rust/src/libsync/arc.rs

1075 lines
33 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
* Concurrency-enabled mechanisms for sharing mutable and/or immutable state
* between tasks.
*
* # Example
*
* In this example, a large vector of floats is shared between several tasks.
* With simple pipes, without Arc, a copy would have to be made for each task.
*
* ```rust
* use sync::Arc;
2013-12-22 15:31:37 -06:00
* use std::{rand, vec};
*
2013-12-22 15:31:37 -06:00
* let numbers = vec::from_fn(100, |i| (i as f32) * rand::random());
* let shared_numbers = Arc::new(numbers);
*
* for _ in range(0, 10) {
* let (port, chan) = Chan::new();
* chan.send(shared_numbers.clone());
*
2014-01-26 22:13:24 -06:00
* spawn(proc() {
2013-12-22 15:31:37 -06:00
* let shared_numbers = port.recv();
* let local_numbers = shared_numbers.get();
*
* // Work with the local numbers
2014-01-26 22:13:24 -06:00
* });
* }
* ```
*/
#[allow(missing_doc, dead_code)];
use sync;
use sync::{Mutex, RWLock};
use std::cast;
use std::kinds::marker;
use std::sync::arc::UnsafeArc;
use std::task;
2012-08-13 18:45:17 -05:00
/// As sync::condvar, a mechanism for unlock-and-descheduling and signaling.
pub struct Condvar<'a> {
2013-07-02 12:37:19 -05:00
priv is_mutex: bool,
2013-12-21 22:10:45 -06:00
priv failed: &'a bool,
priv cond: &'a sync::Condvar<'a>
}
2012-08-13 18:45:17 -05:00
impl<'a> Condvar<'a> {
/// Atomically exit the associated Arc and block until a signal is sent.
#[inline]
pub fn wait(&self) { self.wait_on(0) }
/**
* Atomically exit the associated Arc and block on a specified condvar
* until a signal is sent on that same condvar (as sync::cond.wait_on).
*
* wait() is equivalent to wait_on(0).
*/
#[inline]
pub fn wait_on(&self, condvar_id: uint) {
2013-03-28 20:39:09 -05:00
assert!(!*self.failed);
self.cond.wait_on(condvar_id);
2012-08-13 18:45:17 -05:00
// This is why we need to wrap sync::condvar.
check_poison(self.is_mutex, *self.failed);
}
2012-08-13 18:45:17 -05:00
/// Wake up a blocked task. Returns false if there was no blocked task.
#[inline]
pub fn signal(&self) -> bool { self.signal_on(0) }
/**
* Wake up a blocked task on a specified condvar (as
* sync::cond.signal_on). Returns false if there was no blocked task.
*/
#[inline]
pub fn signal_on(&self, condvar_id: uint) -> bool {
2013-03-28 20:39:09 -05:00
assert!(!*self.failed);
self.cond.signal_on(condvar_id)
2012-08-13 18:45:17 -05:00
}
2012-08-13 18:45:17 -05:00
/// Wake up all blocked tasks. Returns the number of tasks woken.
#[inline]
pub fn broadcast(&self) -> uint { self.broadcast_on(0) }
/**
* Wake up all blocked tasks on a specified condvar (as
2013-06-06 02:38:41 -05:00
* sync::cond.broadcast_on). Returns the number of tasks woken.
*/
#[inline]
pub fn broadcast_on(&self, condvar_id: uint) -> uint {
2013-03-28 20:39:09 -05:00
assert!(!*self.failed);
self.cond.broadcast_on(condvar_id)
2012-08-13 18:45:17 -05:00
}
}
/****************************************************************************
* Immutable Arc
****************************************************************************/
/// An atomically reference counted wrapper for shared immutable state.
pub struct Arc<T> { priv x: UnsafeArc<T> }
/**
* Access the underlying data in an atomically reference counted
* wrapper.
*/
impl<T:Freeze+Send> Arc<T> {
/// Create an atomically reference counted wrapper.
#[inline]
pub fn new(data: T) -> Arc<T> {
Arc { x: UnsafeArc::new(data) }
}
#[inline]
pub fn get<'a>(&'a self) -> &'a T {
unsafe { &*self.x.get_immut() }
}
}
impl<T:Freeze + Send> Clone for Arc<T> {
/**
* Duplicate an atomically reference counted wrapper.
*
* The resulting two `arc` objects will point to the same underlying data
* object. However, one of the `arc` objects can be sent to another task,
* allowing them to share the underlying data.
