rust/src/helpers.rs

668 lines
26 KiB
Rust
Raw Normal View History

use std::convert::{TryFrom, TryInto};
2020-03-28 09:43:47 -05:00
use std::mem;
2020-04-17 07:19:26 -05:00
use std::num::NonZeroUsize;
use std::time::Duration;
use log::trace;
2020-03-01 03:26:24 -06:00
use rustc_hir::def_id::{DefId, CRATE_DEF_INDEX};
2021-05-16 04:28:01 -05:00
use rustc_middle::mir;
use rustc_middle::ty::{self, layout::TyAndLayout, List, TyCtxt};
use rustc_target::abi::{FieldsShape, LayoutOf, Size, Variants};
2021-01-21 20:45:39 -06:00
use rustc_target::spec::abi::Abi;
2018-10-19 02:51:04 -05:00
2019-06-30 16:28:24 -05:00
use rand::RngCore;
2018-11-01 02:56:41 -05:00
use crate::*;
2018-10-19 02:51:04 -05:00
impl<'mir, 'tcx: 'mir> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
2019-02-15 19:29:38 -06:00
/// Gets an instance for a path.
fn try_resolve_did<'mir, 'tcx>(tcx: TyCtxt<'tcx>, path: &[&str]) -> Option<DefId> {
2021-05-16 04:28:01 -05:00
tcx.crates().iter().find(|&&krate| tcx.original_crate_name(krate).as_str() == path[0]).and_then(
|krate| {
2019-12-23 05:56:23 -06:00
let krate = DefId { krate: *krate, index: CRATE_DEF_INDEX };
let mut items = tcx.item_children(krate);
let mut path_it = path.iter().skip(1).peekable();
2018-10-19 02:51:04 -05:00
while let Some(segment) = path_it.next() {
for item in mem::replace(&mut items, Default::default()).iter() {
if item.ident.name.as_str() == *segment {
if path_it.peek().is_none() {
2019-12-23 05:56:23 -06:00
return Some(item.res.def_id());
2018-10-19 02:51:04 -05:00
}
items = tcx.item_children(item.res.def_id());
break;
2018-10-19 02:51:04 -05:00
}
}
}
None
2021-05-16 04:28:01 -05:00
},
)
}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
2019-11-19 07:51:08 -06:00
/// Gets an instance for a path.
fn resolve_path(&self, path: &[&str]) -> ty::Instance<'tcx> {
let did = try_resolve_did(self.eval_context_ref().tcx.tcx, path)
.unwrap_or_else(|| panic!("failed to find required Rust item: {:?}", path));
ty::Instance::mono(self.eval_context_ref().tcx.tcx, did)
}
/// Evaluates the scalar at the specified path. Returns Some(val)
/// if the path could be resolved, and None otherwise
2021-05-16 04:28:01 -05:00
fn eval_path_scalar(&mut self, path: &[&str]) -> InterpResult<'tcx, ScalarMaybeUninit<Tag>> {
let this = self.eval_context_mut();
let instance = this.resolve_path(path);
let cid = GlobalId { instance, promoted: None };
2020-09-20 06:13:57 -05:00
let const_val = this.eval_to_allocation(cid)?;
let const_val = this.read_scalar(&const_val.into())?;
return Ok(const_val);
}
/// Helper function to get a `libc` constant as a `Scalar`.
fn eval_libc(&mut self, name: &str) -> InterpResult<'tcx, Scalar<Tag>> {
2021-05-16 04:28:01 -05:00
self.eval_context_mut().eval_path_scalar(&["libc", name])?.check_init()
}
/// Helper function to get a `libc` constant as an `i32`.
fn eval_libc_i32(&mut self, name: &str) -> InterpResult<'tcx, i32> {
// TODO: Cache the result.
self.eval_libc(name)?.to_i32()
}
/// Helper function to get a `windows` constant as a `Scalar`.
fn eval_windows(&mut self, module: &str, name: &str) -> InterpResult<'tcx, Scalar<Tag>> {
self.eval_context_mut()
.eval_path_scalar(&["std", "sys", "windows", module, name])?
