rust/src/libstd/c_str.rs

704 lines
21 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
C-string manipulation and management
This modules provides the basic methods for creating and manipulating
null-terminated strings for use with FFI calls (back to C). Most C APIs require
that the string being passed to them is null-terminated, and by default rust's
string types are *not* null terminated.
The other problem with translating Rust strings to C strings is that Rust
strings can validly contain a null-byte in the middle of the string (0 is a
valid unicode codepoint). This means that not all Rust strings can actually be
translated to C strings.
# Creation of a C string
A C string is managed through the `CString` type defined in this module. It
"owns" the internal buffer of characters and will automatically deallocate the
buffer when the string is dropped. The `ToCStr` trait is implemented for `&str`
and `&[u8]`, but the conversions can fail due to some of the limitations
explained above.
This also means that currently whenever a C string is created, an allocation
must be performed to place the data elsewhere (the lifetime of the C string is
not tied to the lifetime of the original string/data buffer). If C strings are
heavily used in applications, then caching may be advisable to prevent
unnecessary amounts of allocations.
An example of creating and using a C string would be:
```rust
use std::libc;
externfn!(fn puts(s: *libc::c_char))
let my_string = "Hello, world!";
// Allocate the C string with an explicit local that owns the string. The
// `c_buffer` pointer will be deallocated when `my_c_string` goes out of scope.
let my_c_string = my_string.to_c_str();
do my_c_string.with_ref |c_buffer| {
unsafe { puts(c_buffer); }
}
// Don't save off the allocation of the C string, the `c_buffer` will be
// deallocated when this block returns!
do my_string.with_c_str |c_buffer| {
unsafe { puts(c_buffer); }
}
```
*/
use cast;
use container::Container;
use iter::{Iterator, range};
use libc;
use ops::Drop;
use option::{Option, Some, None};
use ptr::RawPtr;
use ptr;
use str::StrSlice;
use str;
use vec::{CopyableVector, ImmutableVector, MutableVector};
use vec;
use unstable::intrinsics;
/// Resolution options for the `null_byte` condition
pub enum NullByteResolution {
/// Truncate at the null byte
Truncate,
/// Use a replacement byte
ReplaceWith(libc::c_char)
}
condition! {
// This should be &[u8] but there's a lifetime issue (#5370).
2013-09-16 23:34:40 -07:00
pub null_byte: (~[u8]) -> NullByteResolution;
}
/// The representation of a C String.
///
/// This structure wraps a `*libc::c_char`, and will automatically free the
/// memory it is pointing to when it goes out of scope.
pub struct CString {
priv buf: *libc::c_char,
priv owns_buffer_: bool,
}
impl CString {
/// Create a C String from a pointer.
pub unsafe fn new(buf: *libc::c_char, owns_buffer: bool) -> CString {
CString { buf: buf, owns_buffer_: owns_buffer }
}
/// Unwraps the wrapped `*libc::c_char` from the `CString` wrapper.
/// Any ownership of the buffer by the `CString` wrapper is forgotten.
pub unsafe fn unwrap(self) -> *libc::c_char {
let mut c_str = self;
c_str.owns_buffer_ = false;
c_str.buf
}
/// Calls a closure with a reference to the underlying `*libc::c_char`.
///
/// # Failure
///
/// Fails if the CString is null.
pub fn with_ref<T>(&self, f: &fn(*libc::c_char) -> T) -> T {
if self.buf.is_null() { fail!("CString is null!"); }
f(self.buf)
}
/// Calls a closure with a mutable reference to the underlying `*libc::c_char`.
///
/// # Failure
///
/// Fails if the CString is null.
pub fn with_mut_ref<T>(&mut self, f: &fn(*mut libc::c_char) -> T) -> T {
if self.buf.is_null() { fail!("CString is null!"); }
f(unsafe { cast::transmute_mut_unsafe(self.buf) })
}
/// Returns true if the CString is a null.
pub fn is_null(&self) -> bool {
self.buf.is_null()
}
/// Returns true if the CString is not null.
pub fn is_not_null(&self) -> bool {
self.buf.is_not_null()
}
/// Returns whether or not the `CString` owns the buffer.
pub fn owns_buffer(&self) -> bool {
self.owns_buffer_
}
/// Converts the CString into a `&[u8]` without copying.
///
/// # Failure
///
/// Fails if the CString is null.
#[inline]
pub fn as_bytes<'a>(&'a self) -> &'a [u8] {
if self.buf.is_null() { fail!("CString is null!"); }
unsafe {
2013-09-18 12:21:30 -07:00
cast::transmute((self.buf, self.len() + 1))
}
}
/// Converts the CString into a `&str` without copying.
/// Returns None if the CString is not UTF-8 or is null.
#[inline]
pub fn as_str<'a>(&'a self) -> Option<&'a str> {
if self.buf.is_null() { return None; }
let buf = self.as_bytes();
let buf = buf.slice_to(buf.len()-1); // chop off the trailing NUL
str::from_utf8_slice_opt(buf)
}
/// Return a CString iterator.
2013-08-14 19:31:13 -07:00
pub fn iter<'a>(&'a self) -> CStringIterator<'a> {
CStringIterator {
ptr: self.buf,
lifetime: unsafe { cast::transmute(self.buf) },
}
}
}
impl Drop for CString {
2013-09-16 21:18:07 -04:00
fn drop(&mut self) {
#[fixed_stack_segment]; #[inline(never)];
if self.owns_buffer_ {
unsafe {
libc::free(self.buf as *libc::c_void)
}
}
}
}
2013-09-18 12:21:30 -07:00
impl Container for CString {
#[inline]
fn len(&self) -> uint {
unsafe {
ptr::position(self.buf, |c| *c == 0)
}
}
}
/// A generic trait for converting a value to a CString.
pub trait ToCStr {
/// Copy the receiver into a CString.
///
/// # Failure
///
/// Raises the `null_byte` condition if the receiver has an interior null.
fn to_c_str(&self) -> CString;
/// Unsafe variant of `to_c_str()` that doesn't check for nulls.
unsafe fn to_c_str_unchecked(&self) -> CString;
/// Work with a temporary CString constructed from the receiver.
/// The provided `*libc::c_char` will be freed immediately upon return.
///
/// # Example
///
/// ```rust
/// let s = "PATH".with_c_str(|path| libc::getenv(path))
/// ```
///
/// # Failure
///
/// Raises the `null_byte` condition if the receiver has an interior null.
#[inline]
fn with_c_str<T>(&self, f: &fn(*libc::c_char) -> T) -> T {
self.to_c_str().with_ref(f)
}
/// Unsafe variant of `with_c_str()` that doesn't check for nulls.
#[inline]
unsafe fn with_c_str_unchecked<T>(&self, f: &fn(*libc::c_char) -> T) -> T {
self.to_c_str_unchecked().with_ref(f)
}
}
impl<'self> ToCStr for &'self str {
#[inline]
fn to_c_str(&self) -> CString {
self.as_bytes().to_c_str()
}
#[inline]
unsafe fn to_c_str_unchecked(&self) -> CString {
self.as_bytes().to_c_str_unchecked()
}
#[inline]
fn with_c_str<T>(&self, f: &fn(*libc::c_char) -> T) -> T {
self.as_bytes().with_c_str(f)
}
#[inline]
unsafe fn with_c_str_unchecked<T>(&self, f: &fn(*libc::c_char) -> T) -> T {
self.as_bytes().with_c_str_unchecked(f)
}
}
// The length of the stack allocated buffer for `vec.with_c_str()`
static BUF_LEN: uint = 128;
impl<'self> ToCStr for &'self [u8] {
fn to_c_str(&self) -> CString {
#[fixed_stack_segment]; #[inline(never)];
let mut cs = unsafe { self.to_c_str_unchecked() };
do cs.with_mut_ref |buf| {
check_for_null(*self, buf);
}
cs
}
unsafe fn to_c_str_unchecked(&self) -> CString {
#[fixed_stack_segment]; #[inline(never)];
do self.as_imm_buf |self_buf, self_len| {
let buf = libc::malloc(self_len as libc::size_t + 1) as *mut u8;
if buf.is_null() {
fail!("failed to allocate memory!");
}
ptr::copy_memory(buf, self_buf, self_len);
*ptr::mut_offset(buf, self_len as int) = 0;
CString::new(buf as *libc::c_char, true)
}
}
fn with_c_str<T>(&self, f: &fn(*libc::c_char) -> T) -> T {
unsafe { with_c_str(*self, true, f) }
}
unsafe fn with_c_str_unchecked<T>(&self, f: &fn(*libc::c_char) -> T) -> T {
with_c_str(*self, false, f)
}
}
// Unsafe function that handles possibly copying the &[u8] into a stack array.
