Deprecate the rev_iter pattern in all places where a DoubleEndedIterator is provided (everywhere but treemap)
This commit deprecates rev_iter, mut_rev_iter, move_rev_iter everywhere (except treemap) and also
deprecates related functions like rsplit, rev_components, and rev_str_components. In every case,
these functions can be replaced with the non-reversed form followed by a call to .rev(). To make this
more concrete, a translation table for all functional changes necessary follows:
* container.rev_iter() -> container.iter().rev()
* container.mut_rev_iter() -> container.mut_iter().rev()
* container.move_rev_iter() -> container.move_iter().rev()
* sliceorstr.rsplit(sep) -> sliceorstr.split(sep).rev()
* path.rev_components() -> path.components().rev()
* path.rev_str_components() -> path.str_components().rev()
In terms of the type system, this change also deprecates any specialized reversed iterator types (except
in treemap), opting instead to use Rev directly if any type annotations are needed. However, since
methods directly returning reversed iterators are now discouraged, the need for such annotations should
be small. However, in those cases, the general pattern for conversion is to take whatever follows Rev in
the original reversed name and surround it with Rev<>:
* RevComponents<'a> -> Rev<Components<'a>>
* RevStrComponents<'a> -> Rev<StrComponents<'a>>
* RevItems<'a, T> -> Rev<Items<'a, T>>
* etc.
The reasoning behind this change is that it makes the standard API much simpler without reducing readability,
performance, or power. The presence of functions such as rev_iter adds more boilerplate code to libraries
(all of which simply call .iter().rev()), clutters up the documentation, and only helps code by saving two
characters. Additionally, the numerous type synonyms that were used to make the type signatures look nice
like RevItems add even more boilerplate and clutter up the docs even more. With this change, all that cruft
goes away.
[breaking-change]
2014-04-20 23:59:12 -05:00
|
|
|
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
2013-01-17 23:28:42 -08:00
|
|
|
// file at the top-level directory of this distribution and at
|
|
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
|
|
// option. This file may not be copied, modified, or distributed
|
|
|
|
// except according to those terms.
|
2012-12-09 20:02:33 -05:00
|
|
|
|
2014-07-21 15:20:57 +02:00
|
|
|
//! A priority queue implemented with a binary heap.
|
|
|
|
//!
|
2014-12-01 18:12:48 -08:00
|
|
|
//! Insertion and popping the largest element have `O(log n)` time complexity. Checking the largest
|
|
|
|
//! element is `O(1)`. Converting a vector to a priority queue can be done in-place, and has `O(n)`
|
2014-08-30 17:11:22 -04:00
|
|
|
//! complexity. A priority queue can also be converted to a sorted vector in-place, allowing it to
|
|
|
|
//! be used for an `O(n log n)` in-place heapsort.
|
|
|
|
//!
|
2014-12-08 23:28:07 -06:00
|
|
|
//! # Examples
|
2014-07-21 15:20:57 +02:00
|
|
|
//!
|
|
|
|
//! This is a larger example which implements [Dijkstra's algorithm][dijkstra]
|
|
|
|
//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
|
2014-10-30 21:25:08 -04:00
|
|
|
//! It showcases how to use the `BinaryHeap` with custom types.
|
2014-07-21 15:20:57 +02:00
|
|
|
//!
|
|
|
|
//! [dijkstra]: http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
|
|
|
|
//! [sssp]: http://en.wikipedia.org/wiki/Shortest_path_problem
|
|
|
|
//! [dir_graph]: http://en.wikipedia.org/wiki/Directed_graph
|
|
|
|
//!
|
|
|
|
//! ```
|
2014-10-30 21:25:08 -04:00
|
|
|
//! use std::collections::BinaryHeap;
|
2014-07-21 15:20:57 +02:00
|
|
|
//! use std::uint;
|
|
|
|
//!
|
|
|
|
//! #[deriving(Eq, PartialEq)]
|
|
|
|
//! struct State {
|
|
|
|
//! cost: uint,
|
|
|
|
//! position: uint
|
|
|
|
//! }
|
|
|
|
//!
|
librustc: Make `Copy` opt-in.
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
2014-12-05 17:01:33 -08:00
|
|
|
//! impl Copy for State {}
|
|
|
|
//!
|
2014-07-21 15:20:57 +02:00
|
|
|
//! // The priority queue depends on `Ord`.
|
|
|
|
//! // Explicitly implement the trait so the queue becomes a min-heap
|
|
|
|
//! // instead of a max-heap.
|
|
|
|
//! impl Ord for State {
|
|
|
|
//! fn cmp(&self, other: &State) -> Ordering {
|
|
|
|
//! // Notice that the we flip the ordering here
|
|
|
|
//! other.cost.cmp(&self.cost)
|
|
|
|
//! }
|
|
|
|
//! }
|
|
|
|
//!
|
|
|
|
//! // `PartialOrd` needs to be implemented as well.
|
|
|
|
//! impl PartialOrd for State {
|
|
|
|
//! fn partial_cmp(&self, other: &State) -> Option<Ordering> {
|
|
|
|
//! Some(self.cmp(other))
|
|
|
|
//! }
|
|
|
|
//! }
|
|
|
|
//!
|
|
|
|
//! // Each node is represented as an `uint`, for a shorter implementation.
|
|
|
|
//! struct Edge {
|
|
|
|
//! node: uint,
|
|
|
|
//! cost: uint
|
|
|
|
//! }
|
|
|
|
//!
|
|
|
|
//! // Dijkstra's shortest path algorithm.
|
|
|
|
//!
|
|
|
|
//! // Start at `start` and use `dist` to track the current shortest distance
|
|
|
|
//! // to each node. This implementation isn't memory efficient as it may leave duplicate
|
|
|
|
//! // nodes in the queue. It also uses `uint::MAX` as a sentinel value,
|
|
|
|
//! // for a simpler implementation.
|
|
|
|
//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: uint, goal: uint) -> uint {
|
|
|
|
//! // dist[node] = current shortest distance from `start` to `node`
|
|
|
|
//! let mut dist = Vec::from_elem(adj_list.len(), uint::MAX);
|
|
|
|
//!
|
2014-11-21 23:01:38 -08:00
|
|
|
//! let mut heap = BinaryHeap::new();
|
2014-07-21 15:20:57 +02:00
|
|
|
//!
|
|
|
|
//! // We're at `start`, with a zero cost
|
2014-10-23 08:42:21 -07:00
|
|
|
//! dist[start] = 0u;
|
2014-11-21 23:01:38 -08:00
|
|
|
//! heap.push(State { cost: 0u, position: start });
|
2014-07-21 15:20:57 +02:00
|
|
|
//!
|
|
|
|
//! // Examine the frontier with lower cost nodes first (min-heap)
|
|
|
|
//! loop {
|
2014-11-21 23:01:38 -08:00
|
|
|
//! let State { cost, position } = match heap.pop() {
|
2014-07-21 15:20:57 +02:00
|
|
|
//! None => break, // empty
|
|
|
|
//! Some(s) => s
|
|
|
|
//! };
|
|
|
|
//!
|
|
|
|
//! // Alternatively we could have continued to find all shortest paths
|
|
|
|
//! if position == goal { return cost }
|
|
|
|
//!
|
|
|
|
//! // Important as we may have already found a better way
|
|
|
|
//! if cost > dist[position] { continue }
|
|
|
|
//!
|
|
|
|
//! // For each node we can reach, see if we can find a way with
|
|
|
|
//! // a lower cost going through this node
|
|
|
|
//! for edge in adj_list[position].iter() {
|
|
|
|
//! let next = State { cost: cost + edge.cost, position: edge.node };
|
|
|
|
//!
|
|
|
|
//! // If so, add it to the frontier and continue
|
|
|
|
//! if next.cost < dist[next.position] {
|
2014-11-21 23:01:38 -08:00
|
|
|
//! heap.push(next);
|
2014-07-21 15:20:57 +02:00
|
|
|
//! // Relaxation, we have now found a better way
|
2014-10-23 08:42:21 -07:00
|
|
|
//! dist[next.position] = next.cost;
|
2014-07-21 15:20:57 +02:00
|
|
|
//! }
|
|
|
|
//! }
|
|
|
|
//! }
|
|
|
|
//!
|
|
|
|
//! // Goal not reachable
|
|
|
|
//! uint::MAX
|
|
|
|
//! }
|
|
|
|
//!
|
|
|
|
//! fn main() {
|
|
|
|
//! // This is the directed graph we're going to use.
|
|
|
|
//! // The node numbers correspond to the different states,
|
|
|
|
//! // and the edge weights symbolises the cost of moving
|
|
|
|
//! // from one node to another.
|
|
|
|
//! // Note that the edges are one-way.
|
|
|
|
//! //
|
|
|
|
//! // 7
|
|
|
|
//! // +-----------------+
|
|
|
|
//! // | |
|
|
|
|
//! // v 1 2 |
|
|
|
|
//! // 0 -----> 1 -----> 3 ---> 4
|
|
|
|
//! // | ^ ^ ^
|
|
|
|
//! // | | 1 | |
|
|
|
|
//! // | | | 3 | 1
|
|
|
|
//! // +------> 2 -------+ |
|
|
|
|
//! // 10 | |
|
|
|
|
//! // +---------------+
|
|
|
|
//! //
|
2014-08-01 19:40:21 -04:00
|
|
|
//! // The graph is represented as an adjacency list where each index,
|
2014-07-21 15:20:57 +02:00
|
|
|
//! // corresponding to a node value, has a list of outgoing edges.
|
|
|
|
//! // Chosen for it's efficiency.
|
|
|
|
//! let graph = vec![
|
|
|
|
//! // Node 0
|
|
|
|
//! vec![Edge { node: 2, cost: 10 },
|
|
|
|
//! Edge { node: 1, cost: 1 }],
|
|
|
|
//! // Node 1
|
|
|
|
//! vec![Edge { node: 3, cost: 2 }],
|
|
|
|
//! // Node 2
|
|
|
|
//! vec![Edge { node: 1, cost: 1 },
|
|
|
|
//! Edge { node: 3, cost: 3 },
|
|
|
|
//! Edge { node: 4, cost: 1 }],
|
|
|
|
//! // Node 3
|
|
|
|
//! vec![Edge { node: 0, cost: 7 },
|
|
|
|
//! Edge { node: 4, cost: 2 }],
|
|
|
|
//! // Node 4
|
|
|
|
//! vec![]];
|
|
|
|
//!
|
|
|
|
//! assert_eq!(shortest_path(&graph, 0, 1), 1);
|
|
|
|
//! assert_eq!(shortest_path(&graph, 0, 3), 3);
|
|
|
|
//! assert_eq!(shortest_path(&graph, 3, 0), 7);
|
|
|
|
//! assert_eq!(shortest_path(&graph, 0, 4), 5);
|
|
|
|
//! assert_eq!(shortest_path(&graph, 4, 0), uint::MAX);
|
|
|
|
//! }
|
|
|
|
//! ```
|
2012-12-16 19:53:24 -08:00
|
|
|
|
2014-10-27 15:37:07 -07:00
|
|
|
#![allow(missing_docs)]
|
2013-05-31 15:17:22 -07:00
|
|
|
|
std: Recreate a `collections` module
As with the previous commit with `librand`, this commit shuffles around some
`collections` code. The new state of the world is similar to that of librand:
* The libcollections crate now only depends on libcore and liballoc.
* The standard library has a new module, `std::collections`. All functionality
of libcollections is reexported through this module.
I would like to stress that this change is purely cosmetic. There are very few
alterations to these primitives.
There are a number of notable points about the new organization:
* std::{str, slice, string, vec} all moved to libcollections. There is no reason
that these primitives shouldn't be necessarily usable in a freestanding
context that has allocation. These are all reexported in their usual places in
the standard library.
* The `hashmap`, and transitively the `lru_cache`, modules no longer reside in
`libcollections`, but rather in libstd. The reason for this is because the
`HashMap::new` contructor requires access to the OSRng for initially seeding
the hash map. Beyond this requirement, there is no reason that the hashmap
could not move to libcollections.
I do, however, have a plan to move the hash map to the collections module. The
`HashMap::new` function could be altered to require that the `H` hasher
parameter ascribe to the `Default` trait, allowing the entire `hashmap` module
to live in libcollections. The key idea would be that the default hasher would
be different in libstd. Something along the lines of:
// src/libstd/collections/mod.rs
pub type HashMap<K, V, H = RandomizedSipHasher> =
core_collections::HashMap<K, V, H>;
This is not possible today because you cannot invoke static methods through
type aliases. If we modified the compiler, however, to allow invocation of
static methods through type aliases, then this type definition would
essentially be switching the default hasher from `SipHasher` in libcollections
to a libstd-defined `RandomizedSipHasher` type. This type's `Default`
implementation would randomly seed the `SipHasher` instance, and otherwise
perform the same as `SipHasher`.
This future state doesn't seem incredibly far off, but until that time comes,
the hashmap module will live in libstd to not compromise on functionality.
* In preparation for the hashmap moving to libcollections, the `hash` module has
moved from libstd to libcollections. A previously snapshotted commit enables a
distinct `Writer` trait to live in the `hash` module which `Hash`
implementations are now parameterized over.
Due to using a custom trait, the `SipHasher` implementation has lost its
specialized methods for writing integers. These can be re-added
backwards-compatibly in the future via default methods if necessary, but the
FNV hashing should satisfy much of the need for speedier hashing.
A list of breaking changes:
* HashMap::{get, get_mut} no longer fails with the key formatted into the error
message with `{:?}`, instead, a generic message is printed. With backtraces,
it should still be not-too-hard to track down errors.
* The HashMap, HashSet, and LruCache types are now available through
std::collections instead of the collections crate.
* Manual implementations of hash should be parameterized over `hash::Writer`
instead of just `Writer`.
[breaking-change]
2014-05-29 18:50:12 -07:00
|
|
|
use core::prelude::*;
|
|
|
|
|
2014-06-09 00:30:04 -07:00
|
|
|
use core::default::Default;
|
2014-05-29 19:03:06 -07:00
|
|
|
use core::mem::{zeroed, replace, swap};
|
|
|
|
use core::ptr;
|
std: Recreate a `collections` module
As with the previous commit with `librand`, this commit shuffles around some
`collections` code. The new state of the world is similar to that of librand:
* The libcollections crate now only depends on libcore and liballoc.
* The standard library has a new module, `std::collections`. All functionality
of libcollections is reexported through this module.
I would like to stress that this change is purely cosmetic. There are very few
alterations to these primitives.
There are a number of notable points about the new organization:
* std::{str, slice, string, vec} all moved to libcollections. There is no reason
that these primitives shouldn't be necessarily usable in a freestanding
context that has allocation. These are all reexported in their usual places in
the standard library.
* The `hashmap`, and transitively the `lru_cache`, modules no longer reside in
`libcollections`, but rather in libstd. The reason for this is because the
`HashMap::new` contructor requires access to the OSRng for initially seeding
the hash map. Beyond this requirement, there is no reason that the hashmap
could not move to libcollections.
I do, however, have a plan to move the hash map to the collections module. The
`HashMap::new` function could be altered to require that the `H` hasher
parameter ascribe to the `Default` trait, allowing the entire `hashmap` module
to live in libcollections. The key idea would be that the default hasher would
be different in libstd. Something along the lines of:
// src/libstd/collections/mod.rs
pub type HashMap<K, V, H = RandomizedSipHasher> =
core_collections::HashMap<K, V, H>;
This is not possible today because you cannot invoke static methods through
type aliases. If we modified the compiler, however, to allow invocation of
static methods through type aliases, then this type definition would
essentially be switching the default hasher from `SipHasher` in libcollections
to a libstd-defined `RandomizedSipHasher` type. This type's `Default`
implementation would randomly seed the `SipHasher` instance, and otherwise
perform the same as `SipHasher`.
This future state doesn't seem incredibly far off, but until that time comes,
the hashmap module will live in libstd to not compromise on functionality.
* In preparation for the hashmap moving to libcollections, the `hash` module has
moved from libstd to libcollections. A previously snapshotted commit enables a
distinct `Writer` trait to live in the `hash` module which `Hash`
implementations are now parameterized over.
Due to using a custom trait, the `SipHasher` implementation has lost its
specialized methods for writing integers. These can be re-added
backwards-compatibly in the future via default methods if necessary, but the
FNV hashing should satisfy much of the need for speedier hashing.
A list of breaking changes:
* HashMap::{get, get_mut} no longer fails with the key formatted into the error
message with `{:?}`, instead, a generic message is printed. With backtraces,
it should still be not-too-hard to track down errors.
* The HashMap, HashSet, and LruCache types are now available through
std::collections instead of the collections crate.
* Manual implementations of hash should be parameterized over `hash::Writer`
instead of just `Writer`.
[breaking-change]
2014-05-29 18:50:12 -07:00
|
|
|
|
|
|
|
use slice;
|
2014-11-23 00:31:40 -06:00
|
|
|
use vec::{mod, Vec};
|
2014-11-06 12:24:47 -05:00
|
|
|
|
2014-07-21 14:39:28 +02:00
|
|
|
/// A priority queue implemented with a binary heap.
|
|
|
|
///
|
|
|
|
/// This will be a max-heap.
|
2013-07-11 12:05:17 -07:00
|
|
|
#[deriving(Clone)]
|
2014-10-30 21:25:08 -04:00
|
|
|
pub struct BinaryHeap<T> {
|
2014-04-05 16:45:42 +11:00
|
|
|
data: Vec<T>,
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
2014-12-15 20:04:52 -08:00
|
|
|
#[stable]
|
2014-10-30 21:25:08 -04:00
|
|
|
impl<T: Ord> Default for BinaryHeap<T> {
|
2014-06-09 00:30:04 -07:00
|
|
|
#[inline]
|
2014-12-15 20:04:52 -08:00
|
|
|
#[stable]
|
2014-10-30 21:25:08 -04:00
|
|
|
fn default() -> BinaryHeap<T> { BinaryHeap::new() }
|
2014-06-09 00:30:04 -07:00
|
|
|
}
|
|
|
|
|
2014-10-30 21:25:08 -04:00
|
|
|
impl<T: Ord> BinaryHeap<T> {
|
|
|
|
/// Creates an empty `BinaryHeap` as a max-heap.
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let heap: BinaryHeap<uint> = BinaryHeap::new();
|
2014-07-21 14:39:28 +02:00
|
|
|
/// ```
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
2014-10-30 21:25:08 -04:00
|
|
|
pub fn new() -> BinaryHeap<T> { BinaryHeap{data: vec!(),} }
|
2014-07-21 11:35:49 +02:00
|
|
|
|
2014-10-30 21:25:08 -04:00
|
|
|
/// Creates an empty `BinaryHeap` with a specific capacity.
|
2014-07-21 14:39:28 +02:00
|
|
|
/// This preallocates enough memory for `capacity` elements,
|
2014-10-30 21:25:08 -04:00
|
|
|
/// so that the `BinaryHeap` does not have to be reallocated
|
2014-07-21 14:39:28 +02:00
|
|
|
/// until it contains at least that many values.
|
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let heap: BinaryHeap<uint> = BinaryHeap::with_capacity(10u);
|
2014-07-21 14:39:28 +02:00
|
|
|
/// ```
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
2014-10-30 21:25:08 -04:00
|
|
|
pub fn with_capacity(capacity: uint) -> BinaryHeap<T> {
|
|
|
|
BinaryHeap { data: Vec::with_capacity(capacity) }
|
2014-07-21 11:35:49 +02:00
|
|
|
}
|
|
|
|
|
2014-10-30 21:25:08 -04:00
|
|
|
/// Creates a `BinaryHeap` from a vector. This is sometimes called
|
2014-07-21 14:39:28 +02:00
|
|
|
/// `heapifying` the vector.
|
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let heap = BinaryHeap::from_vec(vec![9i, 1, 2, 7, 3, 2]);
|
2014-07-21 14:39:28 +02:00
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
pub fn from_vec(xs: Vec<T>) -> BinaryHeap<T> {
|
|
|
|
let mut q = BinaryHeap{data: xs,};
|
2014-07-21 11:35:49 +02:00
|
|
|
let mut n = q.len() / 2;
|
|
|
|
while n > 0 {
|
|
|
|
n -= 1;
|
|
|
|
q.siftdown(n)
|
|
|
|
}
|
|
|
|
q
|
|
|
|
}
|
|
|
|
|
2013-06-26 15:49:21 +05:30
|
|
|
/// An iterator visiting all values in underlying vector, in
|
|
|
|
/// arbitrary order.
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let heap = BinaryHeap::from_vec(vec![1i, 2, 3, 4]);
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// // Print 1, 2, 3, 4 in arbitrary order
|
2014-11-21 23:01:38 -08:00
|
|
|
/// for x in heap.iter() {
|
2014-07-21 14:39:28 +02:00
|
|
|
/// println!("{}", x);
|
|
|
|
/// }
|
|
|
|
/// ```
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
2014-01-14 22:32:24 -05:00
|
|
|
pub fn iter<'a>(&'a self) -> Items<'a, T> {
|
|
|
|
Items { iter: self.data.iter() }
|
2013-06-26 15:49:21 +05:30
|
|
|
}
|
2013-06-23 17:57:39 -04:00
|
|
|
|
2014-11-23 00:31:40 -06:00
|
|
|
/// Creates a consuming iterator, that is, one that moves each value out of
|
|
|
|
/// the binary heap in arbitrary order. The binary heap cannot be used
|
|
|
|
/// after calling this.
|
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-11-23 00:31:40 -06:00
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// use std::collections::BinaryHeap;
|
|
|
|
/// let pq = BinaryHeap::from_vec(vec![1i, 2, 3, 4]);
|
|
|
|
///
|
|
|
|
/// // Print 1, 2, 3, 4 in arbitrary order
|
|
|
|
/// for x in pq.into_iter() {
|
|
|
|
/// // x has type int, not &int
|
|
|
|
/// println!("{}", x);
|
|
|
|
/// }
|
|
|
|
/// ```
|
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
|
|
pub fn into_iter(self) -> MoveItems<T> {
|
|
|
|
MoveItems { iter: self.data.into_iter() }
|
|
|
|
}
|
|
|
|
|
2014-08-04 22:48:39 +12:00
|
|
|
/// Returns the greatest item in a queue, or `None` if it is empty.
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let mut heap = BinaryHeap::new();
|
|
|
|
/// assert_eq!(heap.top(), None);
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// heap.push(1i);
|
|
|
|
/// heap.push(5i);
|
|
|
|
/// heap.push(2i);
|
|
|
|
/// assert_eq!(heap.top(), Some(&5i));
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-05-18 15:54:19 -07:00
|
|
|
pub fn top<'a>(&'a self) -> Option<&'a T> {
|
2014-08-11 16:47:46 -07:00
|
|
|
if self.is_empty() { None } else { Some(&self.data[0]) }
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
2014-07-21 14:39:28 +02:00
|
|
|
/// Returns the number of elements the queue can hold without reallocating.
|
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let heap: BinaryHeap<uint> = BinaryHeap::with_capacity(100u);
|
|
|
|
/// assert!(heap.capacity() >= 100u);
|
2014-07-21 14:39:28 +02:00
|
|
|
/// ```
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
2013-06-28 00:40:47 +10:00
|
|
|
pub fn capacity(&self) -> uint { self.data.capacity() }
|
2012-12-09 20:02:33 -05:00
|
|
|
|
2014-11-06 12:24:47 -05:00
|
|
|
/// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
|
|
|
|
/// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
|
|
|
|
///
|
|
|
|
/// Note that the allocator may give the collection more space than it requests. Therefore
|
|
|
|
/// capacity can not be relied upon to be precisely minimal. Prefer `reserve` if future
|
|
|
|
/// insertions are expected.
|
|
|
|
///
|
|
|
|
/// # Panics
|
|
|
|
///
|
|
|
|
/// Panics if the new capacity overflows `uint`.
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let mut heap: BinaryHeap<uint> = BinaryHeap::new();
|
|
|
|
/// heap.reserve_exact(100u);
|
|
|
|
/// assert!(heap.capacity() >= 100u);
|
2014-07-21 14:39:28 +02:00
|
|
|
/// ```
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
|
|
pub fn reserve_exact(&mut self, additional: uint) { self.data.reserve_exact(additional) }
|
2012-12-09 20:02:33 -05:00
|
|
|
|
2014-11-06 12:24:47 -05:00
|
|
|
/// Reserves capacity for at least `additional` more elements to be inserted in the
|
|
|
|
/// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
|
|
|
|
///
|
|
|
|
/// # Panics
|
|
|
|
///
|
|
|
|
/// Panics if the new capacity overflows `uint`.
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let mut heap: BinaryHeap<uint> = BinaryHeap::new();
|
|
|
|
/// heap.reserve(100u);
|
|
|
|
/// assert!(heap.capacity() >= 100u);
|
2014-07-21 14:39:28 +02:00
|
|
|
/// ```
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
|
|
pub fn reserve(&mut self, additional: uint) {
|
|
|
|
self.data.reserve(additional)
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Discards as much additional capacity as possible.
|
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
|
|
|
pub fn shrink_to_fit(&mut self) {
|
|
|
|
self.data.shrink_to_fit()
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
2014-08-04 22:48:39 +12:00
|
|
|
/// Removes the greatest item from a queue and returns it, or `None` if it
|
|
|
|
/// is empty.