*/
2013-10-24 15:21:49 -05:00
#[inline]
fn clone(&self) -> Arc<T> {
Arc { x: self.x.clone() }
2012-11-26 18:12:47 -06:00
}
}
/****************************************************************************
* Mutex protected Arc (unsafe)
****************************************************************************/
#[doc(hidden)]
struct MutexArcInner<T> { lock: Mutex, failed: bool, data: T }
/// An Arc with mutable data protected by a blocking mutex.
pub struct MutexArc<T> {
priv x: UnsafeArc<MutexArcInner<T>>,
priv marker: marker::NoFreeze,
}
impl<T:Send> Clone for MutexArc<T> {
/// Duplicate a mutex-protected Arc. See arc::clone for more details.
2013-10-24 15:21:49 -05:00
#[inline]
fn clone(&self) -> MutexArc<T> {
// NB: Cloning the underlying mutex is not necessary. Its reference
// count would be exactly the same as the shared state's.
MutexArc { x: self.x.clone(),
marker: marker::NoFreeze, }
}
2012-11-26 18:12:47 -06:00
}
impl<T:Send> MutexArc<T> {
/// Create a mutex-protected Arc with the supplied data.
pub fn new(user_data: T) -> MutexArc<T> {
MutexArc::new_with_condvars(user_data, 1)
}
/**
* Create a mutex-protected Arc with the supplied data and a specified number
* of condvars (as sync::Mutex::new_with_condvars).
*/
2013-07-22 16:43:30 -05:00
pub fn new_with_condvars(user_data: T, num_condvars: uint) -> MutexArc<T> {
let data = MutexArcInner {
lock: Mutex::new_with_condvars(num_condvars),
failed: false, data: user_data
};
MutexArc { x: UnsafeArc::new(data),
marker: marker::NoFreeze, }
}
/**
* Access the underlying mutable data with mutual exclusion from other
* tasks. The argument closure will be run with the mutex locked; all
* other tasks wishing to access the data will block until the closure
* finishes running.
*
* The reason this function is 'unsafe' is because it is possible to
* construct a circular reference among multiple Arcs by mutating the
* underlying data. This creates potential for deadlock, but worse, this
2013-09-04 02:14:56 -05:00
* will guarantee a memory leak of all involved Arcs. Using MutexArcs
* inside of other Arcs is safe in absence of circular references.
*
2013-09-04 02:14:56 -05:00
* If you wish to nest MutexArcs, one strategy for ensuring safety at
* runtime is to add a "nesting level counter" inside the stored data, and
* when traversing the arcs, assert that they monotonically decrease.
*
* # Failure
*
* Failing while inside the Arc will unlock the Arc while unwinding, so
* that other tasks won't block forever. It will also poison the Arc:
* any tasks that subsequently try to access it (including those already
* blocked on the mutex) will also fail immediately.
*/
#[inline]
pub unsafe fn unsafe_access<U>(&self, blk: |x: &mut T| -> U) -> U {
2013-09-03 19:24:04 -05:00
let state = self.x.get();
// Borrowck would complain about this if the function were
// not already unsafe. See borrow_rwlock, far below.
(&(*state).lock).lock(|| {
2013-09-03 19:24:04 -05:00
check_poison(true, (*state).failed);
let _z = PoisonOnFail::new(&mut (*state).failed);
2013-09-03 19:24:04 -05:00
blk(&mut (*state).data)
})
}
/// As unsafe_access(), but with a condvar, as sync::mutex.lock_cond().
#[inline]
pub unsafe fn unsafe_access_cond<U>(&self,
blk: |x: &mut T, c: &Condvar| -> U)
-> U {
2013-09-03 19:24:04 -05:00
let state = self.x.get();
(&(*state).lock).lock_cond(|cond| {
2013-09-03 19:24:04 -05:00
check_poison(true, (*state).failed);
let _z = PoisonOnFail::new(&mut (*state).failed);
2013-09-03 19:24:04 -05:00
blk(&mut (*state).data,
&Condvar {is_mutex: true,
2013-12-21 22:10:45 -06:00
failed: &(*state).failed,
2013-09-03 19:24:04 -05:00
cond: cond })
})
}
}
impl<T:Freeze + Send> MutexArc<T> {
/**
* As unsafe_access.
*
* The difference between access and unsafe_access is that the former
2013-09-03 19:24:04 -05:00
* forbids mutexes to be nested. While unsafe_access can be used on
* MutexArcs without freezable interiors, this safe version of access
* requires the Freeze bound, which prohibits access on MutexArcs which
* might contain nested MutexArcs inside.
*
2013-09-04 02:14:56 -05:00
* The purpose of this is to offer a safe implementation of MutexArc to be
2013-12-14 23:34:14 -06:00
* used instead of RWArc in cases where no readers are needed and slightly
2013-09-04 02:14:56 -05:00
* better performance is required.
*
* Both methods have the same failure behaviour as unsafe_access and
* unsafe_access_cond.
*/
#[inline]
pub fn access<U>(&self, blk: |x: &mut T| -> U) -> U {
2013-09-03 19:24:04 -05:00
unsafe { self.unsafe_access(blk) }
}
2013-09-03 19:24:04 -05:00
/// As unsafe_access_cond but safe and Freeze.
#[inline]
pub fn access_cond<U>(&self,
blk: |x: &mut T, c: &Condvar| -> U)
-> U {
2013-09-03 19:24:04 -05:00
unsafe { self.unsafe_access_cond(blk) }
}
}
// Common code for {mutex.access,rwlock.write}{,_cond}.
#[inline]
#[doc(hidden)]
fn check_poison(is_mutex: bool, failed: bool) {
if failed {
if is_mutex {
fail!("Poisoned MutexArc - another task failed inside!");
} else {
fail!("Poisoned rw_arc - another task failed inside!");
}
}
}
#[doc(hidden)]
2012-08-26 20:28:36 -05:00
struct PoisonOnFail {
flag: *mut bool,
failed: bool,
2012-11-13 20:38:18 -06:00
}
impl Drop for PoisonOnFail {
2013-09-16 20:18:07 -05:00
fn drop(&mut self) {
unsafe {
2013-03-28 20:39:09 -05:00
/* assert!(!*self.failed);
-- might be false in case of cond.wait() */
if !self.failed && task::failing() {
*self.flag = true;
}
}
2012-08-13 18:45:17 -05:00
}
}
impl PoisonOnFail {
fn new<'a>(flag: &'a mut bool) -> PoisonOnFail {
PoisonOnFail {
flag: flag,
failed: task::failing()
}
2012-09-04 19:22:09 -05:00
}
}
/****************************************************************************
* R/W lock protected Arc
****************************************************************************/
#[doc(hidden)]
struct RWArcInner<T> { lock: RWLock, failed: bool, data: T }
/**
* A dual-mode Arc protected by a reader-writer lock. The data can be accessed
* mutably or immutably, and immutably-accessing tasks may run concurrently.
*
* Unlike mutex_arcs, rw_arcs are safe, because they cannot be nested.
*/
pub struct RWArc<T> {
priv x: UnsafeArc<RWArcInner<T>>,
priv marker: marker::NoFreeze,
}
impl<T:Freeze + Send> Clone for RWArc<T> {
/// Duplicate a rwlock-protected Arc. See arc::clone for more details.
2013-10-24 15:21:49 -05:00
#[inline]
fn clone(&self) -> RWArc<T> {
RWArc { x: self.x.clone(),
marker: marker::NoFreeze, }
}
2012-11-26 18:12:47 -06:00
}
impl<T:Freeze + Send> RWArc<T> {
/// Create a reader/writer Arc with the supplied data.
pub fn new(user_data: T) -> RWArc<T> {
RWArc::new_with_condvars(user_data, 1)
}
/**
* Create a reader/writer Arc with the supplied data and a specified number
* of condvars (as sync::RWLock::new_with_condvars).
*/
pub fn new_with_condvars(user_data: T, num_condvars: uint) -> RWArc<T> {
2013-07-22 16:43:30 -05:00
let data = RWArcInner {
lock: RWLock::new_with_condvars(num_condvars),
failed: false, data: user_data
};
RWArc { x: UnsafeArc::new(data),
marker: marker::NoFreeze, }
}
/**
* Access the underlying data mutably. Locks the rwlock in write mode;
* other readers and writers will block.
*
* # Failure
*
* Failing while inside the Arc will unlock the Arc while unwinding, so
* that other tasks won't block forever. As MutexArc.access, it will also
* poison the Arc, so subsequent readers and writers will both also fail.
*/
#[inline]
pub fn write<U>(&self, blk: |x: &mut T| -> U) -> U {
unsafe {
let state = self.x.get();
(*borrow_rwlock(state)).write(|| {
check_poison(false, (*state).failed);
let _z = PoisonOnFail::new(&mut (*state).failed);
blk(&mut (*state).data)
})
}
}
/// As write(), but with a condvar, as sync::rwlock.write_cond().
#[inline]
pub fn write_cond<U>(&self,
blk: |x: &mut T, c: &Condvar| -> U)
-> U {
unsafe {
let state = self.x.get();
(*borrow_rwlock(state)).write_cond(|cond| {
check_poison(false, (*state).failed);
let _z = PoisonOnFail::new(&mut (*state).failed);
blk(&mut (*state).data,
&Condvar {is_mutex: false,
2013-12-21 22:10:45 -06:00
failed: &(*state).failed,
cond: cond})
})
}
}
/**
* Access the underlying data immutably. May run concurrently with other
* reading tasks.
*
* # Failure
*
* Failing will unlock the Arc while unwinding. However, unlike all other
* access modes, this will not poison the Arc.
*/
pub fn read<U>(&self, blk: |x: &T| -> U) -> U {
unsafe {
let state = self.x.get();
(*state).lock.read(|| {
check_poison(false, (*state).failed);
blk(&(*state).data)
})
}
}
/**
* As write(), but with the ability to atomically 'downgrade' the lock.
2012-08-26 20:28:36 -05:00
* See sync::rwlock.write_downgrade(). The RWWriteMode token must be used
* to obtain the &mut T, and can be transformed into a RWReadMode token by
* calling downgrade(), after which a &T can be obtained instead.
*
* # Example
*
* ```rust
* use sync::RWArc;
2013-12-22 15:31:37 -06:00
*
* let arc = RWArc::new(1);
* arc.write_downgrade(|mut write_token| {
* write_token.write_cond(|state, condvar| {
* // ... exclusive access with mutable state ...
* });
* let read_token = arc.downgrade(write_token);
2013-12-22 15:31:37 -06:00
* read_token.read(|state| {
* // ... shared access with immutable state ...
* });
* })
* ```
*/
pub fn write_downgrade<U>(&self, blk: |v: RWWriteMode<T>| -> U) -> U {
unsafe {
let state = self.x.get();
(*borrow_rwlock(state)).write_downgrade(|write_mode| {
check_poison(false, (*state).failed);
blk(RWWriteMode {
data: &mut (*state).data,
token: write_mode,
poison: PoisonOnFail::new(&mut (*state).failed)
})
})
}
}
/// To be called inside of the write_downgrade block.
pub fn downgrade<'a>(&self, token: RWWriteMode<'a, T>)
-> RWReadMode<'a, T> {
unsafe {
// The rwlock should assert that the token belongs to us for us.
let state = self.x.get();
let RWWriteMode {
data: data,
token: t,
poison: _poison
} = token;
// Let readers in
let new_token = (*state).lock.downgrade(t);
// Whatever region the input reference had, it will be safe to use
// the same region for the output reference. (The only 'unsafe' part
// of this cast is removing the mutability.)
let new_data = data;
// Downgrade ensured the token belonged to us. Just a sanity check.
assert!((&(*state).data as *T as uint) == (new_data as *mut T as uint));
// Produce new token
RWReadMode {
data: new_data,
token: new_token,
}
}
}
}
// Borrowck rightly complains about immutably aliasing the rwlock in order to
// lock it. This wraps the unsafety, with the justification that the 'lock'
// field is never overwritten; only 'failed' and 'data'.
#[doc(hidden)]
fn borrow_rwlock<T:Freeze + Send>(state: *mut RWArcInner<T>) -> *RWLock {
2013-06-23 22:44:11 -05:00
unsafe { cast::transmute(&(*state).lock) }
}
/// The "write permission" token used for RWArc.write_downgrade().
pub struct RWWriteMode<'a, T> {
priv data: &'a mut T,
priv token: sync::RWLockWriteMode<'a>,
priv poison: PoisonOnFail,
}
/// The "read permission" token used for RWArc.write_downgrade().
pub struct RWReadMode<'a, T> {
priv data: &'a T,
priv token: sync::RWLockReadMode<'a>,
}
impl<'a, T:Freeze + Send> RWWriteMode<'a, T> {
/// Access the pre-downgrade RWArc in write mode.
pub fn write<U>(&mut self, blk: |x: &mut T| -> U) -> U {
match *self {
RWWriteMode {
2013-03-15 14:24:24 -05:00
data: &ref mut data,
token: ref token,
poison: _
} => {
token.write(|| blk(data))
}
}
}
/// Access the pre-downgrade RWArc in write mode with a condvar.