.check_init()
}
/// Helper function to get a `windows` constant as an `u64`.
fn eval_windows_u64(&mut self, module: &str, name: &str) -> InterpResult<'tcx, u64> {
// TODO: Cache the result.
self.eval_windows(module, name)?.to_u64()
}
2020-03-30 03:23:04 -05:00
/// Helper function to get the `TyAndLayout` of a `libc` type
fn libc_ty_layout(&mut self, name: &str) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
let this = self.eval_context_mut();
2020-07-23 03:40:13 -05:00
let ty = this.resolve_path(&["libc", name]).ty(*this.tcx, ty::ParamEnv::reveal_all());
this.layout_of(ty)
2018-10-19 02:51:04 -05:00
}
/// Helper function to get the `TyAndLayout` of a `windows` type
fn windows_ty_layout(&mut self, name: &str) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
let this = self.eval_context_mut();
2021-05-16 04:28:01 -05:00
let ty = this
.resolve_path(&["std", "sys", "windows", "c", name])
.ty(*this.tcx, ty::ParamEnv::reveal_all());
this.layout_of(ty)
}
/// Write a 0 of the appropriate size to `dest`.
fn write_null(&mut self, dest: &PlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
self.eval_context_mut().write_scalar(Scalar::from_int(0, dest.layout.size), dest)
}
/// Test if this immediate equals 0.
fn is_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, bool> {
let this = self.eval_context_ref();
2020-03-29 03:01:31 -05:00
let null = Scalar::null_ptr(this);
this.ptr_eq(val, null)
}
/// Turn a Scalar into an Option<NonNullScalar>
fn test_null(&self, val: Scalar<Tag>) -> InterpResult<'tcx, Option<Scalar<Tag>>> {
let this = self.eval_context_ref();
2019-12-23 05:56:23 -06:00
Ok(if this.is_null(val)? { None } else { Some(val) })
}
2019-07-21 04:56:10 -05:00
/// Get the `Place` for a local
fn local_place(&mut self, local: mir::Local) -> InterpResult<'tcx, PlaceTy<'tcx, Tag>> {
let this = self.eval_context_mut();
2020-01-15 12:27:21 -06:00
let place = mir::Place { local: local, projection: List::empty() };
2020-04-01 12:40:10 -05:00
this.eval_place(place)
2019-07-21 04:56:10 -05:00
}
2019-06-30 16:28:24 -05:00
/// Generate some random bytes, and write them to `dest`.
fn gen_random(&mut self, ptr: Scalar<Tag>, len: u64) -> InterpResult<'tcx> {
// Some programs pass in a null pointer and a length of 0
// to their platform's random-generation function (e.g. getrandom())
// on Linux. For compatibility with these programs, we don't perform
// any additional checks - it's okay if the pointer is invalid,
// since we wouldn't actually be writing to it.
if len == 0 {
return Ok(());
}
2019-06-30 16:28:24 -05:00
let this = self.eval_context_mut();
2019-06-30 16:32:25 -05:00
let mut data = vec![0; usize::try_from(len).unwrap()];
if this.machine.communicate {
// Fill the buffer using the host's rng.
2019-08-20 10:47:38 -05:00
getrandom::getrandom(&mut data)
.map_err(|err| err_unsup_format!("host getrandom failed: {}", err))?;
2019-12-23 05:56:23 -06:00
} else {
2019-10-17 21:11:50 -05:00
let rng = this.memory.extra.rng.get_mut();
rng.fill_bytes(&mut data);
}
2019-07-23 14:38:53 -05:00
this.memory.write_bytes(ptr, data.iter().copied())
2019-06-30 16:28:24 -05:00
}
/// Call a function: Push the stack frame and pass the arguments.