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let mut heap = BinaryHeap::from_vec(vec![1i, 3]);
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// assert_eq!(heap.pop(), Some(3i));
|
|
|
|
/// assert_eq!(heap.pop(), Some(1i));
|
|
|
|
/// assert_eq!(heap.pop(), None);
|
2014-07-21 14:39:28 +02:00
|
|
|
/// ```
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
2014-05-18 15:54:19 -07:00
|
|
|
pub fn pop(&mut self) -> Option<T> {
|
|
|
|
match self.data.pop() {
|
|
|
|
None => { None }
|
|
|
|
Some(mut item) => {
|
|
|
|
if !self.is_empty() {
|
2014-10-23 08:42:21 -07:00
|
|
|
swap(&mut item, &mut self.data[0]);
|
2014-05-18 15:54:19 -07:00
|
|
|
self.siftdown(0);
|
|
|
|
}
|
|
|
|
Some(item)
|
|
|
|
}
|
2013-05-06 00:42:54 -04:00
|
|
|
}
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
2014-08-04 22:48:39 +12:00
|
|
|
/// Pushes an item onto the queue.
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let mut heap = BinaryHeap::new();
|
|
|
|
/// heap.push(3i);
|
|
|
|
/// heap.push(5i);
|
|
|
|
/// heap.push(1i);
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// assert_eq!(heap.len(), 3);
|
|
|
|
/// assert_eq!(heap.top(), Some(&5i));
|
2014-07-21 14:39:28 +02:00
|
|
|
/// ```
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
2013-05-31 15:17:22 -07:00
|
|
|
pub fn push(&mut self, item: T) {
|
2012-12-09 20:02:33 -05:00
|
|
|
self.data.push(item);
|
2013-02-08 22:21:45 -08:00
|
|
|
let new_len = self.len() - 1;
|
|
|
|
self.siftup(0, new_len);
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
2014-08-04 22:48:39 +12:00
|
|
|
/// Pushes an item onto a queue then pops the greatest item off the queue in
|
|
|
|
/// an optimized fashion.
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let mut heap = BinaryHeap::new();
|
|
|
|
/// heap.push(1i);
|
|
|
|
/// heap.push(5i);
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// assert_eq!(heap.push_pop(3i), 5);
|
|
|
|
/// assert_eq!(heap.push_pop(9i), 9);
|
|
|
|
/// assert_eq!(heap.len(), 2);
|
|
|
|
/// assert_eq!(heap.top(), Some(&3i));
|
2014-07-21 14:39:28 +02:00
|
|
|
/// ```
|
2013-05-31 15:17:22 -07:00
|
|
|
pub fn push_pop(&mut self, mut item: T) -> T {
|
2014-05-18 15:54:19 -07:00
|
|
|
if !self.is_empty() && *self.top().unwrap() > item {
|
2014-10-23 08:42:21 -07:00
|
|
|
swap(&mut item, &mut self.data[0]);
|
2012-12-11 17:34:50 -05:00
|
|
|
self.siftdown(0);
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
item
|
|
|
|
}
|
|
|
|
|
2014-08-04 22:48:39 +12:00
|
|
|
/// Pops the greatest item off a queue then pushes an item onto the queue in
|
|
|
|
/// an optimized fashion. The push is done regardless of whether the queue
|
|
|
|
/// was empty.
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let mut heap = BinaryHeap::new();
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// assert_eq!(heap.replace(1i), None);
|
|
|
|
/// assert_eq!(heap.replace(3i), Some(1i));
|
|
|
|
/// assert_eq!(heap.len(), 1);
|
|
|
|
/// assert_eq!(heap.top(), Some(&3i));
|
2014-07-21 14:39:28 +02:00
|
|
|
/// ```
|
2014-05-18 15:54:19 -07:00
|
|
|
pub fn replace(&mut self, mut item: T) -> Option<T> {
|
|
|
|
if !self.is_empty() {
|
2014-10-23 08:42:21 -07:00
|
|
|
swap(&mut item, &mut self.data[0]);
|
2014-05-18 15:54:19 -07:00
|
|
|
self.siftdown(0);
|
|
|
|
Some(item)
|
|
|
|
} else {
|
|
|
|
self.push(item);
|
|
|
|
None
|
|
|
|
}
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
2014-10-30 21:25:08 -04:00
|
|
|
/// Consumes the `BinaryHeap` and returns the underlying vector
|
2014-07-21 14:39:28 +02:00
|
|
|
/// in arbitrary order.
|
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let heap = BinaryHeap::from_vec(vec![1i, 2, 3, 4, 5, 6, 7]);
|
|
|
|
/// let vec = heap.into_vec();
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// // Will print in some order
|
|
|
|
/// for x in vec.iter() {
|
|
|
|
/// println!("{}", x);
|
|
|
|
/// }
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
pub fn into_vec(self) -> Vec<T> { let BinaryHeap{data: v} = self; v }
|
2012-12-10 15:36:01 -05:00
|
|
|
|
2014-10-30 21:25:08 -04:00
|
|
|
/// Consumes the `BinaryHeap` and returns a vector in sorted
|
2014-07-21 14:39:28 +02:00
|
|
|
/// (ascending) order.
|
|
|
|
///
|
2014-12-08 23:28:07 -06:00
|
|
|
/// # Examples
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
|
|
|
/// ```
|
2014-10-30 21:25:08 -04:00
|
|
|
/// use std::collections::BinaryHeap;
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let mut heap = BinaryHeap::from_vec(vec![1i, 2, 4, 5, 7]);
|
|
|
|
/// heap.push(6);
|
|
|
|
/// heap.push(3);
|
2014-07-21 14:39:28 +02:00
|
|
|
///
|
2014-11-21 23:01:38 -08:00
|
|
|
/// let vec = heap.into_sorted_vec();
|
2014-07-21 14:39:28 +02:00
|
|
|
/// assert_eq!(vec, vec![1i, 2, 3, 4, 5, 6, 7]);
|
|
|
|
/// ```
|
2014-05-18 15:04:43 -07:00
|
|
|
pub fn into_sorted_vec(self) -> Vec<T> {
|
2012-12-10 15:36:01 -05:00
|
|
|
let mut q = self;
|
2012-12-11 10:57:37 -05:00
|
|
|
let mut end = q.len();
|
|
|
|
while end > 1 {
|
2012-12-10 15:36:01 -05:00
|
|
|
end -= 1;
|
2014-11-27 16:44:57 -05:00
|
|
|
q.data.swap(0, end);
|
2013-03-22 18:07:09 -04:00
|
|
|
q.siftdown_range(0, end)
|
2012-12-10 15:36:01 -05:00
|
|
|
}
|
2014-05-18 15:54:19 -07:00
|
|
|
q.into_vec()
|
2012-12-10 15:36:01 -05:00
|
|
|
}
|
|
|
|
|
2012-12-16 19:56:09 -08:00
|
|
|
// The implementations of siftup and siftdown use unsafe blocks in
|
|
|
|
// order to move an element out of the vector (leaving behind a
|
2013-05-13 19:46:20 -04:00
|
|
|
// zeroed element), shift along the others and move it back into the
|
2012-12-16 19:56:09 -08:00
|
|
|
// vector over the junk element. This reduces the constant factor
|
|
|
|
// compared to using swaps, which involves twice as many moves.