pub fn write_cond<U>(&mut self,
blk: |x: &mut T, c: &Condvar| -> U)
-> U {
match *self {
RWWriteMode {
2013-03-15 14:24:24 -05:00
data: &ref mut data,
token: ref token,
poison: ref poison
} => {
token.write_cond(|cond| {
unsafe {
let cvar = Condvar {
is_mutex: false,
2013-12-21 22:10:45 -06:00
failed: &*poison.flag,
cond: cond
};
2013-03-15 14:24:24 -05:00
blk(data, &cvar)
}
})
}
}
}
}
impl<'a, T:Freeze + Send> RWReadMode<'a, T> {
/// Access the post-downgrade rwlock in read mode.
pub fn read<U>(&self, blk: |x: &T| -> U) -> U {
match *self {
RWReadMode {
data: data,
token: ref token
} => {
token.read(|| blk(data))
}
}
}
}
2013-12-30 18:17:35 -06:00
/****************************************************************************
* Copy-on-write Arc
****************************************************************************/
pub struct CowArc<T> { priv x: UnsafeArc<T> }
/// A Copy-on-write Arc functions the same way as an `arc` except it allows
/// mutation of the contents if there is only a single reference to
/// the data. If there are multiple references the data is automatically
/// cloned and the task modifies the cloned data in place of the shared data.
2013-12-31 15:14:58 -06:00
impl<T:Clone+Send+Freeze> CowArc<T> {
2013-12-30 18:17:35 -06:00
/// Create a copy-on-write atomically reference counted wrapper
#[inline]
pub fn new(data: T) -> CowArc<T> {
CowArc { x: UnsafeArc::new(data) }
}
#[inline]
pub fn get<'a>(&'a self) -> &'a T {
unsafe { &*self.x.get_immut() }
}
/// get a mutable reference to the contents. If there are more then one
/// reference to the contents of the `CowArc` will be cloned
/// and this reference updated to point to the cloned data.
#[inline]
pub fn get_mut<'a>(&'a mut self) -> &'a mut T {
if !self.x.is_owned() {
*self = CowArc::new(self.get().clone())
}
unsafe { &mut *self.x.get() }
}
}
2013-12-31 15:14:58 -06:00
impl<T:Clone+Send+Freeze> Clone for CowArc<T> {
2013-12-30 18:17:35 -06:00
/// Duplicate a Copy-on-write Arc. See arc::clone for more details.
#[inline]
fn clone(&self) -> CowArc<T> {
CowArc { x: self.x.clone() }
}
}
/****************************************************************************
* Tests
****************************************************************************/
#[cfg(test)]
mod tests {
use super::{Arc, RWArc, MutexArc, CowArc};
2012-12-28 14:46:08 -06:00
use std::task;
#[test]
fn manually_share_arc() {
let v = ~[1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
let arc_v = Arc::new(v);
2013-12-05 20:19:06 -06:00
let (p, c) = Chan::new();
2014-01-26 22:13:24 -06:00
task::spawn(proc() {
let arc_v: Arc<~[int]> = p.recv();
let v = arc_v.get().clone();
assert_eq!(v[3], 4);
2014-01-26 22:13:24 -06:00
});
c.send(arc_v.clone());
assert_eq!(arc_v.get()[2], 3);
assert_eq!(arc_v.get()[4], 5);
info!("{:?}", arc_v);
}
2012-08-13 18:45:17 -05:00
#[test]
fn test_mutex_arc_condvar() {
let arc = ~MutexArc::new(false);
let arc2 = ~arc.clone();
2013-12-05 20:19:06 -06:00
let (p,c) = Chan::new();
2014-01-26 22:13:24 -06:00
task::spawn(proc() {
// wait until parent gets in
p.recv();
arc2.access_cond(|state, cond| {
*state = true;
cond.signal();
})
2014-01-26 22:13:24 -06:00
});
arc.access_cond(|state, cond| {
2013-12-15 20:17:43 -06:00
c.send(());
assert!(!*state);
while !*state {
cond.wait();
}
})
}
#[test] #[should_fail]
fn test_arc_condvar_poison() {
let arc = ~MutexArc::new(1);
let arc2 = ~arc.clone();
2013-12-05 20:19:06 -06:00
let (p, c) = Chan::new();
2014-01-26 22:13:24 -06:00
spawn(proc() {
let _ = p.recv();
arc2.access_cond(|one, cond| {
cond.signal();
// Parent should fail when it wakes up.
