930 lines
34 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use core::prelude::*;
use back::{link, abi};
use driver;
use lib::llvm::llvm::LLVMGetParam;
2012-09-04 11:54:36 -07:00
use lib::llvm::llvm;
use lib::llvm::{ValueRef, TypeRef};
use lib;
use metadata::csearch;
use middle::trans::base::*;
use middle::trans::build::*;
use middle::trans::callee::*;
use middle::trans::callee;
use middle::trans::common::*;
use middle::trans::expr::{SaveIn, Ignore};
use middle::trans::expr;
use middle::trans::glue;
use middle::trans::inline;
use middle::trans::monomorphize;
use middle::trans::type_of::*;
use middle::ty::arg;
use middle::typeck;
2012-09-04 11:54:36 -07:00
use util::ppaux::{ty_to_str, tys_to_str};
use core::libc::c_uint;
use std::oldmap::HashMap;
use syntax::ast_map::{path, path_mod, path_name, node_id_to_str};
use syntax::ast_util::local_def;
2012-09-04 11:54:36 -07:00
use syntax::print::pprust::expr_to_str;
use syntax::{ast, ast_map};
pub fn macros() {
// FIXME(#3114): Macro import/export.
include!("macros.rs");
}
2012-01-02 12:21:44 +01:00
/**
The main "translation" pass for methods. Generates code
for non-monomorphized methods only. Other methods will
be generated once they are invoked with specific type parameters,
see `trans::base::lval_static_fn()` or `trans::base::monomorphic_fn()`.
*/
pub fn trans_impl(ccx: @CrateContext, +path: path, name: ast::ident,
methods: ~[@ast::method], tps: ~[ast::ty_param],
self_ty: Option<ty::t>, id: ast::node_id) {
let _icx = ccx.insn_ctxt("impl::trans_impl");
2012-08-01 17:30:05 -07:00
if tps.len() > 0u { return; }
2012-06-28 13:52:13 -07:00
let sub_path = vec::append_one(path, path_name(name));
for vec::each(methods) |method| {
if method.tps.len() == 0u {
let llfn = get_item_val(ccx, method.id);
let path = vec::append_one(/*bad*/copy sub_path,
path_name(method.ident));
let param_substs_opt;
match self_ty {
None => param_substs_opt = None,
Some(self_ty) => {
param_substs_opt = Some(@param_substs {
tys: ~[],
vtables: None,
bounds: @~[],
self_ty: Some(self_ty)
});
}
}
trans_method(ccx, path, *method, param_substs_opt, self_ty, llfn,
ast_util::local_def(id));
}
2012-01-02 12:21:44 +01:00
}
}
/**
Translates a (possibly monomorphized) method body.
# Parameters
- `path`: the path to the method
- `method`: the AST node for the method
- `param_substs`: if this is a generic method, the current values for
type parameters and so forth, else none
- `base_self_ty`: optionally, the explicit self type for this method. This
will be none if this is not a default method and must always be present
if this is a default method.
- `llfn`: the LLVM ValueRef for the method
- `impl_id`: the node ID of the impl this method is inside
*/
pub fn trans_method(ccx: @CrateContext,
+path: path,
method: &ast::method,
param_substs: Option<@param_substs>,
base_self_ty: Option<ty::t>,
llfn: ValueRef,
impl_id: ast::def_id) {
// figure out how self is being passed
let self_arg = match method.self_ty.node {
ast::sty_static => {
no_self
}
_ => {
// determine the (monomorphized) type that `self` maps to for
// this method
let self_ty;
match base_self_ty {
None => self_ty = ty::node_id_to_type(ccx.tcx, method.self_id),
Some(provided_self_ty) => self_ty = provided_self_ty
}
let self_ty = match param_substs {
None => self_ty,
Some(@param_substs {tys: ref tys, _}) => {
ty::subst_tps(ccx.tcx, *tys, None, self_ty)
}
};
debug!("calling trans_fn with base_self_ty %s, self_ty %s",
match base_self_ty {
None => ~"(none)",
Some(x) => ty_to_str(ccx.tcx, x),
},
ty_to_str(ccx.tcx, self_ty));
match method.self_ty.node {
ast::sty_value => {
impl_owned_self(self_ty)
}
_ => {
impl_self(self_ty)
}
}
}
};
// generate the actual code
trans_fn(ccx,
path,
&method.decl,
&method.body,
llfn,
self_arg,
param_substs,
method.id,
Some(impl_id));
}
pub fn trans_self_arg(bcx: block,
base: @ast::expr,
mentry: typeck::method_map_entry) -> Result {
let _icx = bcx.insn_ctxt("impl::trans_self_arg");
let mut temp_cleanups = ~[];
// Compute the mode and type of self.