|
2013-05-31 15:17:22 -07:00
|
|
|
fn siftup(&mut self, start: uint, mut pos: uint) {
|
2013-01-23 11:43:58 -08:00
|
|
|
unsafe {
|
2014-10-23 08:42:21 -07:00
|
|
|
let new = replace(&mut self.data[pos], zeroed());
|
2013-01-23 11:43:58 -08:00
|
|
|
|
|
|
|
while pos > start {
|
|
|
|
let parent = (pos - 1) >> 1;
|
2014-08-11 16:47:46 -07:00
|
|
|
if new > self.data[parent] {
|
2014-10-23 08:42:21 -07:00
|
|
|
let x = replace(&mut self.data[parent], zeroed());
|
|
|
|
ptr::write(&mut self.data[pos], x);
|
2013-01-23 11:43:58 -08:00
|
|
|
pos = parent;
|
2013-10-01 14:31:03 -07:00
|
|
|
continue
|
2013-01-23 11:43:58 -08:00
|
|
|
}
|
|
|
|
break
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
2014-10-23 08:42:21 -07:00
|
|
|
ptr::write(&mut self.data[pos], new);
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-05-31 15:17:22 -07:00
|
|
|
fn siftdown_range(&mut self, mut pos: uint, end: uint) {
|
2013-01-23 11:43:58 -08:00
|
|
|
unsafe {
|
|
|
|
let start = pos;
|
2014-10-23 08:42:21 -07:00
|
|
|
let new = replace(&mut self.data[pos], zeroed());
|
2013-01-23 11:43:58 -08:00
|
|
|
|
|
|
|
let mut child = 2 * pos + 1;
|
|
|
|
while child < end {
|
|
|
|
let right = child + 1;
|
2014-08-11 16:47:46 -07:00
|
|
|
if right < end && !(self.data[child] > self.data[right]) {
|
2013-01-23 11:43:58 -08:00
|
|
|
child = right;
|
|
|
|
}
|
2014-10-23 08:42:21 -07:00
|
|
|
let x = replace(&mut self.data[child], zeroed());
|
|
|
|
ptr::write(&mut self.data[pos], x);
|
2013-01-23 11:43:58 -08:00
|
|
|
pos = child;
|
|
|
|
child = 2 * pos + 1;
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
2013-01-23 11:43:58 -08:00
|
|
|
|
2014-10-23 08:42:21 -07:00
|
|
|
ptr::write(&mut self.data[pos], new);
|
2013-01-23 11:43:58 -08:00
|
|
|
self.siftup(start, pos);
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-05-31 15:17:22 -07:00
|
|
|
fn siftdown(&mut self, pos: uint) {
|
2013-02-08 22:21:45 -08:00
|
|
|
let len = self.len();
|
|
|
|
self.siftdown_range(pos, len);
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
2014-10-30 13:43:24 -07:00
|
|
|
|
|
|
|
/// Returns the length of the queue.
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
2014-10-30 13:43:24 -07:00
|
|
|
pub fn len(&self) -> uint { self.data.len() }
|
|
|
|
|
|
|
|
/// Returns true if the queue contains no elements
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
2014-10-30 13:43:24 -07:00
|
|
|
pub fn is_empty(&self) -> bool { self.len() == 0 }
|
|
|
|
|
|
|
|
/// Drops all items from the queue.
|
2014-11-06 12:24:47 -05:00
|
|
|
#[unstable = "matches collection reform specification, waiting for dust to settle"]
|
2014-10-30 13:43:24 -07:00
|
|
|
pub fn clear(&mut self) { self.data.truncate(0) }
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
2014-10-30 21:25:08 -04:00
|
|
|
/// `BinaryHeap` iterator.
|
2014-08-27 21:46:52 -04:00
|
|
|
pub struct Items <'a, T:'a> {
|
|
|
|
iter: slice::Items<'a, T>,
|
|
|
|
}
|
|
|
|
|
2014-01-14 22:32:24 -05:00
|
|
|
impl<'a, T> Iterator<&'a T> for Items<'a, T> {
|
2013-06-26 15:49:21 +05:30
|
|
|
#[inline]
|
2013-12-09 23:16:18 -08:00
|
|
|
fn next(&mut self) -> Option<(&'a T)> { self.iter.next() }
|
2013-07-03 11:30:12 -07:00
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
|
2013-06-26 15:49:21 +05:30
|
|
|
}
|
|
|
|
|
2014-11-25 20:57:32 -06:00
|
|
|
impl<'a, T> DoubleEndedIterator<&'a T> for Items<'a, T> {
|
|
|
|
#[inline]
|
|
|
|
fn next_back(&mut self) -> Option<(&'a T)> { self.iter.next_back() }
|
|
|
|
}
|
|
|
|
|
2014-11-26 11:17:23 -08:00
|
|
|
impl<'a, T> ExactSizeIterator<&'a T> for Items<'a, T> {}
|
2014-11-25 20:57:32 -06:00
|
|
|
|
2014-11-23 00:31:40 -06:00
|
|
|
/// An iterator that moves out of a `BinaryHeap`.