assert_eq!(*one, 0);
})
2014-01-26 22:13:24 -06:00
});
arc.access_cond(|one, cond| {
c.send(());
while *one == 1 {
cond.wait();
}
})
}
#[test] #[should_fail]
fn test_mutex_arc_poison() {
let arc = ~MutexArc::new(1);
let arc2 = ~arc.clone();
2014-01-30 16:28:20 -06:00
let _ = task::try(proc() {
arc2.access(|one| {
assert_eq!(*one, 2);
})
2014-01-26 22:13:24 -06:00
});
arc.access(|one| {
assert_eq!(*one, 1);
})
}
#[test]
fn test_unsafe_mutex_arc_nested() {
unsafe {
// Tests nested mutexes and access
// to underlaying data.
let arc = ~MutexArc::new(1);
let arc2 = ~MutexArc::new(*arc);
2014-01-26 22:13:24 -06:00
task::spawn(proc() {
(*arc2).unsafe_access(|mutex| {
(*mutex).access(|one| {
assert!(*one == 1);
})
})
2014-01-26 22:13:24 -06:00
});
}
}
#[test]
fn test_mutex_arc_access_in_unwind() {
let arc = MutexArc::new(1i);
let arc2 = arc.clone();
2014-01-30 16:28:20 -06:00
let _ = task::try::<()>(proc() {
struct Unwinder {
i: MutexArc<int>
}
impl Drop for Unwinder {
fn drop(&mut self) {
self.i.access(|num| *num += 1);
}
}
let _u = Unwinder { i: arc2 };
fail!();
});
assert_eq!(2, arc.access(|n| *n));
}
2013-08-19 17:40:37 -05:00
#[test] #[should_fail]
fn test_rw_arc_poison_wr() {
let arc = RWArc::new(1);
let arc2 = arc.clone();
2014-01-30 16:28:20 -06:00
let _ = task::try(proc() {
arc2.write(|one| {
assert_eq!(*one, 2);
})
2014-01-26 22:13:24 -06:00
});
arc.read(|one| {
assert_eq!(*one, 1);
})
}
2013-08-19 17:40:37 -05:00
#[test] #[should_fail]
fn test_rw_arc_poison_ww() {
let arc = RWArc::new(1);
let arc2 = arc.clone();
2014-01-30 16:28:20 -06:00
let _ = task::try(proc() {
arc2.write(|one| {
assert_eq!(*one, 2);
})
2014-01-26 22:13:24 -06:00
});
arc.write(|one| {
assert_eq!(*one, 1);
})
}
2013-08-19 17:40:37 -05:00
#[test] #[should_fail]
fn test_rw_arc_poison_dw() {
let arc = RWArc::new(1);
let arc2 = arc.clone();
2014-01-30 16:28:20 -06:00
let _ = task::try(proc() {
arc2.write_downgrade(|mut write_mode| {
write_mode.write(|one| {
assert_eq!(*one, 2);
})
})
2014-01-26 22:13:24 -06:00
});
arc.write(|one| {
assert_eq!(*one, 1);
})
}
2013-08-19 17:40:37 -05:00
#[test]
fn test_rw_arc_no_poison_rr() {
let arc = RWArc::new(1);
let arc2 = arc.clone();
2014-01-30 16:28:20 -06:00
let _ = task::try(proc() {
arc2.read(|one| {
assert_eq!(*one, 2);
})
2014-01-26 22:13:24 -06:00
});
arc.read(|one| {
assert_eq!(*one, 1);
})
}
2013-08-19 17:40:37 -05:00
#[test]
fn test_rw_arc_no_poison_rw() {
let arc = RWArc::new(1);
let arc2 = arc.clone();
2014-01-30 16:28:20 -06:00
let _ = task::try(proc() {
arc2.read(|one| {
assert_eq!(*one, 2);
})
2014-01-26 22:13:24 -06:00
});
arc.write(|one| {
assert_eq!(*one, 1);
})
}
2013-08-19 17:40:37 -05:00
#[test]
fn test_rw_arc_no_poison_dr() {
let arc = RWArc::new(1);
let arc2 = arc.clone();
2014-01-30 16:28:20 -06:00
let _ = task::try(proc() {
arc2.write_downgrade(|write_mode| {
2013-02-15 01:30:30 -06:00
let read_mode = arc2.downgrade(write_mode);
read_mode.read(|one| {
assert_eq!(*one, 2);
})
})
2014-01-26 22:13:24 -06:00
});
arc.write(|one| {
assert_eq!(*one, 1);
})
}
#[test]
fn test_rw_arc() {
let arc = RWArc::new(0);
let arc2 = arc.clone();
2013-12-05 20:19:06 -06:00
let (p, c) = Chan::new();
2014-01-26 22:13:24 -06:00
task::spawn(proc() {
arc2.write(|num| {
for _ in range(0, 10) {
let tmp = *num;
*num = -1;
task::deschedule();
*num = tmp + 1;
}
c.send(());
})
2014-01-26 22:13:24 -06:00
});
// Readers try to catch the writer in the act
