rust/src/librustc/middle/traits/util.rs

429 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::subst::{Subst, Substs, VecPerParamSpace};
use middle::infer::InferCtxt;
use middle::ty::{mod, Ty};
use std::collections::HashSet;
use std::fmt;
use std::rc::Rc;
use syntax::ast;
use syntax::codemap::Span;
use util::common::ErrorReported;
use util::ppaux::Repr;
use super::{Obligation, ObligationCause, PredicateObligation,
VtableImpl, VtableParam, VtableParamData, VtableImplData};
///////////////////////////////////////////////////////////////////////////
2014-12-11 03:35:51 -06:00
// `Elaboration` iterator
///////////////////////////////////////////////////////////////////////////
2014-12-11 03:35:51 -06:00
/// "Elaboration" is the process of identifying all the predicates that
/// are implied by a source predicate. Currently this basically means
/// walking the "supertraits" and other similar assumptions. For
/// example, if we know that `T : Ord`, the elaborator would deduce
/// that `T : PartialOrd` holds as well. Similarly, if we have `trait
/// Foo : 'static`, and we know that `T : Foo`, then we know that `T :
/// 'static`.
pub struct Elaborator<'cx, 'tcx:'cx> {
tcx: &'cx ty::ctxt<'tcx>,
stack: Vec<StackEntry<'tcx>>,
visited: HashSet<ty::Predicate<'tcx>>,
}
struct StackEntry<'tcx> {
position: uint,
predicates: Vec<ty::Predicate<'tcx>>,
}
pub fn elaborate_trait_ref<'cx, 'tcx>(
tcx: &'cx ty::ctxt<'tcx>,
trait_ref: Rc<ty::PolyTraitRef<'tcx>>)
-> Elaborator<'cx, 'tcx>
{
elaborate_predicates(tcx, vec![ty::Predicate::Trait(trait_ref)])
}
pub fn elaborate_trait_refs<'cx, 'tcx>(
tcx: &'cx ty::ctxt<'tcx>,
trait_refs: &[Rc<ty::PolyTraitRef<'tcx>>])
-> Elaborator<'cx, 'tcx>
{
let predicates = trait_refs.iter()
.map(|trait_ref| ty::Predicate::Trait((*trait_ref).clone()))
.collect();
elaborate_predicates(tcx, predicates)
}
pub fn elaborate_predicates<'cx, 'tcx>(
tcx: &'cx ty::ctxt<'tcx>,
predicates: Vec<ty::Predicate<'tcx>>)
-> Elaborator<'cx, 'tcx>
{
let visited: HashSet<ty::Predicate<'tcx>> =
predicates.iter()
.map(|b| (*b).clone())
.collect();
let entry = StackEntry { position: 0, predicates: predicates };
Elaborator { tcx: tcx, stack: vec![entry], visited: visited }
}
impl<'cx, 'tcx> Elaborator<'cx, 'tcx> {
fn push(&mut self, predicate: &ty::Predicate<'tcx>) {
match *predicate {
ty::Predicate::Trait(ref trait_ref) => {
let mut predicates =
ty::predicates_for_trait_ref(self.tcx, &**trait_ref);
// Only keep those bounds that we haven't already
// seen. This is necessary to prevent infinite
// recursion in some cases. One common case is when
// people define `trait Sized { }` rather than `trait
// Sized for Sized? { }`.
predicates.retain(|r| self.visited.insert((*r).clone()));
self.stack.push(StackEntry { position: 0,
predicates: predicates });
}
ty::Predicate::Equate(..) => {
}
ty::Predicate::RegionOutlives(..) |
ty::Predicate::TypeOutlives(..) => {
// Currently, we do not "elaborate" predicates like
// `'a : 'b` or `T : 'a`. We could conceivably do
// more here. For example,
//
// &'a int : 'b
//
// implies that
//
// 'a : 'b
//
// and we could get even more if we took WF
// constraints into account. For example,
//
// &'a &'b int : 'c
//
// implies that
//
// 'b : 'a
// 'a : 'c
}
}
}
}
impl<'cx, 'tcx> Iterator<ty::Predicate<'tcx>> for Elaborator<'cx, 'tcx> {
fn next(&mut self) -> Option<ty::Predicate<'tcx>> {
loop {
// Extract next item from top-most stack frame, if any.
let next_predicate = match self.stack.last_mut() {
None => {
// No more stack frames. Done.
