rust/src/librustc_trans/mir/constant.rs

913 lines
39 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm::{self, ValueRef};
use rustc::middle::const_val::ConstVal;
use rustc_const_eval::ErrKind;
use rustc_const_math::ConstInt::*;
use rustc_const_math::ConstMathErr;
use rustc::hir::def_id::DefId;
use rustc::infer::TransNormalize;
use rustc::mir::repr as mir;
use rustc::mir::tcx::LvalueTy;
use rustc::traits;
use rustc::ty::{self, Ty, TyCtxt, TypeFoldable};
use rustc::ty::cast::{CastTy, IntTy};
use rustc::ty::subst::Substs;
use {abi, adt, base, Disr};
use callee::Callee;
use common::{self, BlockAndBuilder, CrateContext, const_get_elt, val_ty};
use common::{C_array, C_bool, C_bytes, C_floating_f64, C_integral};
use common::{C_null, C_struct, C_str_slice, C_undef, C_uint};
use consts::{self, ConstEvalFailure, TrueConst, to_const_int};
use monomorphize::{self, Instance};
use type_of;
use type_::Type;
use value::Value;
use syntax::codemap::{Span, DUMMY_SP};
use std::ptr;
use super::operand::{OperandRef, OperandValue};
use super::MirContext;
/// A sized constant rvalue.
/// The LLVM type might not be the same for a single Rust type,
/// e.g. each enum variant would have its own LLVM struct type.
#[derive(Copy, Clone)]
pub struct Const<'tcx> {
pub llval: ValueRef,
pub ty: Ty<'tcx>
}
impl<'tcx> Const<'tcx> {
pub fn new(llval: ValueRef, ty: Ty<'tcx>) -> Const<'tcx> {
Const {
llval: llval,
ty: ty
2015-11-08 12:11:11 -06:00
}
}
/// Translate ConstVal into a LLVM constant value.
pub fn from_constval<'a>(ccx: &CrateContext<'a, 'tcx>,
cv: ConstVal,
ty: Ty<'tcx>)
-> Const<'tcx> {
let llty = type_of::type_of(ccx, ty);
let val = match cv {
ConstVal::Float(v) => C_floating_f64(v, llty),
ConstVal::Bool(v) => C_bool(ccx, v),
2015-12-16 11:44:15 -06:00
ConstVal::Integral(I8(v)) => C_integral(Type::i8(ccx), v as u64, true),
ConstVal::Integral(I16(v)) => C_integral(Type::i16(ccx), v as u64, true),
ConstVal::Integral(I32(v)) => C_integral(Type::i32(ccx), v as u64, true),
ConstVal::Integral(I64(v)) => C_integral(Type::i64(ccx), v as u64, true),
ConstVal::Integral(Isize(v)) => {
let i = v.as_i64(ccx.tcx().sess.target.int_type);
C_integral(Type::int(ccx), i as u64, true)
},
ConstVal::Integral(U8(v)) => C_integral(Type::i8(ccx), v as u64, false),
ConstVal::Integral(U16(v)) => C_integral(Type::i16(ccx), v as u64, false),
ConstVal::Integral(U32(v)) => C_integral(Type::i32(ccx), v as u64, false),
ConstVal::Integral(U64(v)) => C_integral(Type::i64(ccx), v, false),
ConstVal::Integral(Usize(v)) => {
let u = v.as_u64(ccx.tcx().sess.target.uint_type);
C_integral(Type::int(ccx), u, false)
},
ConstVal::Integral(Infer(v)) => C_integral(llty, v as u64, false),
ConstVal::Integral(InferSigned(v)) => C_integral(llty, v as u64, true),
ConstVal::Str(ref v) => C_str_slice(ccx, v.clone()),
ConstVal::ByteStr(ref v) => consts::addr_of(ccx, C_bytes(ccx, v), 1, "byte_str"),
ConstVal::Struct(_) | ConstVal::Tuple(_) |
ConstVal::Array(..) | ConstVal::Repeat(..) |
ConstVal::Function(_) => {
bug!("MIR must not use {:?} (which refers to a local ID)", cv)
}
2015-12-16 11:44:15 -06:00
ConstVal::Char(c) => C_integral(Type::char(ccx), c as u64, false),
ConstVal::Dummy => bug!(),
};
assert!(!ty.has_erasable_regions());
Const::new(val, ty)
}
fn get_pair(&self) -> (ValueRef, ValueRef) {
(const_get_elt(self.llval, &[0]),
const_get_elt(self.llval, &[1]))
}
fn get_fat_ptr(&self) -> (ValueRef, ValueRef) {
assert_eq!(abi::FAT_PTR_ADDR, 0);
assert_eq!(abi::FAT_PTR_EXTRA, 1);
self.get_pair()
}
fn as_lvalue(&self) -> ConstLvalue<'tcx> {
ConstLvalue {
base: Base::Value(self.llval),
llextra: ptr::null_mut(),
ty: self.ty
}
}
pub fn to_operand<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> OperandRef<'tcx> {
let llty = type_of::immediate_type_of(ccx, self.ty);
let llvalty = val_ty(self.llval);
let val = if common::type_is_imm_pair(ccx, self.ty) {
let (a, b) = self.get_pair();
OperandValue::Pair(a, b)
} else if common::type_is_immediate(ccx, self.ty) && llty == llvalty {
// If the types match, we can use the value directly.