/// For now, arguments must be scalars (so that the caller does not have to know the layout).
fn call_function(
&mut self,
f: ty::Instance<'tcx>,
caller_abi: Abi,
args: &[Immediate<Tag>],
dest: Option<&PlaceTy<'tcx, Tag>>,
stack_pop: StackPopCleanup,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let param_env = ty::ParamEnv::reveal_all(); // in Miri this is always the param_env we use... and this.param_env is private.
let callee_abi = f.ty(*this.tcx, param_env).fn_sig(*this.tcx).abi();
if callee_abi != caller_abi {
2021-05-16 04:28:01 -05:00
throw_ub_format!(
"calling a function with ABI {} using caller ABI {}",
callee_abi.name(),
caller_abi.name()
)
}
// Push frame.
2019-12-08 03:32:50 -06:00
let mir = &*this.load_mir(f.def, None)?;
this.push_stack_frame(f, mir, dest, stack_pop)?;
// Initialize arguments.
let mut callee_args = this.frame().body.args_iter();
for arg in args {
let callee_arg = this.local_place(
2021-05-16 04:28:01 -05:00
callee_args
.next()
.ok_or_else(|| err_ub_format!("callee has fewer arguments than expected"))?,
)?;
this.write_immediate(*arg, &callee_arg)?;
}
if callee_args.next().is_some() {
throw_ub_format!("callee has more arguments than expected");
}
Ok(())
}
2019-02-15 19:29:38 -06:00
/// Visits the memory covered by `place`, sensitive to freezing: the 3rd parameter
/// will be true if this is frozen, false if this is in an `UnsafeCell`.
fn visit_freeze_sensitive(
&self,
place: &MPlaceTy<'tcx, Tag>,
size: Size,
2019-06-08 15:14:47 -05:00
mut action: impl FnMut(Pointer<Tag>, Size, bool) -> InterpResult<'tcx>,
) -> InterpResult<'tcx> {
let this = self.eval_context_ref();
trace!("visit_frozen(place={:?}, size={:?})", *place, size);
2019-12-23 05:56:23 -06:00
debug_assert_eq!(
size,
this.size_and_align_of_mplace(place)?
2019-12-23 05:56:23 -06:00
.map(|(size, _)| size)
.unwrap_or_else(|| place.layout.size)
);
2019-02-15 19:29:38 -06:00
// Store how far we proceeded into the place so far. Everything to the left of
// this offset has already been handled, in the sense that the frozen parts
// have had `action` called on them.
let mut end_ptr = place.ptr.assert_ptr();
// Called when we detected an `UnsafeCell` at the given offset and size.
// Calls `action` and advances `end_ptr`.
let mut unsafe_cell_action = |unsafe_cell_ptr: Scalar<Tag>, unsafe_cell_size: Size| {
let unsafe_cell_ptr = unsafe_cell_ptr.assert_ptr();
debug_assert_eq!(unsafe_cell_ptr.alloc_id, end_ptr.alloc_id);
debug_assert_eq!(unsafe_cell_ptr.tag, end_ptr.tag);
// We assume that we are given the fields in increasing offset order,
// and nothing else changes.
let unsafe_cell_offset = unsafe_cell_ptr.offset;
let end_offset = end_ptr.offset;
assert!(unsafe_cell_offset >= end_offset);
let frozen_size = unsafe_cell_offset - end_offset;
// Everything between the end_ptr and this `UnsafeCell` is frozen.
if frozen_size != Size::ZERO {
2019-12-23 05:56:23 -06:00
action(end_ptr, frozen_size, /*frozen*/ true)?;
}
// This `UnsafeCell` is NOT frozen.
if unsafe_cell_size != Size::ZERO {
2019-12-23 05:56:23 -06:00
action(unsafe_cell_ptr, unsafe_cell_size, /*frozen*/ false)?;
}
// Update end end_ptr.
end_ptr = unsafe_cell_ptr.wrapping_offset(unsafe_cell_size, this);
// Done
Ok(())
};
// Run a visitor
{
let mut visitor = UnsafeCellVisitor {
ecx: this,
unsafe_cell_action: |place| {
trace!("unsafe_cell_action on {:?}", place.ptr);
// We need a size to go on.