return None;
}
Some(entry) => {
let p = entry.position;
if p < entry.predicates.len() {
// Still more predicates left in the top stack frame.
entry.position += 1;
let next_predicate =
entry.predicates[p].clone();
Some(next_predicate)
} else {
None
}
}
};
match next_predicate {
Some(next_predicate) => {
self.push(&next_predicate);
return Some(next_predicate);
}
None => {
// Top stack frame is exhausted, pop it.
self.stack.pop();
}
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// Supertrait iterator
2014-12-11 03:35:51 -06:00
///////////////////////////////////////////////////////////////////////////
2014-12-11 03:35:51 -06:00
/// A filter around the `Elaborator` that just yields up supertrait references,
/// not other kinds of predicates.
pub struct Supertraits<'cx, 'tcx:'cx> {
elaborator: Elaborator<'cx, 'tcx>,
}
pub fn supertraits<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>,
trait_ref: Rc<ty::PolyTraitRef<'tcx>>)
-> Supertraits<'cx, 'tcx>
{
let elaborator = elaborate_trait_ref(tcx, trait_ref);
Supertraits { elaborator: elaborator }
}
pub fn transitive_bounds<'cx, 'tcx>(tcx: &'cx ty::ctxt<'tcx>,
bounds: &[Rc<ty::PolyTraitRef<'tcx>>])
-> Supertraits<'cx, 'tcx>
{
let elaborator = elaborate_trait_refs(tcx, bounds);
Supertraits { elaborator: elaborator }
}
impl<'cx, 'tcx> Iterator<Rc<ty::PolyTraitRef<'tcx>>> for Supertraits<'cx, 'tcx> {
fn next(&mut self) -> Option<Rc<ty::PolyTraitRef<'tcx>>> {
loop {
match self.elaborator.next() {
None => {
return None;
}
Some(ty::Predicate::Trait(trait_ref)) => {
return Some(trait_ref);
}
Some(ty::Predicate::Equate(..)) |
Some(ty::Predicate::RegionOutlives(..)) |
Some(ty::Predicate::TypeOutlives(..)) => {
}
}
}
}
}
2014-12-11 03:35:51 -06:00
///////////////////////////////////////////////////////////////////////////
// Other
///////////////////////////////////////////////////////////////////////////
// determine the `self` type, using fresh variables for all variables
// declared on the impl declaration e.g., `impl<A,B> for Box<[(A,B)]>`
// would return ($0, $1) where $0 and $1 are freshly instantiated type
// variables.
pub fn fresh_substs_for_impl<'a, 'tcx>(infcx: &InferCtxt<'a, 'tcx>,
span: Span,
impl_def_id: ast::DefId)
-> Substs<'tcx>
{
let tcx = infcx.tcx;
let impl_generics = ty::lookup_item_type(tcx, impl_def_id).generics;
let input_substs = infcx.fresh_substs_for_generics(span, &impl_generics);
// Add substs for the associated types bound in the impl.
let ref items = tcx.impl_items.borrow()[impl_def_id];
let mut assoc_tys = Vec::new();
for item in items.iter() {
if let &ty::ImplOrTraitItemId::TypeTraitItemId(id) = item {
assoc_tys.push(tcx.tcache.borrow()[id].ty.subst(tcx, &input_substs));
}
}
input_substs.with_assoc_tys(assoc_tys)
}
impl<'tcx, N> fmt::Show for VtableImplData<'tcx, N> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "VtableImpl({})", self.impl_def_id)
}
}
impl<'tcx> fmt::Show for VtableParamData<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "VtableParam(...)")