OperandValue::Immediate(self.llval)
} else {
// Otherwise, or if the value is not immediate, we create
// a constant LLVM global and cast its address if necessary.
let align = type_of::align_of(ccx, self.ty);
let ptr = consts::addr_of(ccx, self.llval, align, "const");
OperandValue::Ref(consts::ptrcast(ptr, llty.ptr_to()))
};
OperandRef {
val: val,
ty: self.ty
}
}
}
#[derive(Copy, Clone)]
enum Base {
/// A constant value without an unique address.
Value(ValueRef),
/// String literal base pointer (cast from array).
Str(ValueRef),
/// The address of a static.
Static(ValueRef)
}
/// An lvalue as seen from a constant.
#[derive(Copy, Clone)]
struct ConstLvalue<'tcx> {
base: Base,
llextra: ValueRef,
ty: Ty<'tcx>
}
impl<'tcx> ConstLvalue<'tcx> {
fn to_const(&self, span: Span) -> Const<'tcx> {
match self.base {
Base::Value(val) => Const::new(val, self.ty),
Base::Str(ptr) => {
span_bug!(span, "loading from `str` ({:?}) in constant",
Value(ptr))
}
Base::Static(val) => {
span_bug!(span, "loading from `static` ({:?}) in constant",
Value(val))
}
}
}
pub fn len<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> ValueRef {
match self.ty.sty {
ty::TyArray(_, n) => C_uint(ccx, n),
ty::TySlice(_) | ty::TyStr => {
assert!(self.llextra != ptr::null_mut());
self.llextra
}
_ => bug!("unexpected type `{}` in ConstLvalue::len", self.ty)
}
}
}
/// Machinery for translating a constant's MIR to LLVM values.
/// FIXME(eddyb) use miri and lower its allocations to LLVM.
struct MirConstContext<'a, 'tcx: 'a> {
ccx: &'a CrateContext<'a, 'tcx>,
mir: &'a mir::Mir<'tcx>,
/// Type parameters for const fn and associated constants.
substs: &'tcx Substs<'tcx>,
/// Arguments passed to a const fn.
args: Vec<Const<'tcx>>,
/// Variable values - specifically, argument bindings of a const fn.
vars: Vec<Option<Const<'tcx>>>,
/// Temp values.
temps: Vec<Option<Const<'tcx>>>,
/// Value assigned to Return, which is the resulting constant.
return_value: Option<Const<'tcx>>
}
impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
fn new(ccx: &'a CrateContext<'a, 'tcx>,
mir: &'a mir::Mir<'tcx>,
substs: &'tcx Substs<'tcx>,
args: Vec<Const<'tcx>>)
-> MirConstContext<'a, 'tcx> {
MirConstContext {
ccx: ccx,
mir: mir,
substs: substs,
args: args,
vars: vec![None; mir.var_decls.len()],
temps: vec![None; mir.temp_decls.len()],
return_value: None
}
}
fn trans_def(ccx: &'a CrateContext<'a, 'tcx>,
mut instance: Instance<'tcx>,
args: Vec<Const<'tcx>>)
-> Result<Const<'tcx>, ConstEvalFailure> {
// Try to resolve associated constants.