let self_arg = arg {
mode: mentry.self_arg.mode,
ty: monomorphize_type(bcx, mentry.self_arg.ty)
};
let result = trans_arg_expr(bcx, self_arg, base,
&mut temp_cleanups, None, DontAutorefArg);
// FIXME(#3446)---this is wrong, actually. The temp_cleanups
// should be revoked only after all arguments have been passed.
for temp_cleanups.each |c| {
revoke_clean(bcx, *c)
}
2012-08-01 17:30:05 -07:00
return result;
}
pub fn trans_method_callee(bcx: block,
callee_id: ast::node_id,
self: @ast::expr,
mentry: typeck::method_map_entry)
-> Callee {
let _icx = bcx.insn_ctxt("impl::trans_method_callee");
// Replace method_self with method_static here.
let mut origin = mentry.origin;
match origin {
typeck::method_self(copy trait_id, copy method_index) => {
// Get the ID of the impl we're inside.
let impl_def_id = bcx.fcx.impl_id.get();
debug!("impl_def_id is %?", impl_def_id);
// Get the ID of the method we're calling.
let method_name =
ty::trait_methods(bcx.tcx(), trait_id)[method_index].ident;
let method_id = method_with_name(bcx.ccx(), impl_def_id,
method_name);
origin = typeck::method_static(method_id);
}
typeck::method_super(trait_id, method_index) => {
// <self_ty> is the self type for this method call
let self_ty = node_id_type(bcx, self.id);
let tcx = bcx.tcx();
// <impl_id> is the ID of the implementation of
// trait <trait_id> for type <self_ty>
let impl_id = ty::get_impl_id(tcx, trait_id, self_ty);
// Get the supertrait's methods
let supertrait_methods = ty::trait_methods(tcx, trait_id);
// Make sure to fail with a readable error message if
// there's some internal error here
if !(method_index < supertrait_methods.len()) {
tcx.sess.bug(~"trans_method_callee: supertrait method \
index is out of bounds");
}
// Get the method name using the method index in the origin
let method_name = supertrait_methods[method_index].ident;
// Now that we know the impl ID, we can look up the method
// ID from its name
origin = typeck::method_static(method_with_name(bcx.ccx(),
impl_id,
method_name));
}
typeck::method_static(*) | typeck::method_param(*) |
typeck::method_trait(*) => {}
}
match origin {
typeck::method_static(did) => {
let callee_fn = callee::trans_fn_ref(bcx, did, callee_id);
let Result {bcx, val} = trans_self_arg(bcx, self, mentry);
let tcx = bcx.tcx();
Callee {
bcx: bcx,
data: Method(MethodData {
llfn: callee_fn.llfn,
llself: val,
self_ty: node_id_type(bcx, self.id),
self_mode: ty::resolved_mode(tcx, mentry.self_arg.mode)
})
}
}
typeck::method_param(typeck::method_param {
trait_id: trait_id,
method_num: off,
param_num: p,
bound_num: b
}) => {
match bcx.fcx.param_substs {
Some(substs) => {
let vtbl = find_vtable(bcx.tcx(), substs, p, b);
trans_monomorphized_callee(bcx, callee_id, self, mentry,
trait_id, off, vtbl)
}
// how to get rid of this?
None => fail!(~"trans_method_callee: missing param_substs")
}
}
2012-10-05 16:55:42 -07:00
typeck::method_trait(_, off, vstore) => {
trans_trait_callee(bcx,
callee_id,
off,
self,
vstore,
mentry.explicit_self)
}
typeck::method_self(*) | typeck::method_super(*) => {
fail!(~"method_self or method_super should have been handled \
above")
}
}
}
pub fn trans_static_method_callee(bcx: block,
method_id: ast::def_id,
trait_id: ast::def_id,
callee_id: ast::node_id)
-> FnData {
let _icx = bcx.insn_ctxt("impl::trans_static_method_callee");
let ccx = bcx.ccx();
debug!("trans_static_method_callee(method_id=%?, trait_id=%s, \
callee_id=%?)",
method_id,
ty::item_path_str(bcx.tcx(), trait_id),
callee_id);
let _indenter = indenter();
// When we translate a static fn defined in a trait like:
//
// trait<T1...Tn> Trait {
// static fn foo<M1...Mn>(...) {...}
// }
//
// this winds up being translated as something like:
//
// fn foo<T1...Tn,self: Trait<T1...Tn>,M1...Mn>(...) {...}
//
// So when we see a call to this function foo, we have to figure
// out which impl the `Trait<T1...Tn>` bound on the type `self` was
// bound to. Due to the fact that we use a flattened list of
// impls, one per bound, this means we have to total up the bounds
// found on the type parametesr T1...Tn to find the index of the
// one we are interested in.
let bound_index = {
let trait_polyty = ty::lookup_item_type(bcx.tcx(), trait_id);
ty::count_traits_and_supertraits(bcx.tcx(), *trait_polyty.bounds)
};
let mname = if method_id.crate == ast::local_crate {
match bcx.tcx().items.get(&method_id.node) {
ast_map::node_trait_method(trait_method, _, _) => {
ast_util::trait_method_to_ty_method(*trait_method).ident
}
_ => fail!(~"callee is not a trait method")
}
} else {
let path = csearch::get_item_path(bcx.tcx(), method_id);
match path[path.len()-1] {
path_name(s) => { s }
path_mod(_) => { fail!(~"path doesn't have a name?") }
}
};
debug!("trans_static_method_callee: method_id=%?, callee_id=%?, \
name=%s", method_id, callee_id, *ccx.sess.str_of(mname));
let vtbls = resolve_vtables_in_fn_ctxt(
bcx.fcx, ccx.maps.vtable_map.get(&callee_id));
match /*bad*/copy vtbls[bound_index] {
typeck::vtable_static(impl_did, rcvr_substs, rcvr_origins) => {
let mth_id = method_with_name(bcx.ccx(), impl_did, mname);
let callee_substs = combine_impl_and_methods_tps(
bcx, mth_id, impl_did, callee_id, rcvr_substs);
let callee_origins = combine_impl_and_methods_origins(
bcx, mth_id, impl_did, callee_id, rcvr_origins);
let FnData {llfn: lval} =
2012-09-10 15:12:37 -07:00
trans_fn_ref_with_vtables(bcx,
mth_id,
callee_id,
callee_substs,
Some(callee_origins));
let callee_ty = node_id_type(bcx, callee_id);
let llty = T_ptr(type_of_fn_from_ty(ccx, callee_ty));
FnData {llfn: PointerCast(bcx, lval, llty)}
}
_ => {
fail!(~"vtable_param left in monomorphized \
function's vtable substs");
}
}
}
pub fn method_from_methods(ms: ~[@ast::method], name: ast::ident)
-> Option<ast::def_id> {
ms.find(|m| m.ident == name).map(|m| local_def(m.id))
}
pub fn method_with_name(ccx: @CrateContext, impl_id: ast::def_id,
name: ast::ident) -> ast::def_id {
if impl_id.crate == ast::local_crate {
match ccx.tcx.items.get(&impl_id.node) {
2013-01-13 13:13:41 -08:00
ast_map::node_item(@ast::item {
node: ast::item_impl(_, _, _, ref ms),
_
}, _) => {
method_from_methods(/*bad*/copy *ms, name).get()
}
_ => fail!(~"method_with_name")
}
} else {
csearch::get_impl_method(ccx.sess.cstore, impl_id, name)
}
}
pub fn method_with_name_or_default(ccx: @CrateContext, impl_id: ast::def_id,
name: ast::ident) -> ast::def_id {
if impl_id.crate == ast::local_crate {
match ccx.tcx.items.get(&impl_id.node) {
2013-01-13 13:13:41 -08:00
ast_map::node_item(@ast::item {
node: ast::item_impl(_, _, _, ref ms), _
}, _) => {
let did = method_from_methods(/*bad*/copy *ms, name);
if did.is_some() {
return did.get();
} else {
// Look for a default method
let pmm = ccx.tcx.provided_methods;
match pmm.find(&impl_id) {
Some(pmis) => {
for pmis.each |pmi| {
if pmi.method_info.ident == name {
debug!("XXX %?", pmi.method_info.did);
return pmi.method_info.did;
}
}
fail!()
}
None => fail!()
}
}
}
_ => fail!(~"method_with_name")
}
} else {
csearch::get_impl_method(ccx.sess.cstore, impl_id, name)
}
}
pub fn method_ty_param_count(ccx: @CrateContext, m_id: ast::def_id,
i_id: ast::def_id) -> uint {
debug!("method_ty_param_count: m_id: %?, i_id: %?", m_id, i_id);
if m_id.crate == ast::local_crate {
match ccx.tcx.items.find(&m_id.node) {
Some(ast_map::node_method(m, _, _)) => m.tps.len(),
None => {
match ccx.tcx.provided_method_sources.find(&m_id) {
Some(source) => {
2012-12-07 16:48:55 -08:00
method_ty_param_count(
ccx, source.method_id, source.impl_id)
}
None => fail!()
}
}
Some(ast_map::node_trait_method(@ast::provided(@ref m), _, _))
=> {
m.tps.len()
}
copy e => fail!(fmt!("method_ty_param_count %?", e))
}
} else {
csearch::get_type_param_count(ccx.sess.cstore, m_id) -
csearch::get_type_param_count(ccx.sess.cstore, i_id)
}
}
pub fn trans_monomorphized_callee(bcx: block,
callee_id: ast::node_id,
base: @ast::expr,
mentry: typeck::method_map_entry,
trait_id: ast::def_id,
n_method: uint,
+vtbl: typeck::vtable_origin)
-> Callee {
let _icx = bcx.insn_ctxt("impl::trans_monomorphized_callee");
return match vtbl {
typeck::vtable_static(impl_did, rcvr_substs, rcvr_origins) => {
let ccx = bcx.ccx();
let mname = ty::trait_methods(ccx.tcx, trait_id)[n_method].ident;
let mth_id = method_with_name_or_default(
bcx.ccx(), impl_did, mname);
// obtain the `self` value:
let Result {bcx, val: llself_val} =
trans_self_arg(bcx, base, mentry);
// create a concatenated set of substitutions which includes
// those from the impl and those from the method:
let callee_substs = combine_impl_and_methods_tps(
bcx, mth_id, impl_did, callee_id, rcvr_substs);
let callee_origins = combine_impl_and_methods_origins(
bcx, mth_id, impl_did, callee_id, rcvr_origins);
// translate the function
let callee = trans_fn_ref_with_vtables(
bcx, mth_id, callee_id, callee_substs, Some(callee_origins));
// create a llvalue that represents the fn ptr
let fn_ty = node_id_type(bcx, callee_id);
let llfn_ty = T_ptr(type_of_fn_from_ty(ccx, fn_ty));
let llfn_val = PointerCast(bcx, callee.llfn, llfn_ty);
// combine the self environment with the rest
let tcx = bcx.tcx();
Callee {
bcx: bcx,
data: Method(MethodData {
llfn: llfn_val,
llself: llself_val,
self_ty: node_id_type(bcx, base.id),
self_mode: ty::resolved_mode(tcx, mentry.self_arg.mode)
})
}
}
2012-10-05 16:55:42 -07:00
typeck::vtable_trait(_, _) => {
trans_trait_callee(bcx,
callee_id,
n_method,
base,
ty::vstore_box,
mentry.explicit_self)
}
typeck::vtable_param(*) => {
fail!(~"vtable_param left in monomorphized function's " +
"vtable substs");
}
};
}
pub fn combine_impl_and_methods_tps(bcx: block,
mth_did: ast::def_id,
impl_did: ast::def_id,
callee_id: ast::node_id,
+rcvr_substs: ~[ty::t])
-> ~[ty::t] {
/*!
*
* Creates a concatenated set of substitutions which includes
* those from the impl and those from the method. This are
* some subtle complications here. Statically, we have a list
* of type parameters like `[T0, T1, T2, M1, M2, M3]` where
* `Tn` are type parameters that appear on the receiver. For
* example, if the receiver is a method parameter `A` with a
* bound like `trait<B,C,D>` then `Tn` would be `[B,C,D]`.
*
* The weird part is that the type `A` might now be bound to
* any other type, such as `foo<X>`. In that case, the vector
* we want is: `[X, M1, M2, M3]`. Therefore, what we do now is
* to slice off the method type parameters and append them to
* the type parameters from the type that the receiver is
* mapped to. */
let ccx = bcx.ccx();
let n_m_tps = method_ty_param_count(ccx, mth_did, impl_did);
let node_substs = node_id_type_params(bcx, callee_id);
debug!("rcvr_substs=%?", rcvr_substs.map(|t| bcx.ty_to_str(*t)));
let ty_substs
= vec::append(rcvr_substs,
vec::tailn(node_substs,
node_substs.len() - n_m_tps));
debug!("n_m_tps=%?", n_m_tps);
debug!("node_substs=%?", node_substs.map(|t| bcx.ty_to_str(*t)));
debug!("ty_substs=%?", ty_substs.map(|t| bcx.ty_to_str(*t)));
return ty_substs;
}
pub fn combine_impl_and_methods_origins(bcx: block,
mth_did: ast::def_id,
impl_did: ast::def_id,
callee_id: ast::node_id,
rcvr_origins: typeck::vtable_res)
-> typeck::vtable_res {
/*!
*
* Similar to `combine_impl_and_methods_tps`, but for vtables.
* This is much messier because of the flattened layout we are
* currently using (for some reason that I fail to understand).
* The proper fix is described in #3446.
*/
// Find the bounds for the method, which are the tail of the
// bounds found in the item type, as the item type combines the
// rcvr + method bounds.
let ccx = bcx.ccx(), tcx = bcx.tcx();
let n_m_tps = method_ty_param_count(ccx, mth_did, impl_did);
let ty::ty_param_bounds_and_ty {bounds: r_m_bounds, _}
= ty::lookup_item_type(tcx, mth_did);
let n_r_m_tps = r_m_bounds.len(); // rcvr + method tps
let m_boundss = vec::slice(*r_m_bounds, n_r_m_tps - n_m_tps, n_r_m_tps);
// Flatten out to find the number of vtables the method expects.
let m_vtables = ty::count_traits_and_supertraits(tcx, m_boundss);
// Find the vtables we computed at type check time and monomorphize them
let r_m_origins = match node_vtables(bcx, callee_id) {
Some(vt) => vt,
None => @~[]
};
// Extract those that belong to method:
let m_origins = vec::tailn(*r_m_origins, r_m_origins.len() - m_vtables);
// Combine rcvr + method to find the final result:
@vec::append(/*bad*/copy *rcvr_origins, m_origins)
}
pub fn trans_trait_callee(bcx: block,
callee_id: ast::node_id,
n_method: uint,
self_expr: @ast::expr,
vstore: ty::vstore,
explicit_self: ast::self_ty_)
-> Callee {
//!