let mut children = ~[];
for _ in range(0, 5) {
let arc3 = arc.clone();
2013-05-07 19:57:58 -05:00
let mut builder = task::task();
children.push(builder.future_result());
2014-01-26 22:13:24 -06:00
builder.spawn(proc() {
arc3.read(|num| {
2013-03-28 20:39:09 -05:00
assert!(*num >= 0);
})
2014-01-26 22:13:24 -06:00
});
}
// Wait for children to pass their asserts
2013-12-05 20:19:06 -06:00
for r in children.mut_iter() {
2014-01-30 16:28:20 -06:00
let _ = r.recv();
2013-05-07 19:57:58 -05:00
}
// Wait for writer to finish
p.recv();
arc.read(|num| {
assert_eq!(*num, 10);
})
}
#[test]
fn test_rw_arc_access_in_unwind() {
let arc = RWArc::new(1i);
let arc2 = arc.clone();
2014-01-30 16:28:20 -06:00
let _ = task::try::<()>(proc() {
struct Unwinder {
i: RWArc<int>
}
impl Drop for Unwinder {
fn drop(&mut self) {
self.i.write(|num| *num += 1);
}
}
let _u = Unwinder { i: arc2 };
fail!();
});
assert_eq!(2, arc.read(|n| *n));
}
#[test]
fn test_rw_downgrade() {
// (1) A downgrader gets in write mode and does cond.wait.
// (2) A writer gets in write mode, sets state to 42, and does signal.
// (3) Downgrader wakes, sets state to 31337.
// (4) tells writer and all other readers to contend as it downgrades.
// (5) Writer attempts to set state back to 42, while downgraded task
// and all reader tasks assert that it's 31337.
let arc = RWArc::new(0);
// Reader tasks
let mut reader_convos = ~[];
for _ in range(0, 10) {
2013-12-05 20:19:06 -06:00
let ((rp1, rc1), (rp2, rc2)) = (Chan::new(), Chan::new());
2013-02-15 01:30:30 -06:00
reader_convos.push((rc1, rp2));
let arcn = arc.clone();
2014-01-26 22:13:24 -06:00
task::spawn(proc() {
rp1.recv(); // wait for downgrader to give go-ahead
arcn.read(|state| {
assert_eq!(*state, 31337);
rc2.send(());
})
2014-01-26 22:13:24 -06:00
});
}
// Writer task
let arc2 = arc.clone();
2013-12-05 20:19:06 -06:00
let ((wp1, wc1), (wp2, wc2)) = (Chan::new(), Chan::new());
2014-01-26 22:13:24 -06:00
task::spawn(proc() {
wp1.recv();
arc2.write_cond(|state, cond| {
assert_eq!(*state, 0);
*state = 42;
cond.signal();
});
wp1.recv();
arc2.write(|state| {
// This shouldn't happen until after the downgrade read
// section, and all other readers, finish.
assert_eq!(*state, 31337);
*state = 42;
});
wc2.send(());
2014-01-26 22:13:24 -06:00
});
// Downgrader (us)
arc.write_downgrade(|mut write_mode| {
write_mode.write_cond(|state, cond| {
wc1.send(()); // send to another writer who will wake us up
while *state == 0 {
cond.wait();
}
assert_eq!(*state, 42);
*state = 31337;
// send to other readers
2013-12-05 20:19:06 -06:00
for &(ref mut rc, _) in reader_convos.mut_iter() {
rc.send(())
}
});
2013-02-15 01:30:30 -06:00
let read_mode = arc.downgrade(write_mode);
read_mode.read(|state| {
// complete handshake with other readers
2013-12-05 20:19:06 -06:00
for &(_, ref mut rp) in reader_convos.mut_iter() {
rp.recv()
}
wc1.send(()); // tell writer to try again
assert_eq!(*state, 31337);
});
});
wp2.recv(); // complete handshake with writer
}
2013-06-12 16:46:28 -05:00
#[cfg(test)]
fn test_rw_write_cond_downgrade_read_race_helper() {
// Tests that when a downgrader hands off the "reader cloud" lock
// because of a contending reader, a writer can't race to get it
// instead, which would result in readers_and_writers. This tests
// the sync module rather than this one, but it's here because an
// rwarc gives us extra shared state to help check for the race.