unsafe fn with_c_str<T>(v: &[u8], checked: bool, f: &fn(*libc::c_char) -> T) -> T {
if v.len() < BUF_LEN {
let mut buf: [u8, .. BUF_LEN] = intrinsics::uninit();
vec::bytes::copy_memory(buf, v, v.len());
buf[v.len()] = 0;
do buf.as_mut_buf |buf, _| {
if checked {
check_for_null(v, buf as *mut libc::c_char);
}
f(buf as *libc::c_char)
}
} else if checked {
v.to_c_str().with_ref(f)
} else {
v.to_c_str_unchecked().with_ref(f)
}
}
#[inline]
fn check_for_null(v: &[u8], buf: *mut libc::c_char) {
for i in range(0, v.len()) {
unsafe {
let p = buf.offset(i as int);
if *p == 0 {
match null_byte::cond.raise(v.to_owned()) {
Truncate => break,
ReplaceWith(c) => *p = c
}
}
}
}
}
/// External iterator for a CString's bytes.
///
/// Use with the `std::iterator` module.
pub struct CStringIterator<'self> {
priv ptr: *libc::c_char,
priv lifetime: &'self libc::c_char, // FIXME: #5922
}
impl<'self> Iterator<libc::c_char> for CStringIterator<'self> {
fn next(&mut self) -> Option<libc::c_char> {
2013-08-06 21:06:12 -07:00
let ch = unsafe { *self.ptr };
if ch == 0 {
None
} else {
self.ptr = unsafe { ptr::offset(self.ptr, 1) };
Some(ch)
}
}
}
/// Parses a C "multistring", eg windows env values or
/// the req->ptr result in a uv_fs_readdir() call.
///
/// Optionally, a `count` can be passed in, limiting the
/// parsing to only being done `count`-times.
///
/// The specified closure is invoked with each string that
/// is found, and the number of strings found is returned.
pub unsafe fn from_c_multistring(buf: *libc::c_char,
count: Option<uint>,
f: &fn(&CString)) -> uint {
let mut curr_ptr: uint = buf as uint;
let mut ctr = 0;
let (limited_count, limit) = match count {
Some(limit) => (true, limit),
None => (false, 0)
};
while ((limited_count && ctr < limit) || !limited_count)
&& *(curr_ptr as *libc::c_char) != 0 as libc::c_char {
let cstr = CString::new(curr_ptr as *libc::c_char, false);
f(&cstr);
curr_ptr += cstr.len() + 1;
ctr += 1;
}
return ctr;
}
#[cfg(test)]
mod tests {
use super::*;
use libc;
use ptr;
2013-08-06 21:06:12 -07:00
use option::{Some, None};
use vec;
#[test]
fn test_str_multistring_parsing() {
unsafe {
let input = bytes!("zero", "\x00", "one", "\x00", "\x00");
let ptr = vec::raw::to_ptr(input);
let expected = ["zero", "one"];
let mut it = expected.iter();
let result = do from_c_multistring(ptr as *libc::c_char, None) |c| {
let cbytes = c.as_bytes().slice_to(c.len());
assert_eq!(cbytes, it.next().unwrap().as_bytes());
};
assert_eq!(result, 2);
assert!(it.next().is_none());
}
}
#[test]
fn test_str_to_c_str() {
do "".to_c_str().with_ref |buf| {
unsafe {
assert_eq!(*ptr::offset(buf, 0), 0);
}
}
do "hello".to_c_str().with_ref |buf| {
unsafe {
assert_eq!(*ptr::offset(buf, 0), 'h' as libc::c_char);
assert_eq!(*ptr::offset(buf, 1), 'e' as libc::c_char);
assert_eq!(*ptr::offset(buf, 2), 'l' as libc::c_char);
assert_eq!(*ptr::offset(buf, 3), 'l' as libc::c_char);
assert_eq!(*ptr::offset(buf, 4), 'o' as libc::c_char);
assert_eq!(*ptr::offset(buf, 5), 0);
}
}
}
#[test]
fn test_vec_to_c_str() {
let b: &[u8] = [];
do b.to_c_str().with_ref |buf| {
unsafe {
assert_eq!(*ptr::offset(buf, 0), 0);
}
}