//
// Create a method callee where the method is coming from a trait
// instance (e.g., @Trait type). In this case, we must pull the
// fn pointer out of the vtable that is packaged up with the
2012-10-05 16:55:42 -07:00
// @/~/&Trait instance. @/~/&Traits are represented as a pair, so we
// first evaluate the self expression (expected a by-ref result) and then
// extract the self data and vtable out of the pair.
let _icx = bcx.insn_ctxt("impl::trans_trait_callee");
let mut bcx = bcx;
let self_datum = unpack_datum!(bcx,
expr::trans_to_datum(bcx, self_expr));
let llpair = self_datum.to_ref_llval(bcx);
let llpair = match explicit_self {
ast::sty_region(_) => Load(bcx, llpair),
ast::sty_static | ast::sty_by_ref | ast::sty_value |
ast::sty_box(_) | ast::sty_uniq(_) => llpair
};
let callee_ty = node_id_type(bcx, callee_id);
trans_trait_callee_from_llval(bcx,
callee_ty,
n_method,
llpair,
vstore,
explicit_self)
}
pub fn trans_trait_callee_from_llval(bcx: block,
callee_ty: ty::t,
n_method: uint,
llpair: ValueRef,
vstore: ty::vstore,
explicit_self: ast::self_ty_)
-> Callee {
//!
//
// Same as `trans_trait_callee()` above, except that it is given
// a by-ref pointer to the @Trait pair.
let _icx = bcx.insn_ctxt("impl::trans_trait_callee");
let ccx = bcx.ccx();
let mut bcx = bcx;
// Load the vtable from the @Trait pair
debug!("(translating trait callee) loading vtable from pair %s",
val_str(bcx.ccx().tn, llpair));
let llvtable = Load(bcx,
PointerCast(bcx,
GEPi(bcx, llpair, [0u, 0u]),
T_ptr(T_ptr(T_vtable()))));
2012-10-05 16:55:42 -07:00
// Load the box from the @Trait pair and GEP over the box header if
// necessary:
let mut llself;
debug!("(translating trait callee) loading second index from pair");
let llbox = Load(bcx, GEPi(bcx, llpair, [0u, 1u]));
// Munge `llself` appropriately for the type of `self` in the method.
let self_mode;
match explicit_self {
ast::sty_static => {
bcx.tcx().sess.bug(~"shouldn't see static method here");
}
ast::sty_by_ref => {
// We need to pass a pointer to a pointer to the payload.
match vstore {
ty::vstore_box | ty::vstore_uniq => {
llself = GEPi(bcx, llbox, [0u, abi::box_field_body]);
}
ty::vstore_slice(_) => {
llself = llbox;
}
ty::vstore_fixed(*) => {
bcx.tcx().sess.bug(~"vstore_fixed trait");
}
}
self_mode = ast::by_ref;
}
ast::sty_value => {
bcx.tcx().sess.bug(~"methods with by-value self should not be \
called on objects");
}
ast::sty_region(_) => {
// As before, we need to pass a pointer to a pointer to the
// payload.
match vstore {
ty::vstore_box | ty::vstore_uniq => {
llself = GEPi(bcx, llbox, [0u, abi::box_field_body]);
}
ty::vstore_slice(_) => {
llself = llbox;
}
ty::vstore_fixed(*) => {
bcx.tcx().sess.bug(~"vstore_fixed trait");
}
}
let llscratch = alloca(bcx, val_ty(llself));
Store(bcx, llself, llscratch);
llself = llscratch;
self_mode = ast::by_ref;
}
ast::sty_box(_) => {
// Bump the reference count on the box.
debug!("(translating trait callee) callee type is `%s`",
bcx.ty_to_str(callee_ty));
bcx = glue::take_ty(bcx, llbox, callee_ty);
// Pass a pointer to the box.
match vstore {
ty::vstore_box => llself = llbox,
_ => bcx.tcx().sess.bug(~"@self receiver with non-@Trait")
}
let llscratch = alloca(bcx, val_ty(llself));
Store(bcx, llself, llscratch);
llself = llscratch;
self_mode = ast::by_ref;
}
ast::sty_uniq(_) => {
// Pass the unique pointer.