if instance.substs.self_ty().is_some() {
// Only trait items can have a Self parameter.
let trait_item = ccx.tcx().impl_or_trait_item(instance.def);
let trait_id = trait_item.container().id();
let substs = instance.substs;
let trait_ref = ty::Binder(substs.to_trait_ref(ccx.tcx(), trait_id));
2016-05-09 15:15:04 -05:00
let vtable = common::fulfill_obligation(ccx.shared(), DUMMY_SP, trait_ref);
if let traits::VtableImpl(vtable_impl) = vtable {
let name = ccx.tcx().item_name(instance.def);
for ac in ccx.tcx().associated_consts(vtable_impl.impl_def_id) {
if ac.name == name {
instance = Instance::new(ac.def_id, vtable_impl.substs);
break;
}
}
}
}
let mir = ccx.get_mir(instance.def).unwrap_or_else(|| {
bug!("missing constant MIR for {}", instance)
});
MirConstContext::new(ccx, &mir, instance.substs, args).trans()
}
fn monomorphize<T>(&self, value: &T) -> T
where T: TransNormalize<'tcx>
{
monomorphize::apply_param_substs(self.ccx.tcx(),
self.substs,
value)
}
fn trans(&mut self) -> Result<Const<'tcx>, ConstEvalFailure> {
let tcx = self.ccx.tcx();
let mut bb = mir::START_BLOCK;
loop {
let data = self.mir.basic_block_data(bb);
for statement in &data.statements {
match statement.kind {
mir::StatementKind::Assign(ref dest, ref rvalue) => {
let ty = self.mir.lvalue_ty(tcx, dest);
let ty = self.monomorphize(&ty).to_ty(tcx);
let value = self.const_rvalue(rvalue, ty, statement.span)?;
self.store(dest, value, statement.span);
}
}
}
let terminator = data.terminator();
let span = terminator.span;
bb = match terminator.kind {
mir::TerminatorKind::Drop { target, .. } | // No dropping.
mir::TerminatorKind::Goto { target } => target,
mir::TerminatorKind::Return => {
return Ok(self.return_value.unwrap_or_else(|| {
span_bug!(span, "no returned value in constant");
}))
}
mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, .. } => {
let cond = self.const_operand(cond, span)?;
let cond_bool = common::const_to_uint(cond.llval) != 0;
if cond_bool != expected {
let err = match *msg {
mir::AssertMessage::BoundsCheck { ref len, ref index } => {
let len = self.const_operand(len, span)?;
let index = self.const_operand(index, span)?;
ErrKind::IndexOutOfBounds {
len: common::const_to_uint(len.llval),
index: common::const_to_uint(index.llval)
}
}
mir::AssertMessage::Math(ref err) => {
ErrKind::Math(err.clone())
}
};
consts::const_err(self.ccx, span, Err(err), TrueConst::Yes)?;
}
target
}
mir::TerminatorKind::Call { ref func, ref args, ref destination, .. } => {
let fn_ty = self.mir.operand_ty(tcx, func);
let fn_ty = self.monomorphize(&fn_ty);
let instance = match fn_ty.sty {
ty::TyFnDef(def_id, substs, _) => {
Instance::new(def_id, substs)
}
_ => span_bug!(span, "calling {:?} (of type {}) in constant",
func, fn_ty)
};
let args = args.iter().map(|arg| {
self.const_operand(arg, span)
}).collect::<Result<Vec<_>, _>>()?;
let value = MirConstContext::trans_def(self.ccx, instance, args)?;
if let Some((ref dest, target)) = *destination {
self.store(dest, value, span);
target
} else {
span_bug!(span, "diverging {:?} in constant", terminator.kind)
}
}
_ => span_bug!(span, "{:?} in constant", terminator.kind)
};
}
}
fn store(&mut self, dest: &mir::Lvalue<'tcx>, value: Const<'tcx>, span: Span) {
let dest = match *dest {
mir::Lvalue::Var(index) => &mut self.vars[index as usize],
mir::Lvalue::Temp(index) => &mut self.temps[index as usize],
mir::Lvalue::ReturnPointer => &mut self.return_value,
_ => span_bug!(span, "assignment to {:?} in constant", dest)
};
*dest = Some(value);
}
fn const_lvalue(&self, lvalue: &mir::Lvalue<'tcx>, span: Span)
-> Result<ConstLvalue<'tcx>, ConstEvalFailure> {
let tcx = self.ccx.tcx();
let lvalue = match *lvalue {
mir::Lvalue::Var(index) => {
self.vars[index as usize].unwrap_or_else(|| {
span_bug!(span, "var{} not initialized", index)
}).as_lvalue()
}
mir::Lvalue::Temp(index) => {
self.temps[index as usize].unwrap_or_else(|| {
span_bug!(span, "tmp{} not initialized", index)
}).as_lvalue()
}
mir::Lvalue::Arg(index) => self.args[index as usize].as_lvalue(),
mir::Lvalue::Static(def_id) => {
ConstLvalue {
base: Base::Static(consts::get_static(self.ccx, def_id).val),
llextra: ptr::null_mut(),
ty: self.mir.lvalue_ty(tcx, lvalue).to_ty(tcx)
}
}
mir::Lvalue::ReturnPointer => {
span_bug!(span, "accessing Lvalue::ReturnPointer in constant")
}
mir::Lvalue::Projection(ref projection) => {
let tr_base = self.const_lvalue(&projection.base, span)?;
let projected_ty = LvalueTy::Ty { ty: tr_base.ty }
.projection_ty(tcx, &projection.elem);
let base = tr_base.to_const(span);
let projected_ty = self.monomorphize(&projected_ty).to_ty(tcx);
let is_sized = common::type_is_sized(tcx, projected_ty);
let (projected, llextra) = match projection.elem {
mir::ProjectionElem::Deref => {
let (base, extra) = if is_sized {
(base.llval, ptr::null_mut())
} else {
base.get_fat_ptr()
};
if self.ccx.statics().borrow().contains_key(&base) {
(Base::Static(base), extra)
} else if let ty::TyStr = projected_ty.sty {
(Base::Str(base), extra)
} else {
let val = consts::load_const(self.ccx, base, projected_ty);
if val.is_null() {
span_bug!(span, "dereference of non-constant pointer `{:?}`",
Value(base));
}
(Base::Value(val), extra)
}
}
mir::ProjectionElem::Field(ref field, _) => {
let base_repr = adt::represent_type(self.ccx, tr_base.ty);
let llprojected = adt::const_get_field(&base_repr, base.llval,
Disr(0), field.index());
let llextra = if is_sized {
ptr::null_mut()
} else {
tr_base.llextra
};
(Base::Value(llprojected), llextra)
}
mir::ProjectionElem::Index(ref index) => {
let llindex = self.const_operand(index, span)?.llval;
let iv = if let Some(iv) = common::const_to_opt_uint(llindex) {
iv
} else {
span_bug!(span, "index is not an integer-constant expression")
};
(Base::Value(const_get_elt(base.llval, &[iv as u32])),
ptr::null_mut())
}
_ => span_bug!(span, "{:?} in constant", projection.elem)
};
ConstLvalue {
base: projected,
llextra: llextra,
ty: projected_ty
}
}
};
Ok(lvalue)
}
fn const_operand(&self, operand: &mir::Operand<'tcx>, span: Span)
-> Result<Const<'tcx>, ConstEvalFailure> {
match *operand {
mir::Operand::Consume(ref lvalue) => {
Ok(self.const_lvalue(lvalue, span)?.to_const(span))
}
mir::Operand::Constant(ref constant) => {
let ty = self.monomorphize(&constant.ty);
match constant.literal.clone() {
mir::Literal::Item { def_id, substs } => {
// Shortcut for zero-sized types, including function item
// types, which would not work with MirConstContext.
if common::type_is_zero_size(self.ccx, ty) {
let llty = type_of::type_of(self.ccx, ty);
return Ok(Const::new(C_null(llty), ty));
}
let substs = self.monomorphize(&substs);
let instance = Instance::new(def_id, substs);
MirConstContext::trans_def(self.ccx, instance, vec![])
}
mir::Literal::Promoted { index } => {
let mir = &self.mir.promoted[index];
MirConstContext::new(self.ccx, mir, self.substs, vec![]).trans()
}
mir::Literal::Value { value } => {
Ok(Const::from_constval(self.ccx, value, ty))
}
}
}
}
}
fn const_rvalue(&self, rvalue: &mir::Rvalue<'tcx>,
dest_ty: Ty<'tcx>, span: Span)
-> Result<Const<'tcx>, ConstEvalFailure> {
let tcx = self.ccx.tcx();
let val = match *rvalue {
mir::Rvalue::Use(ref operand) => self.const_operand(operand, span)?,
mir::Rvalue::Repeat(ref elem, ref count) => {
let elem = self.const_operand(elem, span)?;
let size = count.value.as_u64(tcx.sess.target.uint_type);
let fields = vec![elem.llval; size as usize];
let llunitty = type_of::type_of(self.ccx, elem.ty);
// If the array contains enums, an LLVM array won't work.
let val = if val_ty(elem.llval) == llunitty {
C_array(llunitty, &fields)
} else {
C_struct(self.ccx, &fields, false)
};
Const::new(val, dest_ty)
}
mir::Rvalue::Aggregate(ref kind, ref operands) => {
let fields = operands.iter().map(|operand| {
Ok(self.const_operand(operand, span)?.llval)
}).collect::<Result<Vec<_>, _>>()?;
// FIXME Shouldn't need to manually trigger closure instantiations.
if let mir::AggregateKind::Closure(def_id, substs) = *kind {
use rustc::hir;
use syntax::ast::DUMMY_NODE_ID;
use syntax::ptr::P;
use closure;
closure::trans_closure_expr(closure::Dest::Ignore(self.ccx),
&hir::FnDecl {
inputs: P::new(),
output: hir::NoReturn(DUMMY_SP),
variadic: false
},
&hir::Block {
stmts: P::new(),
expr: None,
id: DUMMY_NODE_ID,
rules: hir::DefaultBlock,
span: DUMMY_SP
},
DUMMY_NODE_ID, def_id,
self.monomorphize(&substs));
}
let val = if let mir::AggregateKind::Adt(adt_def, index, _) = *kind {
let repr = adt::represent_type(self.ccx, dest_ty);
let disr = Disr::from(adt_def.variants[index].disr_val);
adt::trans_const(self.ccx, &repr, disr, &fields)
} else if let ty::TyArray(elem_ty, _) = dest_ty.sty {
let llunitty = type_of::type_of(self.ccx, elem_ty);
// If the array contains enums, an LLVM array won't work.
if fields.iter().all(|&f| val_ty(f) == llunitty) {
C_array(llunitty, &fields)
} else {
C_struct(self.ccx, &fields, false)
}
} else {
C_struct(self.ccx, &fields, false)
};
Const::new(val, dest_ty)
}
mir::Rvalue::Cast(ref kind, ref source, cast_ty) => {
let operand = self.const_operand(source, span)?;
let cast_ty = self.monomorphize(&cast_ty);
let val = match *kind {
mir::CastKind::ReifyFnPointer => {
match operand.ty.sty {
ty::TyFnDef(def_id, substs, _) => {
Callee::def(self.ccx, def_id, substs)
.reify(self.ccx).val
}
_ => {
span_bug!(span, "{} cannot be reified to a fn ptr",
operand.ty)
}
}
}
mir::CastKind::UnsafeFnPointer => {
// this is a no-op at the LLVM level
operand.llval
}
mir::CastKind::Unsize => {
// unsize targets other than to a fat pointer currently
// can't be in constants.
assert!(common::type_is_fat_ptr(tcx, cast_ty));
let pointee_ty = operand.ty.builtin_deref(true, ty::NoPreference)
.expect("consts: unsizing got non-pointer type").ty;
let (base, old_info) = if !common::type_is_sized(tcx, pointee_ty) {
// Normally, the source is a thin pointer and we are
// adding extra info to make a fat pointer. The exception
// is when we are upcasting an existing object fat pointer
// to use a different vtable. In that case, we want to
// load out the original data pointer so we can repackage
// it.
let (base, extra) = operand.get_fat_ptr();
(base, Some(extra))
} else {
(operand.llval, None)
};
let unsized_ty = cast_ty.builtin_deref(true, ty::NoPreference)
.expect("consts: unsizing got non-pointer target type").ty;
let ptr_ty = type_of::in_memory_type_of(self.ccx, unsized_ty).ptr_to();
let base = consts::ptrcast(base, ptr_ty);
let info = base::unsized_info(self.ccx, pointee_ty,
unsized_ty, old_info);
if old_info.is_none() {
let prev_const = self.ccx.const_unsized().borrow_mut()
.insert(base, operand.llval);
assert!(prev_const.is_none() || prev_const == Some(operand.llval));
}
assert_eq!(abi::FAT_PTR_ADDR, 0);
assert_eq!(abi::FAT_PTR_EXTRA, 1);
C_struct(self.ccx, &[base, info], false)
}
mir::CastKind::Misc if common::type_is_immediate(self.ccx, operand.ty) => {
debug_assert!(common::type_is_immediate(self.ccx, cast_ty));
let r_t_in = CastTy::from_ty(operand.ty).expect("bad input type for cast");
let r_t_out = CastTy::from_ty(cast_ty).expect("bad output type for cast");
let ll_t_out = type_of::immediate_type_of(self.ccx, cast_ty);
let llval = operand.llval;
let signed = if let CastTy::Int(IntTy::CEnum) = r_t_in {
let repr = adt::represent_type(self.ccx, operand.ty);
adt::is_discr_signed(&repr)
} else {
operand.ty.is_signed()
};
unsafe {
match (r_t_in, r_t_out) {
(CastTy::Int(_), CastTy::Int(_)) => {
let s = signed as llvm::Bool;
llvm::LLVMConstIntCast(llval, ll_t_out.to_ref(), s)
}
(CastTy::Int(_), CastTy::Float) => {
if signed {
llvm::LLVMConstSIToFP(llval, ll_t_out.to_ref())
} else {
llvm::LLVMConstUIToFP(llval, ll_t_out.to_ref())
}
}
(CastTy::Float, CastTy::Float) => {
llvm::LLVMConstFPCast(llval, ll_t_out.to_ref())
}
(CastTy::Float, CastTy::Int(IntTy::I)) => {
llvm::LLVMConstFPToSI(llval, ll_t_out.to_ref())
}
(CastTy::Float, CastTy::Int(_)) => {
llvm::LLVMConstFPToUI(llval, ll_t_out.to_ref())
}
(CastTy::Ptr(_), CastTy::Ptr(_)) |
(CastTy::FnPtr, CastTy::Ptr(_)) |
(CastTy::RPtr(_), CastTy::Ptr(_)) => {
consts::ptrcast(llval, ll_t_out)
}
(CastTy::Int(_), CastTy::Ptr(_)) => {
llvm::LLVMConstIntToPtr(llval, ll_t_out.to_ref())
}
(CastTy::Ptr(_), CastTy::Int(_)) |
(CastTy::FnPtr, CastTy::Int(_)) => {
llvm::LLVMConstPtrToInt(llval, ll_t_out.to_ref())
}
_ => bug!("unsupported cast: {:?} to {:?}", operand.ty, cast_ty)
}
}
}
mir::CastKind::Misc => { // Casts from a fat-ptr.
let ll_cast_ty = type_of::immediate_type_of(self.ccx, cast_ty);
let ll_from_ty = type_of::immediate_type_of(self.ccx, operand.ty);
if common::type_is_fat_ptr(tcx, operand.ty) {
let (data_ptr, meta_ptr) = operand.get_fat_ptr();
if common::type_is_fat_ptr(tcx, cast_ty) {
let ll_cft = ll_cast_ty.field_types();
let ll_fft = ll_from_ty.field_types();
let data_cast = consts::ptrcast(data_ptr, ll_cft[0]);
assert_eq!(ll_cft[1].kind(), ll_fft[1].kind());
C_struct(self.ccx, &[data_cast, meta_ptr], false)
} else { // cast to thin-ptr
// Cast of fat-ptr to thin-ptr is an extraction of data-ptr and
// pointer-cast of that pointer to desired pointer type.