}
}
/// See `super::obligations_for_generics`
pub fn predicates_for_generics<'tcx>(tcx: &ty::ctxt<'tcx>,
cause: ObligationCause<'tcx>,
recursion_depth: uint,
generic_bounds: &ty::GenericBounds<'tcx>)
-> VecPerParamSpace<PredicateObligation<'tcx>>
{
debug!("predicates_for_generics(generic_bounds={})",
generic_bounds.repr(tcx));
generic_bounds.predicates.map(|predicate| {
Obligation { cause: cause,
recursion_depth: recursion_depth,
trait_ref: predicate.clone() }
})
}
pub fn poly_trait_ref_for_builtin_bound<'tcx>(
tcx: &ty::ctxt<'tcx>,
builtin_bound: ty::BuiltinBound,
param_ty: Ty<'tcx>)
-> Result<Rc<ty::PolyTraitRef<'tcx>>, ErrorReported>
{
match tcx.lang_items.from_builtin_kind(builtin_bound) {
Ok(def_id) => {
Ok(Rc::new(ty::Binder(ty::TraitRef {
def_id: def_id,
substs: Substs::empty().with_self_ty(param_ty)
})))
}
Err(e) => {
tcx.sess.err(e.as_slice());
Err(ErrorReported)
}
}
}
pub fn predicate_for_builtin_bound<'tcx>(
tcx: &ty::ctxt<'tcx>,
cause: ObligationCause<'tcx>,
builtin_bound: ty::BuiltinBound,
recursion_depth: uint,
param_ty: Ty<'tcx>)
-> Result<PredicateObligation<'tcx>, ErrorReported>
{
let trait_ref = try!(poly_trait_ref_for_builtin_bound(tcx, builtin_bound, param_ty));
Ok(Obligation {
cause: cause,
recursion_depth: recursion_depth,
trait_ref: ty::Predicate::Trait(trait_ref),
})
}
/// Starting from a caller obligation `caller_bound` (which has coordinates `space`/`i` in the list
/// of caller obligations), search through the trait and supertraits to find one where `test(d)` is
/// true, where `d` is the def-id of the trait/supertrait. If any is found, return `Some(p)` where
/// `p` is the path to that trait/supertrait. Else `None`.
pub fn search_trait_and_supertraits_from_bound<'tcx,F>(tcx: &ty::ctxt<'tcx>,
caller_bound: Rc<ty::PolyTraitRef<'tcx>>,
mut test: F)
-> Option<VtableParamData<'tcx>>
where F: FnMut(ast::DefId) -> bool,
{
2014-09-17 11:26:26 -05:00
for bound in transitive_bounds(tcx, &[caller_bound]) {
if test(bound.def_id()) {
let vtable_param = VtableParamData { bound: bound };
return Some(vtable_param);
}
}
return None;
}
impl<'tcx,O:Repr<'tcx>> Repr<'tcx> for super::Obligation<'tcx, O> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("Obligation(trait_ref={},depth={})",
self.trait_ref.repr(tcx),
self.recursion_depth)
}
}
impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::Vtable<'tcx, N> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
match *self {
super::VtableImpl(ref v) =>
v.repr(tcx),
super::VtableUnboxedClosure(ref d, ref s) =>
format!("VtableUnboxedClosure({},{})",
d.repr(tcx),
s.repr(tcx)),
super::VtableFnPointer(ref d) =>
format!("VtableFnPointer({})",
d.repr(tcx)),
super::VtableParam(ref v) =>
format!("VtableParam({})", v.repr(tcx)),
super::VtableBuiltin(ref d) =>
d.repr(tcx)
}
}
}
impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::VtableImplData<'tcx, N> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("VtableImpl(impl_def_id={}, substs={}, nested={})",
self.impl_def_id.repr(tcx),
self.substs.repr(tcx),
self.nested.repr(tcx))
}
}
impl<'tcx, N:Repr<'tcx>> Repr<'tcx> for super::VtableBuiltinData<N> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("VtableBuiltin(nested={})",
self.nested.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for super::VtableParamData<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("VtableParam(bound={})",
self.bound.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for super::SelectionError<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
match *self {
super::Overflow =>
format!("Overflow"),
super::Unimplemented =>
format!("Unimplemented"),
super::OutputTypeParameterMismatch(ref a, ref b, ref c) =>
format!("OutputTypeParameterMismatch({},{},{})",
a.repr(tcx),
b.repr(tcx),
c.repr(tcx)),
}
}
}
impl<'tcx> Repr<'tcx> for super::FulfillmentError<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
format!("FulfillmentError({},{})",
self.obligation.repr(tcx),
self.code.repr(tcx))
}
}
impl<'tcx> Repr<'tcx> for super::FulfillmentErrorCode<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
match *self {
super::CodeSelectionError(ref o) => o.repr(tcx),
super::CodeAmbiguity => format!("Ambiguity")
}
}
}
impl<'tcx> fmt::Show for super::FulfillmentErrorCode<'tcx> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
super::CodeSelectionError(ref e) => write!(f, "{}", e),
super::CodeAmbiguity => write!(f, "Ambiguity")
}
}
}
impl<'tcx> Repr<'tcx> for ty::type_err<'tcx> {
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
ty::type_err_to_str(tcx, self)
}
}