2019-12-23 05:56:23 -06:00
let unsafe_cell_size = this
.size_and_align_of_mplace(&place)?
2018-11-23 02:46:51 -06:00
.map(|(size, _)| size)
// for extern types, just cover what we can
2018-11-23 02:46:51 -06:00
.unwrap_or_else(|| place.layout.size);
2018-11-06 10:46:54 -06:00
// Now handle this `UnsafeCell`, unless it is empty.
if unsafe_cell_size != Size::ZERO {
unsafe_cell_action(place.ptr, unsafe_cell_size)
2018-11-06 10:46:54 -06:00
} else {
Ok(())
}
},
};
visitor.visit_value(place)?;
}
// The part between the end_ptr and the end of the place is also frozen.
// So pretend there is a 0-sized `UnsafeCell` at the end.
unsafe_cell_action(place.ptr.ptr_wrapping_offset(size, this), Size::ZERO)?;
// Done!
return Ok(());
/// Visiting the memory covered by a `MemPlace`, being aware of
/// whether we are inside an `UnsafeCell` or not.
2019-06-13 01:52:04 -05:00
struct UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
2019-12-23 05:56:23 -06:00
where
F: FnMut(&MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
{
2019-06-13 01:52:04 -05:00
ecx: &'ecx MiriEvalContext<'mir, 'tcx>,
unsafe_cell_action: F,
}
impl<'ecx, 'mir, 'tcx: 'mir, F> ValueVisitor<'mir, 'tcx, Evaluator<'mir, 'tcx>>
2019-12-23 05:56:23 -06:00
for UnsafeCellVisitor<'ecx, 'mir, 'tcx, F>
where
F: FnMut(&MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx>,
{
type V = MPlaceTy<'tcx, Tag>;
#[inline(always)]
2019-06-13 01:52:04 -05:00
fn ecx(&self) -> &MiriEvalContext<'mir, 'tcx> {
&self.ecx
}
2019-02-15 19:29:38 -06:00
// Hook to detect `UnsafeCell`.
fn visit_value(&mut self, v: &MPlaceTy<'tcx, Tag>) -> InterpResult<'tcx> {
trace!("UnsafeCellVisitor: {:?} {:?}", *v, v.layout.ty);
2020-09-04 15:03:45 -05:00
let is_unsafe_cell = match v.layout.ty.kind() {
2019-12-23 05:56:23 -06:00
ty::Adt(adt, _) =>
Some(adt.did) == self.ecx.tcx.lang_items().unsafe_cell_type(),
_ => false,
};
if is_unsafe_cell {
// We do not have to recurse further, this is an `UnsafeCell`.
(self.unsafe_cell_action)(v)
} else if self.ecx.type_is_freeze(v.layout.ty) {
// This is `Freeze`, there cannot be an `UnsafeCell`
Ok(())
} else if matches!(v.layout.fields, FieldsShape::Union(..)) {
// A (non-frozen) union. We fall back to whatever the type says.
(self.unsafe_cell_action)(v)
} else {
// We want to not actually read from memory for this visit. So, before
// walking this value, we have to make sure it is not a
// `Variants::Multiple`.
match v.layout.variants {
2020-04-02 17:05:35 -05:00
Variants::Multiple { .. } => {
// A multi-variant enum, or generator, or so.
// Treat this like a union: without reading from memory,
// we cannot determine the variant we are in. Reading from
// memory would be subject to Stacked Borrows rules, leading
// to all sorts of "funny" recursion.
2019-08-28 11:45:10 -05:00
// We only end up here if the type is *not* freeze, so we just call the
// `UnsafeCell` action.
(self.unsafe_cell_action)(v)
}
2020-04-02 17:05:35 -05:00
Variants::Single { .. } => {
2019-08-28 11:45:10 -05:00
// Proceed further, try to find where exactly that `UnsafeCell`
// is hiding.
self.walk_value(v)
}
}
}
}
2019-02-15 19:29:38 -06:00
// Make sure we visit aggregrates in increasing offset order.
2018-11-06 10:46:54 -06:00
fn visit_aggregate(
&mut self,
place: &MPlaceTy<'tcx, Tag>,
2019-12-23 05:56:23 -06:00
fields: impl Iterator<Item = InterpResult<'tcx, MPlaceTy<'tcx, Tag>>>,
2019-06-08 15:14:47 -05:00
) -> InterpResult<'tcx> {
2018-11-06 10:46:54 -06:00
match place.layout.fields {
2020-04-02 17:05:35 -05:00
FieldsShape::Array { .. } => {
2018-11-06 10:46:54 -06:00
// For the array layout, we know the iterator will yield sorted elements so
// we can avoid the allocation.
self.walk_aggregate(place, fields)
}
2020-04-02 17:05:35 -05:00
FieldsShape::Arbitrary { .. } => {
2018-11-06 10:46:54 -06:00
// Gather the subplaces and sort them before visiting.
2019-12-23 05:56:23 -06:00
let mut places =
fields.collect::<InterpResult<'tcx, Vec<MPlaceTy<'tcx, Tag>>>>()?;
places.sort_by_key(|place| place.ptr.assert_ptr().offset);
2018-11-06 10:46:54 -06:00
self.walk_aggregate(place, places.into_iter().map(Ok))
}
2020-04-17 07:19:26 -05:00
FieldsShape::Union { .. } | FieldsShape::Primitive => {
2018-11-06 10:46:54 -06:00
// Uh, what?
2020-04-17 07:19:26 -05:00
bug!("unions/primitives are not aggregates we should ever visit")
2018-11-06 10:46:54 -06:00
}
}
}
2021-05-16 04:28:01 -05:00
fn visit_union(
&mut self,
_v: &MPlaceTy<'tcx, Tag>,
_fields: NonZeroUsize,
) -> InterpResult<'tcx> {
bug!("we should have already handled unions in `visit_value`")
}
}
}
2019-10-11 04:17:43 -05:00
// Writes several `ImmTy`s contiguously into memory. This is useful when you have to pack
2019-10-12 19:48:18 -05:00
// different values into a struct.
fn write_packed_immediates(
2019-10-08 15:06:14 -05:00
&mut self,
place: &MPlaceTy<'tcx, Tag>,
imms: &[ImmTy<'tcx, Tag>],
2019-10-08 15:06:14 -05:00
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let mut offset = Size::from_bytes(0);
for &imm in imms {
this.write_immediate_to_mplace(
*imm,
&place.offset(offset, MemPlaceMeta::None, imm.layout, &*this.tcx)?,
2019-10-08 15:06:14 -05:00
)?;
offset += imm.layout.size;
2019-10-08 15:06:14 -05:00
}
Ok(())
}
2019-10-08 15:06:14 -05:00
/// Helper function used inside the shims of foreign functions to check that isolation is
/// disabled. It returns an error using the `name` of the foreign function if this is not the
/// case.
2020-02-23 11:44:40 -06:00
fn check_no_isolation(&self, name: &str) -> InterpResult<'tcx> {
if !self.eval_context_ref().machine.communicate {
isolation_error(name)?;
}
2019-10-08 15:06:14 -05:00
Ok(())
}
2020-03-22 02:51:15 -05:00
/// Helper function used inside the shims of foreign functions to assert that the target OS
/// is `target_os`. It panics showing a message with the `name` of the foreign function
/// if this is not the case.
2020-03-22 02:51:15 -05:00
fn assert_target_os(&self, target_os: &str, name: &str) {
assert_eq!(
2020-11-11 03:29:10 -06:00
self.eval_context_ref().tcx.sess.target.os,
2020-03-22 02:51:15 -05:00
target_os,
"`{}` is only available on the `{}` target OS",
name,
2020-03-22 02:51:15 -05:00
target_os,
)
}
2020-08-31 21:29:09 -05:00
/// Get last error variable as a place, lazily allocating thread-local storage for it if
/// necessary.
fn last_error_place(&mut self) -> InterpResult<'tcx, MPlaceTy<'tcx, Tag>> {
let this = self.eval_context_mut();
if let Some(errno_place) = this.active_thread_ref().last_error {
Ok(errno_place)
} else {
2020-09-02 20:58:41 -05:00
// Allocate new place, set initial value to 0.
2020-08-31 21:29:09 -05:00
let errno_layout = this.machine.layouts.u32;
let errno_place = this.allocate(errno_layout, MiriMemoryKind::Machine.into());
this.write_scalar(Scalar::from_u32(0), &errno_place.into())?;
2020-08-31 21:29:09 -05:00
this.active_thread_mut().last_error = Some(errno_place);
Ok(errno_place)
}
}
2019-10-19 14:00:44 -05:00
/// Sets the last error variable.
2019-10-12 20:44:45 -05:00
fn set_last_error(&mut self, scalar: Scalar<Tag>) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
2020-08-31 21:29:09 -05:00
let errno_place = this.last_error_place()?;
this.write_scalar(scalar, &errno_place.into())
2019-10-12 20:44:45 -05:00
}
2019-10-19 14:00:44 -05:00
/// Gets the last error variable.
2020-08-31 21:29:09 -05:00
fn get_last_error(&mut self) -> InterpResult<'tcx, Scalar<Tag>> {
let this = self.eval_context_mut();
let errno_place = this.last_error_place()?;
this.read_scalar(&errno_place.into())?.check_init()
2019-10-12 20:44:45 -05:00
}
2019-10-18 14:33:25 -05:00
/// Sets the last OS error using a `std::io::Error`. This function tries to produce the most
/// similar OS error from the `std::io::ErrorKind` and sets it as the last OS error.
2019-10-12 20:44:45 -05:00
fn set_last_error_from_io_error(&mut self, e: std::io::Error) -> InterpResult<'tcx> {
use std::io::ErrorKind::*;
let this = self.eval_context_mut();
let target = &this.tcx.sess.target;
2020-11-11 03:29:10 -06:00
let target_os = &target.os;
2021-05-03 02:57:13 -05:00
let last_error = if target.families.contains(&"unix".to_owned()) {
this.eval_libc(match e.kind() {
ConnectionRefused => "ECONNREFUSED",
ConnectionReset => "ECONNRESET",
PermissionDenied => "EPERM",
BrokenPipe => "EPIPE",
NotConnected => "ENOTCONN",
ConnectionAborted => "ECONNABORTED",
AddrNotAvailable => "EADDRNOTAVAIL",
AddrInUse => "EADDRINUSE",
NotFound => "ENOENT",
Interrupted => "EINTR",
InvalidInput => "EINVAL",
TimedOut => "ETIMEDOUT",
AlreadyExists => "EEXIST",
WouldBlock => "EWOULDBLOCK",
2019-12-23 05:56:23 -06:00
_ => {
2020-03-09 03:43:20 -05:00
throw_unsup_format!("io error {} cannot be transformed into a raw os error", e)
2019-12-23 05:56:23 -06:00
}
})?
2021-05-03 02:57:13 -05:00
} else if target.families.contains(&"windows".to_owned()) {
// FIXME: we have to finish implementing the Windows equivalent of this.
2021-05-16 04:28:01 -05:00
this.eval_windows(
"c",
match e.kind() {
NotFound => "ERROR_FILE_NOT_FOUND",
_ => throw_unsup_format!(
"io error {} cannot be transformed into a raw os error",
e
),
},
)?
} else {
2021-05-16 04:28:01 -05:00
throw_unsup_format!(
"setting the last OS error from an io::Error is unsupported for {}.",
target_os
)
};
this.set_last_error(last_error)
2019-10-12 20:44:45 -05:00
}
2019-10-16 21:37:35 -05:00
/// Helper function that consumes an `std::io::Result<T>` and returns an
2019-10-18 14:33:25 -05:00
/// `InterpResult<'tcx,T>::Ok` instead. In case the result is an error, this function returns
/// `Ok(-1)` and sets the last OS error accordingly.
2019-10-16 21:37:35 -05:00
///
/// This function uses `T: From<i32>` instead of `i32` directly because some IO related
2019-10-24 03:23:44 -05:00
/// functions return different integer types (like `read`, that returns an `i64`).
2019-10-18 14:33:25 -05:00
fn try_unwrap_io_result<T: From<i32>>(
2019-10-16 21:37:35 -05:00
&mut self,
result: std::io::Result<T>,
) -> InterpResult<'tcx, T> {
match result {
Ok(ok) => Ok(ok),
Err(e) => {
self.eval_context_mut().set_last_error_from_io_error(e)?;
Ok((-1).into())
}
}
}
fn read_scalar_at_offset(
&self,
op: &OpTy<'tcx, Tag>,
offset: u64,
layout: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, ScalarMaybeUninit<Tag>> {
let this = self.eval_context_ref();
let op_place = this.deref_operand(op)?;
let offset = Size::from_bytes(offset);
// Ensure that the following read at an offset is within bounds
assert!(op_place.layout.size >= offset + layout.size);
let value_place = op_place.offset(offset, MemPlaceMeta::None, layout, this)?;
this.read_scalar(&value_place.into())
}
fn write_scalar_at_offset(
&mut self,
op: &OpTy<'tcx, Tag>,
offset: u64,
value: impl Into<ScalarMaybeUninit<Tag>>,
layout: TyAndLayout<'tcx>,
) -> InterpResult<'tcx, ()> {
let this = self.eval_context_mut();
let op_place = this.deref_operand(op)?;
let offset = Size::from_bytes(offset);
// Ensure that the following read at an offset is within bounds
assert!(op_place.layout.size >= offset + layout.size);
let value_place = op_place.offset(offset, MemPlaceMeta::None, layout, this)?;
this.write_scalar(value, &value_place.into())
}
2020-09-07 10:54:39 -05:00
/// Parse a `timespec` struct and return it as a `std::time::Duration`. It returns `None`
/// if the value in the `timespec` struct is invalid. Some libc functions will return
/// `EINVAL` in this case.
fn read_timespec(
&mut self,
timespec_ptr_op: &OpTy<'tcx, Tag>,
2020-09-07 10:54:39 -05:00
) -> InterpResult<'tcx, Option<Duration>> {
let this = self.eval_context_mut();
let tp = this.deref_operand(timespec_ptr_op)?;
let seconds_place = this.mplace_field(&tp, 0)?;
let seconds_scalar = this.read_scalar(&seconds_place.into())?;
let seconds = seconds_scalar.to_machine_isize(this)?;
let nanoseconds_place = this.mplace_field(&tp, 1)?;
let nanoseconds_scalar = this.read_scalar(&nanoseconds_place.into())?;
let nanoseconds = nanoseconds_scalar.to_machine_isize(this)?;
2020-09-07 15:09:34 -05:00
Ok(try {
2020-09-07 10:54:39 -05:00
// tv_sec must be non-negative.
2020-09-07 11:31:28 -05:00
let seconds: u64 = seconds.try_into().ok()?;
// tv_nsec must be non-negative.
let nanoseconds: u32 = nanoseconds.try_into().ok()?;
if nanoseconds >= 1_000_000_000 {
2020-09-07 10:54:39 -05:00
// tv_nsec must not be greater than 999,999,999.
2020-09-07 15:09:34 -05:00
None?
}
2020-09-07 15:09:34 -05:00
Duration::new(seconds, nanoseconds)
})
}
fn read_c_str<'a>(&'a self, sptr: Scalar<Tag>) -> InterpResult<'tcx, &'a [u8]>
where
'tcx: 'a,
'mir: 'a,
{
let this = self.eval_context_ref();
let size1 = Size::from_bytes(1);
let ptr = this.force_ptr(sptr)?; // We need to read at least 1 byte, so we can eagerly get a ptr.
// Step 1: determine the length.
let alloc = this.memory.get_raw(ptr.alloc_id)?;
let mut len = Size::ZERO;
loop {
let byte = alloc.read_scalar(this, ptr.offset(len, this)?, size1)?.to_u8()?;
if byte == 0 {
break;
} else {
len = len + size1;
}
}
// Step 2: get the bytes.
this.memory.read_bytes(ptr.into(), len)
}
fn read_wide_str(&self, sptr: Scalar<Tag>) -> InterpResult<'tcx, Vec<u16>> {
let this = self.eval_context_ref();
let size2 = Size::from_bytes(2);
let mut ptr = this.force_ptr(sptr)?; // We need to read at least 1 wchar, so we can eagerly get a ptr.
let mut wchars = Vec::new();
let alloc = this.memory.get_raw(ptr.alloc_id)?;
loop {
let wchar = alloc.read_scalar(this, ptr, size2)?.to_u16()?;
if wchar == 0 {
break;
} else {
wchars.push(wchar);
ptr = ptr.offset(size2, this)?;
}
}
Ok(wchars)
}
2019-10-17 10:21:06 -05:00
}
/// Check that the number of args is what we expect.
2021-05-16 04:28:01 -05:00
pub fn check_arg_count<'a, 'tcx, const N: usize>(
args: &'a [OpTy<'tcx, Tag>],
) -> InterpResult<'tcx, &'a [OpTy<'tcx, Tag>; N]>
where
&'a [OpTy<'tcx, Tag>; N]: TryFrom<&'a [OpTy<'tcx, Tag>]>,
{
if let Ok(ops) = args.try_into() {
return Ok(ops);
}
2020-05-04 13:24:22 -05:00
throw_ub_format!("incorrect number of arguments: got {}, expected {}", args.len(), N)
}
2021-01-21 20:45:39 -06:00
/// Check that the ABI is what we expect.
pub fn check_abi<'a>(abi: Abi, exp_abi: Abi) -> InterpResult<'a, ()> {
if abi == exp_abi {
Ok(())
} else {
2021-05-16 04:28:01 -05:00
throw_ub_format!(
"calling a function with ABI {} using caller ABI {}",
exp_abi.name(),
abi.name()
)
2021-01-21 20:45:39 -06:00
}
}
pub fn isolation_error(name: &str) -> InterpResult<'static> {
throw_machine_stop!(TerminationInfo::UnsupportedInIsolation(format!(
"{} not available when isolation is enabled",
name,
)))
}
2019-11-30 14:09:52 -06:00
pub fn immty_from_int_checked<'tcx>(
int: impl Into<i128>,
2020-03-30 03:23:04 -05:00
layout: TyAndLayout<'tcx>,
2019-11-30 14:09:52 -06:00
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
let int = int.into();
2020-03-01 03:26:24 -06:00
Ok(ImmTy::try_from_int(int, layout).ok_or_else(|| {
err_unsup_format!("signed value {:#x} does not fit in {} bits", int, layout.size.bits())
2020-03-01 03:26:24 -06:00
})?)
2019-11-30 14:09:52 -06:00
}
pub fn immty_from_uint_checked<'tcx>(
int: impl Into<u128>,
2020-03-30 03:23:04 -05:00
layout: TyAndLayout<'tcx>,
2019-11-30 14:09:52 -06:00
) -> InterpResult<'tcx, ImmTy<'tcx, Tag>> {
let int = int.into();
2020-03-01 03:26:24 -06:00
Ok(ImmTy::try_from_uint(int, layout).ok_or_else(|| {
err_unsup_format!("unsigned value {:#x} does not fit in {} bits", int, layout.size.bits())
2020-03-01 03:26:24 -06:00
})?)
2019-11-30 14:09:52 -06:00
}