match vstore {
ty::vstore_uniq => llself = llbox,
_ => bcx.tcx().sess.bug(~"~self receiver with non-~Trait")
}
let llscratch = alloca(bcx, val_ty(llself));
Store(bcx, llself, llscratch);
llself = llscratch;
self_mode = ast::by_ref;
}
}
// Load the function from the vtable and cast it to the expected type.
debug!("(translating trait callee) loading method");
let llcallee_ty = type_of::type_of_fn_from_ty(ccx, callee_ty);
let mptr = Load(bcx, GEPi(bcx, llvtable, [0u, n_method]));
let mptr = PointerCast(bcx, mptr, T_ptr(llcallee_ty));
return Callee {
bcx: bcx,
data: Method(MethodData {
llfn: mptr,
llself: llself,
self_ty: ty::mk_opaque_box(bcx.tcx()),
self_mode: self_mode,
/* XXX: Some(llbox) */
})
};
}
pub fn vtable_id(ccx: @CrateContext,
+origin: typeck::vtable_origin)
-> mono_id {
match origin {
typeck::vtable_static(impl_id, substs, sub_vtables) => {
monomorphize::make_mono_id(
ccx,
impl_id,
substs,
if (*sub_vtables).len() == 0u {
None
} else {
Some(sub_vtables)
},
None,
None)
}
typeck::vtable_trait(trait_id, substs) => {
@mono_id_ {
def: trait_id,
params: vec::map(substs, |t| mono_precise(*t, None)),
impl_did_opt: None
}
}
// can't this be checked at the callee?
_ => fail!(~"vtable_id")
}
}
pub fn get_vtable(ccx: @CrateContext,
+origin: typeck::vtable_origin)
-> ValueRef {
// XXX: Bad copy.
let hash_id = vtable_id(ccx, copy origin);
match ccx.vtables.find(&hash_id) {
2012-08-20 12:23:37 -07:00
Some(val) => val,
None => match origin {
2012-08-03 19:59:04 -07:00
typeck::vtable_static(id, substs, sub_vtables) => {
make_impl_vtable(ccx, id, substs, sub_vtables)
}
_ => fail!(~"get_vtable: expected a static origin")
}
}
}
pub fn make_vtable(ccx: @CrateContext, ptrs: ~[ValueRef]) -> ValueRef {
unsafe {
let _icx = ccx.insn_ctxt("impl::make_vtable");
let tbl = C_struct(ptrs);
let vtable = ccx.sess.str_of((ccx.names)(~"vtable"));
let vt_gvar = do str::as_c_str(*vtable) |buf| {
llvm::LLVMAddGlobal(ccx.llmod, val_ty(tbl), buf)
};
llvm::LLVMSetInitializer(vt_gvar, tbl);
llvm::LLVMSetGlobalConstant(vt_gvar, lib::llvm::True);
lib::llvm::SetLinkage(vt_gvar, lib::llvm::InternalLinkage);
vt_gvar
}
}
pub fn make_impl_vtable(ccx: @CrateContext,
impl_id: ast::def_id,
substs: ~[ty::t],
vtables: typeck::vtable_res)
-> ValueRef {
let _icx = ccx.insn_ctxt("impl::make_impl_vtable");
let tcx = ccx.tcx;
// XXX: This should support multiple traits.
let trt_id = driver::session::expect(
tcx.sess,
2012-10-05 16:55:42 -07:00
ty::ty_to_def_id(ty::impl_traits(tcx, impl_id, ty::vstore_box)[0]),
|| ~"make_impl_vtable: non-trait-type implemented");
let has_tps = (*ty::lookup_item_type(ccx.tcx, impl_id).bounds).len() > 0u;
2012-07-30 14:43:44 -07:00
make_vtable(ccx, vec::map(*ty::trait_methods(tcx, trt_id), |im| {
let fty = ty::subst_tps(tcx, substs, None,
ty::mk_bare_fn(tcx, copy im.fty));
if (*im.tps).len() > 0u || ty::type_has_self(fty) {
debug!("(making impl vtable) method has self or type params: %s",
*tcx.sess.str_of(im.ident));
C_null(T_ptr(T_nil()))
} else {
debug!("(making impl vtable) adding method to vtable: %s",
*tcx.sess.str_of(im.ident));
let mut m_id = method_with_name(ccx, impl_id, im.ident);
if has_tps {
// If the method is in another crate, need to make an inlined
// copy first
if m_id.crate != ast::local_crate {
// XXX: Set impl ID here?
m_id = inline::maybe_instantiate_inline(ccx, m_id, true);
}
let (val, _) = monomorphize::monomorphic_fn(ccx, m_id, substs,
Some(vtables), None, None);
val
} else if m_id.crate == ast::local_crate {
get_item_val(ccx, m_id.node)
} else {
trans_external_path(ccx, m_id, fty)
}
}
}))
}
pub fn trans_trait_cast(bcx: block,
val: @ast::expr,
id: ast::node_id,
dest: expr::Dest,
vstore: ty::vstore)
-> block {
let mut bcx = bcx;
let _icx = bcx.insn_ctxt("impl::trans_cast");
let lldest = match dest {
Ignore => {
return expr::trans_into(bcx, val, Ignore);
}
SaveIn(dest) => dest
};
let ccx = bcx.ccx();
let v_ty = expr_ty(bcx, val);
2012-10-31 15:09:26 -07:00
match vstore {
ty::vstore_slice(*) | ty::vstore_box => {
let mut llboxdest = GEPi(bcx, lldest, [0u, 1u]);
if bcx.tcx().legacy_boxed_traits.contains_key(&id) {
2012-10-31 15:09:26 -07:00
// Allocate an @ box and store the value into it
let MallocResult {bcx: new_bcx, box: llbox, body: body} =
2012-10-31 15:09:26 -07:00
malloc_boxed(bcx, v_ty);
bcx = new_bcx;
add_clean_free(bcx, llbox, heap_shared);
bcx = expr::trans_into(bcx, val, SaveIn(body));
revoke_clean(bcx, llbox);
// Store the @ box into the pair
Store(bcx, llbox, PointerCast(bcx,
llboxdest,
T_ptr(val_ty(llbox))));
} else {
// Just store the pointer into the pair.
llboxdest = PointerCast(bcx,
llboxdest,
T_ptr(type_of::type_of(bcx.ccx(),
v_ty)));
bcx = expr::trans_into(bcx, val, SaveIn(llboxdest));
}
}
ty::vstore_uniq => {
// Translate the uniquely-owned value into the second element of
// the triple. (The first element is the vtable.)
let mut llvaldest = GEPi(bcx, lldest, [0, 1]);
llvaldest = PointerCast(bcx,
llvaldest,
T_ptr(type_of::type_of(bcx.ccx(), v_ty)));
bcx = expr::trans_into(bcx, val, SaveIn(llvaldest));
// Get the type descriptor of the wrapped value and store it into
// the third element of the triple as well.
let tydesc = get_tydesc(bcx.ccx(), v_ty);
glue::lazily_emit_all_tydesc_glue(bcx.ccx(), tydesc);
let lltydescdest = GEPi(bcx, lldest, [0, 2]);
Store(bcx, tydesc.tydesc, lltydescdest);
}
_ => {
bcx.tcx().sess.span_bug(val.span, ~"unexpected vstore in \
trans_trait_cast");
}
}
2012-10-31 15:09:26 -07:00
// Store the vtable into the pair or triple.
let orig = /*bad*/copy ccx.maps.vtable_map.get(&id)[0];
let orig = resolve_vtable_in_fn_ctxt(bcx.fcx, orig);
let vtable = get_vtable(bcx.ccx(), orig);
Store(bcx, vtable, PointerCast(bcx,
GEPi(bcx, lldest, [0u, 0u]),
T_ptr(val_ty(vtable))));
bcx
}