|
|
|
|
pub struct MoveItems<T> {
|
|
|
|
iter: vec::MoveItems<T>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> Iterator<T> for MoveItems<T> {
|
|
|
|
#[inline]
|
|
|
|
fn next(&mut self) -> Option<T> { self.iter.next() }
|
|
|
|
|
|
|
|
#[inline]
|
|
|
|
fn size_hint(&self) -> (uint, Option<uint>) { self.iter.size_hint() }
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> DoubleEndedIterator<T> for MoveItems<T> {
|
|
|
|
#[inline]
|
|
|
|
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
|
|
|
|
}
|
|
|
|
|
2014-11-06 09:32:37 -08:00
|
|
|
impl<T> ExactSizeIterator<T> for MoveItems<T> {}
|
2014-11-23 00:31:40 -06:00
|
|
|
|
2014-10-30 21:25:08 -04:00
|
|
|
impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
|
2014-11-06 09:32:37 -08:00
|
|
|
fn from_iter<Iter: Iterator<T>>(iter: Iter) -> BinaryHeap<T> {
|
2014-08-21 19:42:35 -04:00
|
|
|
let vec: Vec<T> = iter.collect();
|
2014-10-30 21:25:08 -04:00
|
|
|
BinaryHeap::from_vec(vec)
|
2013-07-30 02:06:49 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-08 01:39:39 +01:00
|
|
|
impl<T: Ord> Extend<T> for BinaryHeap<T> {
|
2014-03-20 14:12:56 +01:00
|
|
|
fn extend<Iter: Iterator<T>>(&mut self, mut iter: Iter) {
|
2013-07-14 13:18:50 -04:00
|
|
|
let (lower, _) = iter.size_hint();
|
|
|
|
|
2014-11-06 12:24:47 -05:00
|
|
|
self.reserve(lower);
|
2013-07-14 13:18:50 -04:00
|
|
|
|
2014-03-20 14:12:56 +01:00
|
|
|
for elem in iter {
|
2013-07-30 02:06:49 +02:00
|
|
|
self.push(elem);
|
2013-07-14 13:18:50 -04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-12-09 20:02:33 -05:00
|
|
|
#[cfg(test)]
|
|
|
|
mod tests {
|
2014-05-29 19:03:06 -07:00
|
|
|
use std::prelude::*;
|
|
|
|
|
2014-10-30 21:25:08 -04:00
|
|
|
use super::BinaryHeap;
|
2014-05-29 19:03:06 -07:00
|
|
|
use vec::Vec;
|
2012-12-09 20:02:33 -05:00
|
|
|
|
2013-06-26 15:49:21 +05:30
|
|
|
#[test]
|
|
|
|
fn test_iterator() {
|
2014-04-21 17:58:52 -04:00
|
|
|
let data = vec!(5i, 9, 3);
|
|
|
|
let iterout = [9i, 5, 3];
|
2014-11-21 23:01:38 -08:00
|
|
|
let heap = BinaryHeap::from_vec(data);
|
2013-06-26 15:49:21 +05:30
|
|
|
let mut i = 0;
|
2014-11-21 23:01:38 -08:00
|
|
|
for el in heap.iter() {
|
2013-06-26 15:49:21 +05:30
|
|
|
assert_eq!(*el, iterout[i]);
|
|
|
|
i += 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-11-25 20:57:32 -06:00
|
|
|
#[test]
|
|
|
|
fn test_iterator_reverse() {
|
|
|
|
let data = vec!(5i, 9, 3);
|
|
|
|
let iterout = vec!(3i, 5, 9);
|
|
|
|
let pq = BinaryHeap::from_vec(data);
|
|
|
|
|
|
|
|
let v: Vec<int> = pq.iter().rev().map(|&x| x).collect();
|
|
|
|
assert_eq!(v, iterout);
|
|
|
|
}
|
|
|
|
|
2014-11-23 00:31:40 -06:00
|
|
|
#[test]
|
|
|
|
fn test_move_iter() {
|
|
|
|
let data = vec!(5i, 9, 3);
|
|
|
|
let iterout = vec!(9i, 5, 3);
|
|
|
|
let pq = BinaryHeap::from_vec(data);
|
|
|
|
|
|
|
|
let v: Vec<int> = pq.into_iter().collect();
|
|
|
|
assert_eq!(v, iterout);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_move_iter_size_hint() {
|
|
|
|
let data = vec!(5i, 9);
|
|
|
|
let pq = BinaryHeap::from_vec(data);
|
|
|
|
|
|
|
|
let mut it = pq.into_iter();
|
|
|
|
|
|
|
|
assert_eq!(it.size_hint(), (2, Some(2)));
|
|
|
|
assert_eq!(it.next(), Some(9i));
|
|
|
|
|
|
|
|
assert_eq!(it.size_hint(), (1, Some(1)));
|
|
|
|
assert_eq!(it.next(), Some(5i));
|
|
|
|
|
|
|
|
assert_eq!(it.size_hint(), (0, Some(0)));
|
|
|
|
assert_eq!(it.next(), None);
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_move_iter_reverse() {
|
|
|
|
let data = vec!(5i, 9, 3);
|
|
|
|
let iterout = vec!(3i, 5, 9);
|
|
|
|
let pq = BinaryHeap::from_vec(data);
|
|
|
|
|
|
|
|
let v: Vec<int> = pq.into_iter().rev().collect();
|
|
|
|
assert_eq!(v, iterout);
|
|
|
|
}
|
|
|
|
|
2012-12-09 20:02:33 -05:00
|
|
|
#[test]
|
|
|
|
fn test_top_and_pop() {
|
2014-04-05 16:45:42 +11:00
|
|
|
let data = vec!(2u, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1);
|
2013-12-19 16:53:02 +11:00
|
|
|
let mut sorted = data.clone();
|
2013-12-19 23:03:11 +11:00
|
|
|
sorted.sort();
|
2014-10-30 21:25:08 -04:00
|
|
|
let mut heap = BinaryHeap::from_vec(data);
|
2013-01-24 14:46:09 -05:00
|
|
|
while !heap.is_empty() {
|
2014-05-18 15:54:19 -07:00
|
|
|
assert_eq!(heap.top().unwrap(), sorted.last().unwrap());
|
|
|
|
assert_eq!(heap.pop().unwrap(), sorted.pop().unwrap());
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_push() {
|
2014-10-30 21:25:08 -04:00
|
|
|
let mut heap = BinaryHeap::from_vec(vec!(2i, 4, 9));
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 3);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == 9);
|
2012-12-09 20:02:33 -05:00
|
|
|
heap.push(11);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 4);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == 11);
|
2012-12-09 20:02:33 -05:00
|
|
|
heap.push(5);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 5);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == 11);
|
2012-12-09 20:02:33 -05:00
|
|
|
heap.push(27);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 6);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == 27);
|
2012-12-09 20:02:33 -05:00
|
|
|
heap.push(3);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 7);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == 27);
|
2012-12-09 20:02:33 -05:00
|
|
|
heap.push(103);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 8);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == 103);
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
2012-12-16 19:53:14 -08:00
|
|
|
#[test]
|
|
|
|
fn test_push_unique() {
|
2014-10-30 21:25:08 -04:00
|
|
|
let mut heap = BinaryHeap::from_vec(vec!(box 2i, box 4, box 9));
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 3);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == box 9);
|
2014-04-25 01:08:02 -07:00
|
|
|
heap.push(box 11);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 4);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == box 11);
|
2014-04-25 01:08:02 -07:00
|
|
|
heap.push(box 5);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 5);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == box 11);
|
2014-04-25 01:08:02 -07:00
|
|
|
heap.push(box 27);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 6);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == box 27);
|
2014-04-25 01:08:02 -07:00
|
|
|
heap.push(box 3);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 7);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == box 27);
|
2014-04-25 01:08:02 -07:00
|
|
|
heap.push(box 103);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 8);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(*heap.top().unwrap() == box 103);
|
2012-12-16 19:53:14 -08:00
|
|
|
}
|
|
|
|
|
2012-12-09 20:02:33 -05:00
|
|
|
#[test]
|
|
|
|
fn test_push_pop() {
|
2014-10-30 21:25:08 -04:00
|
|
|
let mut heap = BinaryHeap::from_vec(vec!(5i, 5, 2, 1, 3));
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 5);
|
|
|
|
assert_eq!(heap.push_pop(6), 6);
|
|
|
|
assert_eq!(heap.len(), 5);
|
|
|
|
assert_eq!(heap.push_pop(0), 5);
|
|
|
|
assert_eq!(heap.len(), 5);
|
|
|
|
assert_eq!(heap.push_pop(4), 5);
|
|
|
|
assert_eq!(heap.len(), 5);
|
|
|
|
assert_eq!(heap.push_pop(1), 4);
|
|
|
|
assert_eq!(heap.len(), 5);
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_replace() {
|
2014-10-30 21:25:08 -04:00
|
|
|
let mut heap = BinaryHeap::from_vec(vec!(5i, 5, 2, 1, 3));
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 5);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert_eq!(heap.replace(6).unwrap(), 5);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 5);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert_eq!(heap.replace(0).unwrap(), 6);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 5);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert_eq!(heap.replace(4).unwrap(), 5);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 5);
|
2014-05-18 15:54:19 -07:00
|
|
|
assert_eq!(heap.replace(1).unwrap(), 4);
|
2013-05-18 22:02:45 -04:00
|
|
|
assert_eq!(heap.len(), 5);
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
2014-04-05 16:45:42 +11:00
|
|
|
fn check_to_vec(mut data: Vec<int>) {
|
2014-10-30 21:25:08 -04:00
|
|
|
let heap = BinaryHeap::from_vec(data.clone());
|
2014-05-18 15:54:19 -07:00
|
|
|
let mut v = heap.clone().into_vec();
|
2013-12-19 23:03:11 +11:00
|
|
|
v.sort();
|
|
|
|
data.sort();
|
2013-12-19 16:53:02 +11:00
|
|
|
|
2014-11-27 11:45:50 -05:00
|
|
|
assert_eq!(v, data);
|
|
|
|
assert_eq!(heap.into_sorted_vec(), data);
|
2012-12-11 10:57:37 -05:00
|
|
|
}
|
|
|
|
|
2012-12-09 20:02:33 -05:00
|
|
|
#[test]
|
2012-12-11 10:57:37 -05:00
|
|
|
fn test_to_vec() {
|
2014-04-05 16:45:42 +11:00
|
|
|
check_to_vec(vec!());
|
2014-04-21 17:58:52 -04:00
|
|
|
check_to_vec(vec!(5i));
|
|
|
|
check_to_vec(vec!(3i, 2));
|
|
|
|
check_to_vec(vec!(2i, 3));
|
|
|
|
check_to_vec(vec!(5i, 1, 2));
|
|
|
|
check_to_vec(vec!(1i, 100, 2, 3));
|
|
|
|
check_to_vec(vec!(1i, 3, 5, 7, 9, 2, 4, 6, 8, 0));
|
|
|
|
check_to_vec(vec!(2i, 4, 6, 2, 1, 8, 10, 3, 5, 7, 0, 9, 1));
|
|
|
|
check_to_vec(vec!(9i, 11, 9, 9, 9, 9, 11, 2, 3, 4, 11, 9, 0, 0, 0, 0));
|
|
|
|
check_to_vec(vec!(0i, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
|
|
|
|
check_to_vec(vec!(10i, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0));
|
|
|
|
check_to_vec(vec!(0i, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 1, 2));
|
|
|
|
check_to_vec(vec!(5i, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1));
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
2013-08-08 11:38:10 -07:00
|
|
|
fn test_empty_pop() {
|
2014-10-30 21:25:08 -04:00
|
|
|
let mut heap: BinaryHeap<int> = BinaryHeap::new();
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(heap.pop().is_none());
|
2013-08-08 11:38:10 -07:00
|
|
|
}
|
2012-12-09 20:02:33 -05:00
|
|
|
|
|
|
|
#[test]
|
2013-08-08 11:38:10 -07:00
|
|
|
fn test_empty_top() {
|
2014-10-30 21:25:08 -04:00
|
|
|
let empty: BinaryHeap<int> = BinaryHeap::new();
|
2014-05-18 15:54:19 -07:00
|
|
|
assert!(empty.top().is_none());
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
#[test]
|
2013-08-08 11:38:10 -07:00
|
|
|
fn test_empty_replace() {
|
2014-10-30 21:25:08 -04:00
|
|
|
let mut heap: BinaryHeap<int> = BinaryHeap::new();
|
2014-05-18 15:54:19 -07:00
|
|
|
heap.replace(5).is_none();
|
2013-08-08 11:38:10 -07:00
|
|
|
}
|
2013-07-14 13:18:50 -04:00
|
|
|
|
|
|
|
#[test]
|
|
|
|
fn test_from_iter() {
|
2014-04-05 16:45:42 +11:00
|
|
|
let xs = vec!(9u, 8, 7, 6, 5, 4, 3, 2, 1);
|
2013-07-14 13:18:50 -04:00
|
|
|
|
2014-11-27 11:45:50 -05:00
|
|
|
let mut q: BinaryHeap<uint> = xs.iter().rev().map(|&x| x).collect();
|
2013-07-14 13:18:50 -04:00
|
|
|
|
2013-08-03 12:45:23 -04:00
|
|
|
for &x in xs.iter() {
|
2014-05-18 15:54:19 -07:00
|
|
|
assert_eq!(q.pop().unwrap(), x);
|
2013-07-14 13:18:50 -04:00
|
|
|
}
|
|
|
|
}
|
2012-12-09 20:02:33 -05:00
|
|
|
}
|