rust/src/compiletest/compiletest.rs

219 lines
6.5 KiB
Rust
Raw Normal View History

// FIXME: The way this module sets up tests is a relic and more convoluted
// than it needs to be
import option;
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
import std::getopts;
import std::test;
import std::fs;
import str;
import vec;
import task;
import core::result;
import result::{ok, err};
import comm::port;
import comm::chan;
import comm::send;
import comm::recv;
import common::cx;
import common::config;
import common::mode_run_pass;
import common::mode_run_fail;
import common::mode_compile_fail;
import common::mode_pretty;
import common::mode;
import util::logv;
2011-07-27 14:19:39 +02:00
2011-09-02 15:34:58 -07:00
fn main(args: [str]) {
let config = parse_config(args);
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
log_config(config);
run_tests(config);
}
fn parse_config(args: [str]) -> config {
2011-07-27 14:19:39 +02:00
let opts =
2011-09-02 15:34:58 -07:00
[getopts::reqopt("compile-lib-path"), getopts::reqopt("run-lib-path"),
getopts::reqopt("rustc-path"), getopts::reqopt("src-base"),
getopts::reqopt("build-base"), getopts::reqopt("stage-id"),
getopts::reqopt("mode"), getopts::optflag("ignored"),
getopts::optopt("runtool"), getopts::optopt("rustcflags"),
getopts::optflag("verbose")];
2011-07-27 14:19:39 +02:00
2011-08-15 16:38:23 -07:00
check (vec::is_not_empty(args));
let args_ = vec::tail(args);
2011-07-27 14:19:39 +02:00
let match =
2011-08-11 23:27:32 -07:00
alt getopts::getopts(args_, opts) {
ok(m) { m }
err(f) { fail getopts::fail_str(f) }
2011-07-27 14:19:39 +02:00
};
2011-09-02 15:34:58 -07:00
ret {compile_lib_path: getopts::opt_str(match, "compile-lib-path"),
run_lib_path: getopts::opt_str(match, "run-lib-path"),
rustc_path: getopts::opt_str(match, "rustc-path"),
src_base: getopts::opt_str(match, "src-base"),
build_base: getopts::opt_str(match, "build-base"),
stage_id: getopts::opt_str(match, "stage-id"),
mode: str_mode(getopts::opt_str(match, "mode")),
run_ignored: getopts::opt_present(match, "ignored"),
2011-07-27 14:19:39 +02:00
filter:
2011-08-15 16:38:23 -07:00
if vec::len(match.free) > 0u {
option::some(match.free[0])
2011-07-27 14:19:39 +02:00
} else { option::none },
2011-09-02 15:34:58 -07:00
runtool: getopts::opt_maybe_str(match, "runtool"),
rustcflags: getopts::opt_maybe_str(match, "rustcflags"),
verbose: getopts::opt_present(match, "verbose")};
2011-07-27 14:19:39 +02:00
}
fn log_config(config: config) {
2011-07-27 14:19:39 +02:00
let c = config;
logv(c, #fmt["configuration:"]);
2011-09-02 15:34:58 -07:00
logv(c, #fmt["compile_lib_path: %s", config.compile_lib_path]);
logv(c, #fmt["run_lib_path: %s", config.run_lib_path]);
logv(c, #fmt["rustc_path: %s", config.rustc_path]);
logv(c, #fmt["src_base: %s", config.src_base]);
logv(c, #fmt["build_base: %s", config.build_base]);
logv(c, #fmt["stage_id: %s", config.stage_id]);
logv(c, #fmt["mode: %s", mode_str(config.mode)]);
logv(c, #fmt["run_ignored: %b", config.run_ignored]);
logv(c, #fmt["filter: %s", opt_str(config.filter)]);
logv(c, #fmt["runtool: %s", opt_str(config.runtool)]);
logv(c, #fmt["rustcflags: %s", opt_str(config.rustcflags)]);
logv(c, #fmt["verbose: %b", config.verbose]);
logv(c, #fmt["\n"]);
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
}
2011-09-02 15:34:58 -07:00
fn opt_str(maybestr: option::t<str>) -> str {
alt maybestr { option::some(s) { s } option::none. { "(none)" } }
}
fn str_opt(maybestr: str) -> option::t<str> {
2011-09-02 15:34:58 -07:00
if maybestr != "(none)" { option::some(maybestr) } else { option::none }
}
fn str_mode(s: str) -> mode {
alt s {
2011-09-02 15:34:58 -07:00
"compile-fail" { mode_compile_fail }
"run-fail" { mode_run_fail }
"run-pass" { mode_run_pass }
"pretty" { mode_pretty }
_ { fail "invalid mode" }
}
}
2011-09-02 15:34:58 -07:00
fn mode_str(mode: mode) -> str {
2011-07-27 14:19:39 +02:00
alt mode {
2011-09-02 15:34:58 -07:00
mode_compile_fail. { "compile-fail" }
mode_run_fail. { "run-fail" }
mode_run_pass. { "run-pass" }
mode_pretty. { "pretty" }
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
}
}
fn run_tests(config: config) {
2011-07-27 14:19:39 +02:00
let opts = test_opts(config);
let cx = {config: config, procsrv: procsrv::mk()};
let tests = make_tests(cx);
let res = test::run_tests_console_(opts, tests.tests, tests.to_task);
procsrv::close(cx.procsrv);
if !res { fail "Some tests failed"; }
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
}
fn test_opts(config: config) -> test::test_opts {
2011-09-02 15:34:58 -07:00
{filter:
alt config.filter {
option::some(s) { option::some(s) }
option::none. { option::none }
},
run_ignored: config.run_ignored}
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
}
type tests_and_conv_fn = {