do bytes!("hello").to_c_str().with_ref |buf| {
unsafe {
assert_eq!(*ptr::offset(buf, 0), 'h' as libc::c_char);
assert_eq!(*ptr::offset(buf, 1), 'e' as libc::c_char);
assert_eq!(*ptr::offset(buf, 2), 'l' as libc::c_char);
assert_eq!(*ptr::offset(buf, 3), 'l' as libc::c_char);
assert_eq!(*ptr::offset(buf, 4), 'o' as libc::c_char);
assert_eq!(*ptr::offset(buf, 5), 0);
}
}
do bytes!("foo", 0xff).to_c_str().with_ref |buf| {
unsafe {
assert_eq!(*ptr::offset(buf, 0), 'f' as libc::c_char);
assert_eq!(*ptr::offset(buf, 1), 'o' as libc::c_char);
assert_eq!(*ptr::offset(buf, 2), 'o' as libc::c_char);
assert_eq!(*ptr::offset(buf, 3), 0xff);
assert_eq!(*ptr::offset(buf, 4), 0);
}
}
}
#[test]
fn test_is_null() {
let c_str = unsafe { CString::new(ptr::null(), false) };
assert!(c_str.is_null());
assert!(!c_str.is_not_null());
}
#[test]
fn test_unwrap() {
#[fixed_stack_segment]; #[inline(never)];
let c_str = "hello".to_c_str();
unsafe { libc::free(c_str.unwrap() as *libc::c_void) }
}
#[test]
fn test_with_ref() {
#[fixed_stack_segment]; #[inline(never)];
let c_str = "hello".to_c_str();
let len = unsafe { c_str.with_ref(|buf| libc::strlen(buf)) };
assert!(!c_str.is_null());
assert!(c_str.is_not_null());
assert_eq!(len, 5);
}
#[test]
#[should_fail]
fn test_with_ref_empty_fail() {
2013-08-06 21:06:12 -07:00
let c_str = unsafe { CString::new(ptr::null(), false) };
c_str.with_ref(|_| ());
}
2013-08-06 21:06:12 -07:00
#[test]
fn test_iterator() {
let c_str = "".to_c_str();
let mut iter = c_str.iter();
assert_eq!(iter.next(), None);
let c_str = "hello".to_c_str();
let mut iter = c_str.iter();
assert_eq!(iter.next(), Some('h' as libc::c_char));
assert_eq!(iter.next(), Some('e' as libc::c_char));
assert_eq!(iter.next(), Some('l' as libc::c_char));
assert_eq!(iter.next(), Some('l' as libc::c_char));
assert_eq!(iter.next(), Some('o' as libc::c_char));
assert_eq!(iter.next(), None);
}
#[test]
fn test_to_c_str_fail() {
use c_str::null_byte::cond;
let mut error_happened = false;
do cond.trap(|err| {
assert_eq!(err, bytes!("he", 0, "llo").to_owned())
error_happened = true;
Truncate
}).inside {
"he\x00llo".to_c_str()
};
assert!(error_happened);
do cond.trap(|_| {
ReplaceWith('?' as libc::c_char)
}).inside(|| "he\x00llo".to_c_str()).with_ref |buf| {
unsafe {
assert_eq!(*buf.offset(0), 'h' as libc::c_char);
assert_eq!(*buf.offset(1), 'e' as libc::c_char);
assert_eq!(*buf.offset(2), '?' as libc::c_char);
assert_eq!(*buf.offset(3), 'l' as libc::c_char);
assert_eq!(*buf.offset(4), 'l' as libc::c_char);
assert_eq!(*buf.offset(5), 'o' as libc::c_char);
assert_eq!(*buf.offset(6), 0);
}
}
}
#[test]
fn test_to_c_str_unchecked() {
unsafe {
do "he\x00llo".to_c_str_unchecked().with_ref |buf| {
assert_eq!(*buf.offset(0), 'h' as libc::c_char);
assert_eq!(*buf.offset(1), 'e' as libc::c_char);
assert_eq!(*buf.offset(2), 0);
assert_eq!(*buf.offset(3), 'l' as libc::c_char);
assert_eq!(*buf.offset(4), 'l' as libc::c_char);
assert_eq!(*buf.offset(5), 'o' as libc::c_char);
assert_eq!(*buf.offset(6), 0);
}
}
}
#[test]
fn test_as_bytes() {
let c_str = "hello".to_c_str();
assert_eq!(c_str.as_bytes(), bytes!("hello", 0));
let c_str = "".to_c_str();
assert_eq!(c_str.as_bytes(), bytes!(0));
let c_str = bytes!("foo", 0xff).to_c_str();
assert_eq!(c_str.as_bytes(), bytes!("foo", 0xff, 0));
}
#[test]
#[should_fail]
fn test_as_bytes_fail() {
let c_str = unsafe { CString::new(ptr::null(), false) };
c_str.as_bytes();
}
#[test]
fn test_as_str() {
let c_str = "hello".to_c_str();
assert_eq!(c_str.as_str(), Some("hello"));
let c_str = "".to_c_str();
assert_eq!(c_str.as_str(), Some(""));
let c_str = bytes!("foo", 0xff).to_c_str();
assert_eq!(c_str.as_str(), None);
let c_str = unsafe { CString::new(ptr::null(), false) };
assert_eq!(c_str.as_str(), None);
}
}
2013-09-18 12:32:45 -07:00
#[cfg(test)]
mod bench {
use iter::range;
use libc;
use option::Some;
use ptr;
use extra::test::BenchHarness;
#[inline]
fn check(s: &str, c_str: *libc::c_char) {
do s.as_imm_buf |s_buf, s_len| {
for i in range(0, s_len) {
unsafe {
assert_eq!(
*ptr::offset(s_buf, i as int) as libc::c_char,
*ptr::offset(c_str, i as int));
}
}
}
}
static s_short: &'static str = "Mary";
static s_medium: &'static str = "Mary had a little lamb";
static s_long: &'static str = "\
Mary had a little lamb, Little lamb
Mary had a little lamb, Little lamb
Mary had a little lamb, Little lamb
Mary had a little lamb, Little lamb
Mary had a little lamb, Little lamb
Mary had a little lamb, Little lamb";
fn bench_to_str(bh: &mut BenchHarness, s: &str) {
do bh.iter {
let c_str = s.to_c_str();
do c_str.with_ref |c_str_buf| {
check(s, c_str_buf)
}
}
}
#[bench]
fn bench_to_c_str_short(bh: &mut BenchHarness) {
bench_to_str(bh, s_short)
}
#[bench]
fn bench_to_c_str_medium(bh: &mut BenchHarness) {
bench_to_str(bh, s_medium)
}
#[bench]
fn bench_to_c_str_long(bh: &mut BenchHarness) {
bench_to_str(bh, s_long)
}
fn bench_to_c_str_unchecked(bh: &mut BenchHarness, s: &str) {
do bh.iter {
let c_str = unsafe { s.to_c_str_unchecked() };
do c_str.with_ref |c_str_buf| {
check(s, c_str_buf)
}
}
}
#[bench]
fn bench_to_c_str_unchecked_short(bh: &mut BenchHarness) {
bench_to_c_str_unchecked(bh, s_short)
}
#[bench]
fn bench_to_c_str_unchecked_medium(bh: &mut BenchHarness) {
bench_to_c_str_unchecked(bh, s_medium)
}
#[bench]
fn bench_to_c_str_unchecked_long(bh: &mut BenchHarness) {
bench_to_c_str_unchecked(bh, s_long)
}
fn bench_with_c_str(bh: &mut BenchHarness, s: &str) {
do bh.iter {
do s.with_c_str |c_str_buf| {
check(s, c_str_buf)
}
}
}
#[bench]
fn bench_with_c_str_short(bh: &mut BenchHarness) {
bench_with_c_str(bh, s_short)
}
#[bench]
fn bench_with_c_str_medium(bh: &mut BenchHarness) {
bench_with_c_str(bh, s_medium)
}
#[bench]
fn bench_with_c_str_long(bh: &mut BenchHarness) {
bench_with_c_str(bh, s_long)
}
fn bench_with_c_str_unchecked(bh: &mut BenchHarness, s: &str) {
do bh.iter {
unsafe {
do s.with_c_str_unchecked |c_str_buf| {
check(s, c_str_buf)
}
}
}
}
#[bench]
fn bench_with_c_str_unchecked_short(bh: &mut BenchHarness) {
bench_with_c_str_unchecked(bh, s_short)
}
#[bench]
fn bench_with_c_str_unchecked_medium(bh: &mut BenchHarness) {
bench_with_c_str_unchecked(bh, s_medium)
}
#[bench]
fn bench_with_c_str_unchecked_long(bh: &mut BenchHarness) {
bench_with_c_str_unchecked(bh, s_long)
}
2013-09-18 12:32:45 -07:00
}