consts::ptrcast(data_ptr, ll_cast_ty)
}
} else {
bug!("Unexpected non-fat-pointer operand")
}
}
};
Const::new(val, cast_ty)
}
mir::Rvalue::Ref(_, bk, ref lvalue) => {
let tr_lvalue = self.const_lvalue(lvalue, span)?;
let ty = tr_lvalue.ty;
let ref_ty = tcx.mk_ref(tcx.mk_region(ty::ReStatic),
ty::TypeAndMut { ty: ty, mutbl: bk.to_mutbl_lossy() });
let base = match tr_lvalue.base {
Base::Value(llval) => {
let align = type_of::align_of(self.ccx, ty);
if bk == mir::BorrowKind::Mut {
consts::addr_of_mut(self.ccx, llval, align, "ref_mut")
} else {
consts::addr_of(self.ccx, llval, align, "ref")
}
}
Base::Str(llval) |
Base::Static(llval) => llval
};
let ptr = if common::type_is_sized(tcx, ty) {
base
} else {
C_struct(self.ccx, &[base, tr_lvalue.llextra], false)
};
Const::new(ptr, ref_ty)
}
mir::Rvalue::Len(ref lvalue) => {
let tr_lvalue = self.const_lvalue(lvalue, span)?;
Const::new(tr_lvalue.len(self.ccx), tcx.types.usize)
}
mir::Rvalue::BinaryOp(op, ref lhs, ref rhs) => {
let lhs = self.const_operand(lhs, span)?;
let rhs = self.const_operand(rhs, span)?;
let ty = lhs.ty;
let binop_ty = self.mir.binop_ty(tcx, op, lhs.ty, rhs.ty);
let (lhs, rhs) = (lhs.llval, rhs.llval);
Const::new(const_scalar_binop(op, lhs, rhs, ty), binop_ty)
}
mir::Rvalue::CheckedBinaryOp(op, ref lhs, ref rhs) => {
let lhs = self.const_operand(lhs, span)?;
let rhs = self.const_operand(rhs, span)?;
let ty = lhs.ty;
let val_ty = self.mir.binop_ty(tcx, op, lhs.ty, rhs.ty);
let binop_ty = tcx.mk_tup(vec![val_ty, tcx.types.bool]);
let (lhs, rhs) = (lhs.llval, rhs.llval);
assert!(!ty.is_fp());
match const_scalar_checked_binop(tcx, op, lhs, rhs, ty) {
Some((llval, of)) => {
let llof = C_bool(self.ccx, of);
Const::new(C_struct(self.ccx, &[llval, llof], false), binop_ty)
}
None => {
span_bug!(span, "{:?} got non-integer operands: {:?} and {:?}",
rvalue, Value(lhs), Value(rhs));
}
}
}
mir::Rvalue::UnaryOp(op, ref operand) => {
let operand = self.const_operand(operand, span)?;
let lloperand = operand.llval;
let llval = match op {
mir::UnOp::Not => {
unsafe {
llvm::LLVMConstNot(lloperand)
}
}
mir::UnOp::Neg => {
let is_float = operand.ty.is_fp();
unsafe {
if is_float {
llvm::LLVMConstFNeg(lloperand)
} else {
llvm::LLVMConstNeg(lloperand)
}
}
}
};
Const::new(llval, operand.ty)
}
_ => span_bug!(span, "{:?} in constant", rvalue)
};
Ok(val)
}
}
pub fn const_scalar_binop(op: mir::BinOp,
lhs: ValueRef,
rhs: ValueRef,
input_ty: Ty) -> ValueRef {
assert!(!input_ty.is_simd());
let is_float = input_ty.is_fp();
let signed = input_ty.is_signed();
unsafe {
match op {
mir::BinOp::Add if is_float => llvm::LLVMConstFAdd(lhs, rhs),
mir::BinOp::Add => llvm::LLVMConstAdd(lhs, rhs),
mir::BinOp::Sub if is_float => llvm::LLVMConstFSub(lhs, rhs),
mir::BinOp::Sub => llvm::LLVMConstSub(lhs, rhs),
mir::BinOp::Mul if is_float => llvm::LLVMConstFMul(lhs, rhs),
mir::BinOp::Mul => llvm::LLVMConstMul(lhs, rhs),
mir::BinOp::Div if is_float => llvm::LLVMConstFDiv(lhs, rhs),
mir::BinOp::Div if signed => llvm::LLVMConstSDiv(lhs, rhs),
mir::BinOp::Div => llvm::LLVMConstUDiv(lhs, rhs),
mir::BinOp::Rem if is_float => llvm::LLVMConstFRem(lhs, rhs),
mir::BinOp::Rem if signed => llvm::LLVMConstSRem(lhs, rhs),
