment.
Of foremost importance is the global exchange heap, in the module
`heap`. Very little practical Rust code can be written without
2013-05-06 23:11:02 -07:00
access to the global heap. Unlike most of `rt` the global heap is
truly a global resource and generally operates independently of the
rest of the runtime.
2013-05-19 01:04:01 -07:00
All other runtime features are task-local, including the local heap,
2013-05-06 23:11:02 -07:00
the garbage collector, local storage, logging and the stack unwinder.
The relationship between `rt` and the rest of the core library is
not entirely clear yet and some modules will be moving into or
out of `rt` as development proceeds.
Several modules in `core` are clients of `rt`:
* `std::task` - The user-facing interface to the Rust task model.
2014-01-16 01:06:20 +08:00
* `std::local_data` - The interface to local data.
* `std::gc` - The garbage collector.
* `std::unstable::lang` - Miscellaneous lang items, some of which rely on `std::rt`.
* `std::cleanup` - Local heap destruction.
* `std::io` - In the future `std::io` will use an `rt` implementation.
* `std::logging`
* `std::comm`
2013-05-06 23:11:02 -07:00
*/
2013-04-23 19:21:37 -07:00
// FIXME: this should not be here.
#![allow(missing_doc)]
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 19:11:49 -07:00
use failure;
use rustrt;
2013-03-12 13:05:45 -07:00
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 19:11:49 -07:00
// TODO: dox
pub use self::util::{default_sched_threads, min_stack, running_on_valgrind};
2014-03-19 00:42:02 -07:00
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 19:11:49 -07:00
// TODO: dox
pub use alloc::{heap, libc_heap};
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 19:11:49 -07:00
pub use rustrt::{task, local, mutex, exclusive, stack, args, rtio};
pub use rustrt::{Stdio, Stdout, Stderr, begin_unwind, begin_unwind_fmt};
pub use rustrt::{bookkeeping, at_exit, unwind, DEFAULT_ERROR_CODE, Runtime};
2013-05-19 01:13:53 -07:00
2014-04-27 22:05:41 -04:00
// Bindings to system threading libraries.
pub mod thread;
2013-04-26 23:21:58 -07:00
2014-04-27 22:05:41 -04:00
// Simple backtrace functionality (to print on failure)
pub mod backtrace;
2014-04-27 22:05:41 -04:00
// Just stuff
mod util;
2013-06-21 01:28:23 -07:00
/// One-time runtime initialization.
///
/// Initializes global state, including frobbing
/// the crate's logging flags, registering GC
/// metadata, and storing the process arguments.
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 19:11:49 -07:00
#[allow(experimental)]
pub fn init(argc: int, argv: **u8) {
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 19:11:49 -07:00
rustrt::init(argc, argv);
unsafe { unwind::register(failure::on_fail); }
}
/// One-time runtime cleanup.
///
/// This function is unsafe because it performs no checks to ensure that the
/// runtime has completely ceased running. It is the responsibility of the
/// caller to ensure that the runtime is entirely shut down and nothing will be
/// poking around at the internal components.
///
/// Invoking cleanup while portions of the runtime are still in use may cause
/// undefined behavior.
pub unsafe fn cleanup() {
std: Extract librustrt out of libstd As part of the libstd facade efforts, this commit extracts the runtime interface out of the standard library into a standalone crate, librustrt. This crate will provide the following services: * Definition of the rtio interface * Definition of the Runtime interface * Implementation of the Task structure * Implementation of task-local-data * Implementation of task failure via unwinding via libunwind * Implementation of runtime initialization and shutdown * Implementation of thread-local-storage for the local rust Task Notably, this crate avoids the following services: * Thread creation and destruction. The crate does not require the knowledge of an OS threading system, and as a result it seemed best to leave out the `rt::thread` module from librustrt. The librustrt module does depend on mutexes, however. * Implementation of backtraces. There is no inherent requirement for the runtime to be able to generate backtraces. As will be discussed later, this functionality continues to live in libstd rather than librustrt. As usual, a number of architectural changes were required to make this crate possible. Users of "stable" functionality will not be impacted by this change, but users of the `std::rt` module will likely note the changes. A list of architectural changes made is: * The stdout/stderr handles no longer live directly inside of the `Task` structure. This is a consequence of librustrt not knowing about `std::io`. These two handles are now stored inside of task-local-data. The handles were originally stored inside of the `Task` for perf reasons, and TLD is not currently as fast as it could be. For comparison, 100k prints goes from 59ms to 68ms (a 15% slowdown). This appeared to me to be an acceptable perf loss for the successful extraction of a librustrt crate. * The `rtio` module was forced to duplicate more functionality of `std::io`. As the module no longer depends on `std::io`, `rtio` now defines structures such as socket addresses, addrinfo fiddly bits, etc. The primary change made was that `rtio` now defines its own `IoError` type. This type is distinct from `std::io::IoError` in that it does not have an enum for what error occurred, but rather a platform-specific error code. The native and green libraries will be updated in later commits for this change, and the bulk of this effort was put behind updating the two libraries for this change (with `rtio`). * Printing a message on task failure (along with the backtrace) continues to live in libstd, not in librustrt. This is a consequence of the above decision to move the stdout/stderr handles to TLD rather than inside the `Task` itself. The unwinding API now supports registration of global callback functions which will be invoked when a task fails, allowing for libstd to register a function to print a message and a backtrace. The API for registering a callback is experimental and unsafe, as the ramifications of running code on unwinding is pretty hairy. * The `std::unstable::mutex` module has moved to `std::rt::mutex`. * The `std::unstable::sync` module has been moved to `std::rt::exclusive` and the type has been rewritten to not internally have an Arc and to have an RAII guard structure when locking. Old code should stop using `Exclusive` in favor of the primitives in `libsync`, but if necessary, old code should port to `Arc<Exclusive<T>>`. * The local heap has been stripped down to have fewer debugging options. None of these were tested, and none of these have been used in a very long time. [breaking-change]
2014-06-03 19:11:49 -07:00
rustrt::cleanup();
2013-06-17 23:18:20 -07:00
}