// If you want to see this test fail, go to sync.rs and replace the
// line in RWLock::write_cond() that looks like:
2013-06-12 16:46:28 -05:00
// "blk(&Condvar { order: opt_lock, ..*cond })"
// with just "blk(cond)".
let x = RWArc::new(true);
2013-12-05 20:19:06 -06:00
let (wp, wc) = Chan::new();
2013-06-12 16:46:28 -05:00
// writer task
let xw = x.clone();
2014-01-26 22:13:24 -06:00
task::spawn(proc() {
xw.write_cond(|state, c| {
2013-06-12 16:46:28 -05:00
wc.send(()); // tell downgrader it's ok to go
c.wait();
// The core of the test is here: the condvar reacquire path
// must involve order_lock, so that it cannot race with a reader
// trying to receive the "reader cloud lock hand-off".
*state = false;
})
2014-01-26 22:13:24 -06:00
});
2013-06-12 16:46:28 -05:00
wp.recv(); // wait for writer to get in
x.write_downgrade(|mut write_mode| {
write_mode.write_cond(|state, c| {
2013-06-12 16:46:28 -05:00
assert!(*state);
// make writer contend in the cond-reacquire path
c.signal();
});
2013-06-12 16:46:28 -05:00
// make a reader task to trigger the "reader cloud lock" handoff
let xr = x.clone();
2013-12-05 20:19:06 -06:00
let (rp, rc) = Chan::new();
2014-01-26 22:13:24 -06:00
task::spawn(proc() {
2013-06-12 16:46:28 -05:00
rc.send(());
xr.read(|_state| { })
2014-01-26 22:13:24 -06:00
});
2013-06-12 16:46:28 -05:00
rp.recv(); // wait for reader task to exist
let read_mode = x.downgrade(write_mode);
read_mode.read(|state| {
2013-06-12 16:46:28 -05:00
// if writer mistakenly got in, make sure it mutates state
// before we assert on it
for _ in range(0, 5) { task::deschedule(); }
2013-06-12 16:46:28 -05:00
// make sure writer didn't get in.
assert!(*state);
})
});
2013-06-12 16:46:28 -05:00
}
#[test]
fn test_rw_write_cond_downgrade_read_race() {
// Ideally the above test case would have deschedule statements in it that
2013-06-12 16:46:28 -05:00
// helped to expose the race nearly 100% of the time... but adding
// deschedules in the intuitively-right locations made it even less likely,
2013-06-12 16:46:28 -05:00
// and I wasn't sure why :( . This is a mediocre "next best" option.
for _ in range(0, 8) { test_rw_write_cond_downgrade_read_race_helper(); }
2013-06-12 16:46:28 -05:00
}
2013-12-30 18:17:35 -06:00
#[test]
fn test_cowarc_clone()
{
let cow0 = CowArc::new(75u);
let cow1 = cow0.clone();
let cow2 = cow1.clone();
assert!(75 == *cow0.get());
assert!(75 == *cow1.get());
assert!(75 == *cow2.get());
assert!(cow0.get() == cow1.get());
assert!(cow0.get() == cow2.get());
}
#[test]
fn test_cowarc_clone_get_mut()
{
let mut cow0 = CowArc::new(75u);
let mut cow1 = cow0.clone();
let mut cow2 = cow1.clone();
assert!(75 == *cow0.get_mut());
assert!(75 == *cow1.get_mut());
assert!(75 == *cow2.get_mut());
*cow0.get_mut() += 1;
*cow1.get_mut() += 2;
*cow2.get_mut() += 3;
assert!(76 == *cow0.get());
assert!(77 == *cow1.get());
assert!(78 == *cow2.get());
// none should point to the same backing memory
assert!(cow0.get() != cow1.get());
assert!(cow0.get() != cow2.get());
assert!(cow1.get() != cow2.get());
}
#[test]
fn test_cowarc_clone_get_mut2()
{
let mut cow0 = CowArc::new(75u);
let cow1 = cow0.clone();
let cow2 = cow1.clone();
assert!(75 == *cow0.get());
assert!(75 == *cow1.get());
assert!(75 == *cow2.get());
*cow0.get_mut() += 1;
assert!(76 == *cow0.get());
assert!(75 == *cow1.get());
assert!(75 == *cow2.get());
// cow1 and cow2 should share the same contents
// cow0 should have a unique reference
assert!(cow0.get() != cow1.get());
assert!(cow0.get() != cow2.get());
assert!(cow1.get() == cow2.get());
}
}