mir::BinOp::Rem => llvm::LLVMConstURem(lhs, rhs),
mir::BinOp::BitXor => llvm::LLVMConstXor(lhs, rhs),
mir::BinOp::BitAnd => llvm::LLVMConstAnd(lhs, rhs),
mir::BinOp::BitOr => llvm::LLVMConstOr(lhs, rhs),
mir::BinOp::Shl => {
let rhs = base::cast_shift_const_rhs(op.to_hir_binop(), lhs, rhs);
llvm::LLVMConstShl(lhs, rhs)
}
mir::BinOp::Shr => {
let rhs = base::cast_shift_const_rhs(op.to_hir_binop(), lhs, rhs);
if signed { llvm::LLVMConstAShr(lhs, rhs) }
else { llvm::LLVMConstLShr(lhs, rhs) }
}
mir::BinOp::Eq | mir::BinOp::Ne |
mir::BinOp::Lt | mir::BinOp::Le |
mir::BinOp::Gt | mir::BinOp::Ge => {
if is_float {
let cmp = base::bin_op_to_fcmp_predicate(op.to_hir_binop());
llvm::ConstFCmp(cmp, lhs, rhs)
} else {
let cmp = base::bin_op_to_icmp_predicate(op.to_hir_binop(),
signed);
llvm::ConstICmp(cmp, lhs, rhs)
}
}
}
}
}
pub fn const_scalar_checked_binop<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
op: mir::BinOp,
lllhs: ValueRef,
llrhs: ValueRef,
input_ty: Ty<'tcx>)
-> Option<(ValueRef, bool)> {
if let (Some(lhs), Some(rhs)) = (to_const_int(lllhs, input_ty, tcx),
to_const_int(llrhs, input_ty, tcx)) {
let result = match op {
mir::BinOp::Add => lhs + rhs,
mir::BinOp::Sub => lhs - rhs,
mir::BinOp::Mul => lhs * rhs,
mir::BinOp::Shl => lhs << rhs,
mir::BinOp::Shr => lhs >> rhs,
_ => {
bug!("Operator `{:?}` is not a checkable operator", op)
}
};
let of = match result {
Ok(_) => false,
Err(ConstMathErr::Overflow(_)) |
Err(ConstMathErr::ShiftNegative) => true,
Err(err) => {
bug!("Operator `{:?}` on `{:?}` and `{:?}` errored: {}",
op, lhs, rhs, err.description());
}
};
Some((const_scalar_binop(op, lllhs, llrhs, input_ty), of))
} else {
None
}
}
impl<'bcx, 'tcx> MirContext<'bcx, 'tcx> {
pub fn trans_constant(&mut self,
bcx: &BlockAndBuilder<'bcx, 'tcx>,
constant: &mir::Constant<'tcx>)
-> Const<'tcx>
{
let ty = bcx.monomorphize(&constant.ty);
let result = match constant.literal.clone() {
mir::Literal::Item { def_id, substs } => {
// Shortcut for zero-sized types, including function item
// types, which would not work with MirConstContext.
if common::type_is_zero_size(bcx.ccx(), ty) {
let llty = type_of::type_of(bcx.ccx(), ty);
return Const::new(C_null(llty), ty);
}
let substs = bcx.monomorphize(&substs);
let instance = Instance::new(def_id, substs);
MirConstContext::trans_def(bcx.ccx(), instance, vec![])
}
mir::Literal::Promoted { index } => {
let mir = &self.mir.promoted[index];
MirConstContext::new(bcx.ccx(), mir, bcx.fcx().param_substs, vec![]).trans()
}
mir::Literal::Value { value } => {
Ok(Const::from_constval(bcx.ccx(), value, ty))
}
};
match result {
Ok(v) => v,
Err(ConstEvalFailure::Compiletime(_)) => {
// We've errored, so we don't have to produce working code.
let llty = type_of::type_of(bcx.ccx(), ty);
Const::new(C_undef(llty), ty)
}
Err(ConstEvalFailure::Runtime(err)) => {
span_bug!(constant.span,
"MIR constant {:?} results in runtime panic: {}",
constant, err.description())
}
}
}
}
pub fn trans_static_initializer(ccx: &CrateContext, def_id: DefId)
-> Result<ValueRef, ConstEvalFailure> {
let instance = Instance::mono(ccx.shared(), def_id);
MirConstContext::trans_def(ccx, instance, vec![]).map(|c| c.llval)
}