tests: [test::test_desc<fn@()>],
to_task: fn@(fn@()) -> test::joinable
};
fn make_tests(cx: cx) -> tests_and_conv_fn {
#debug("making tests from %s", cx.config.src_base);
let configport = port::<[u8]>();
let tests = [];
2011-09-02 15:34:58 -07:00
for file: str in fs::list_dir(cx.config.src_base) {
let file = file;
#debug("inspecting file %s", file);
if is_test(cx.config, file) {
tests += [make_test(cx, file, configport)];
}
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
}
2011-07-27 14:19:39 +02:00
ret {tests: tests, to_task: bind closure_to_task(cx, configport, _)};
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
}
fn is_test(config: config, testfile: str) -> bool {
// Pretty-printer does not work with .rc files yet
2011-09-02 15:34:58 -07:00
let valid_extensions =
alt config.mode { mode_pretty. { [".rs"] } _ { [".rc", ".rs"] } };
let invalid_prefixes = [".", "#", "~"];
let name = fs::basename(testfile);
let valid = false;
for ext in valid_extensions {
if str::ends_with(name, ext) { valid = true; }
}
for pre in invalid_prefixes {
if str::starts_with(name, pre) { valid = false; }
}
ret valid;
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
}
fn make_test(cx: cx, testfile: str, configport: port<[u8]>) ->
test::test_desc<fn@()> {
{name: make_test_name(cx.config, testfile),
fn: make_test_closure(testfile, chan(configport)),
ignore: header::is_test_ignored(cx.config, testfile),
should_fail: false}
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
}
fn make_test_name(config: config, testfile: str) -> str {
#fmt["[%s] %s", mode_str(config.mode), testfile]
}
fn make_test_closure(testfile: str,
configchan: chan<[u8]>) -> test::test_fn<fn@()> {
bind send_config(testfile, configchan)
}
2011-09-02 15:34:58 -07:00
fn send_config(testfile: str, configchan: chan<[u8]>) {
send(configchan, str::bytes(testfile));
}
fn closure_to_task(cx: cx, configport: port<[u8]>, testfn: fn@()) ->
test::joinable {
testfn();
let testfile = recv(configport);
2012-01-04 21:14:53 -08:00
let (config, chan) = (cx.config, cx.procsrv.chan);
ret task::spawn_joinable {||
run_test_task(config, chan, testfile);
};
2011-07-27 14:19:39 +02:00
}
2012-01-04 21:14:53 -08:00
fn run_test_task(config: common::config,
procsrv_chan: procsrv::reqchan,
testfile: [u8]) {
test::configure_test_task();
2011-07-27 14:19:39 +02:00
let procsrv = procsrv::from_chan(procsrv_chan);
let cx = {config: config, procsrv: procsrv};
2012-01-04 21:14:53 -08:00
runtest::run(cx, copy testfile);
The Big Test Suite Overhaul This replaces the make-based test runner with a set of Rust-based test runners. I believe that all existing functionality has been preserved. The primary objective is to dogfood the Rust test framework. A few main things happen here: 1) The run-pass/lib-* tests are all moved into src/test/stdtest. This is a standalone test crate intended for all standard library tests. It compiles to build/test/stdtest.stageN. 2) rustc now compiles into yet another build artifact, this one a test runner that runs any tests contained directly in the rustc crate. This allows much more fine-grained unit testing of the compiler. It compiles to build/test/rustctest.stageN. 3) There is a new custom test runner crate at src/test/compiletest that reproduces all the functionality for running the compile-fail, run-fail, run-pass and bench tests while integrating with Rust's test framework. It compiles to build/test/compiletest.stageN. 4) The build rules have been completely changed to use the new test runners, while also being less redundant, following the example of the recent stageN.mk rewrite. It adds two new features to the cfail/rfail/rpass/bench tests: 1) Tests can specify multiple 'error-pattern' directives which must be satisfied in order. 2) Tests can specify a 'compile-flags' directive which will make the test runner provide additional command line arguments to rustc. There are some downsides, the primary being that Rust has to be functioning pretty well just to run _any_ tests, which I imagine will be the source of some frustration when the entire test suite breaks. Will also cause some headaches during porting. Not having individual make rules, each rpass, etc test no longer remembers between runs whether it completed successfully. As a result, it's not possible to incrementally fix multiple tests by just running 'make check', fixing a test, and repeating without re-running all the tests contained in the test runner. Instead you can filter just the tests you want to run by using the TESTNAME environment variable. This also dispenses with the ability to run stage0 tests, but they tended to be broken more often than not anyway.
2011-07-12 19:01:09 -07:00
}
// Local Variables:
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: