rust/src/librustc_metadata/cstore_impl.rs

567 lines
19 KiB
Rust
Raw Normal View History

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use cstore;
use encoder;
2016-10-19 23:31:14 -05:00
use locator;
use schema;
use rustc::dep_graph::DepTrackingMapConfig;
use rustc::middle::cstore::{CrateStore, CrateSource, LibSource, DepKind, ExternCrate};
rustc: Implement #[link(cfg(..))] and crt-static This commit is an implementation of [RFC 1721] which adds a new target feature to the compiler, `crt-static`, which can be used to select how the C runtime for a target is linked. Most targets dynamically linke the C runtime by default with the notable exception of some of the musl targets. [RFC 1721]: https://github.com/rust-lang/rfcs/blob/master/text/1721-crt-static.md This commit first adds the new target-feature, `crt-static`. If enabled, then the `cfg(target_feature = "crt-static")` will be available. Targets like musl will have this enabled by default. This feature can be controlled through the standard target-feature interface, `-C target-feature=+crt-static` or `-C target-feature=-crt-static`. Next this adds an gated and unstable `#[link(cfg(..))]` feature to enable the `crt-static` semantics we want with libc. The exact behavior of this attribute is a little squishy, but it's intended to be a forever-unstable implementation detail of the liblibc crate. Specifically the `#[link(cfg(..))]` annotation means that the `#[link]` directive is only active in a compilation unit if that `cfg` value is satisfied. For example when compiling an rlib, these directives are just encoded and ignored for dylibs, and all staticlibs are continued to be put into the rlib as usual. When placing that rlib into a staticlib, executable, or dylib, however, the `cfg` is evaluated *as if it were defined in the final artifact* and the library is decided to be linked or not. Essentially, what'll happen is: * On MSVC with `-C target-feature=-crt-static`, the `msvcrt.lib` library will be linked to. * On MSVC with `-C target-feature=+crt-static`, the `libcmt.lib` library will be linked to. * On musl with `-C target-feature=-crt-static`, the object files in liblibc.rlib are removed and `-lc` is passed instead. * On musl with `-C target-feature=+crt-static`, the object files in liblibc.rlib are used and `-lc` is not passed. This commit does **not** include an update to the liblibc module to implement these changes. I plan to do that just after the 1.14.0 beta release is cut to ensure we get ample time to test this feature. cc #37406
2016-10-31 18:40:13 -05:00
use rustc::middle::cstore::{NativeLibrary, LinkMeta, LinkagePreference, LoadedMacro};
use rustc::hir::def::{self, Def};
use rustc::middle::lang_items;
2016-10-28 01:52:45 -05:00
use rustc::session::Session;
use rustc::ty::{self, TyCtxt};
use rustc::ty::maps::Providers;
use rustc::hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc::dep_graph::DepNode;
use rustc::hir::map::{DefKey, DefPath, DisambiguatedDefPathData};
use rustc::util::nodemap::{NodeSet, DefIdMap};
use rustc_back::PanicStrategy;
use std::any::Any;
use std::mem;
use std::rc::Rc;
use syntax::ast;
use syntax::attr;
use syntax::parse::filemap_to_tts;
use syntax::symbol::Symbol;
use syntax_pos::{mk_sp, Span};
2016-03-29 00:50:44 -05:00
use rustc::hir::svh::Svh;
2015-11-20 17:08:09 -06:00
use rustc_back::target::Target;
2016-03-29 00:50:44 -05:00
use rustc::hir;
use std::collections::BTreeMap;
macro_rules! provide {
(<$lt:tt> $tcx:ident, $def_id:ident, $cdata:ident $($name:ident => $compute:block)*) => {
pub fn provide<$lt>(providers: &mut Providers<$lt>) {
$(fn $name<'a, $lt:$lt>($tcx: TyCtxt<'a, $lt, $lt>, $def_id: DefId)
-> <ty::maps::queries::$name<$lt> as
DepTrackingMapConfig>::Value {
assert!(!$def_id.is_local());
$tcx.dep_graph.read(DepNode::MetaData($def_id));
let $cdata = $tcx.sess.cstore.crate_data_as_rc_any($def_id.krate);
let $cdata = $cdata.downcast_ref::<cstore::CrateMetadata>()
.expect("CrateStore crated ata is not a CrateMetadata");
$compute
})*
*providers = Providers {
$($name,)*
..*providers
};
}
}
}
provide! { <'tcx> tcx, def_id, cdata
ty => { cdata.get_type(def_id.index, tcx) }
generics => { tcx.alloc_generics(cdata.get_generics(def_id.index)) }
predicates => { cdata.get_predicates(def_id.index, tcx) }
super_predicates => { cdata.get_super_predicates(def_id.index, tcx) }
trait_def => {
tcx.alloc_trait_def(cdata.get_trait_def(def_id.index, tcx))
}
adt_def => { cdata.get_adt_def(def_id.index, tcx) }
variances => { Rc::new(cdata.get_item_variances(def_id.index)) }
associated_item_def_ids => {
let mut result = vec![];
cdata.each_child_of_item(def_id.index, |child| result.push(child.def.def_id()));
Rc::new(result)
}
associated_item => { cdata.get_associated_item(def_id.index) }
impl_trait_ref => { cdata.get_impl_trait(def_id.index, tcx) }
custom_coerce_unsized_kind => {
cdata.get_custom_coerce_unsized_kind(def_id.index).unwrap_or_else(|| {
bug!("custom_coerce_unsized_kind: `{:?}` is missing its kind", def_id);
})
}
mir => {
let mir = cdata.maybe_get_item_mir(tcx, def_id.index).unwrap_or_else(|| {
bug!("get_item_mir: missing MIR for `{:?}`", def_id)
});
let mir = tcx.alloc_mir(mir);
// Perma-borrow MIR from extern crates to prevent mutation.
mem::forget(mir.borrow());
mir
}
typeck_tables => { cdata.item_body_tables(def_id.index, tcx) }
closure_kind => { cdata.closure_kind(def_id.index) }
closure_type => { cdata.closure_ty(def_id.index, tcx) }
}
impl CrateStore for cstore::CStore {
fn crate_data_as_rc_any(&self, krate: CrateNum) -> Rc<Any> {
self.get_crate_data(krate)
}
fn describe_def(&self, def: DefId) -> Option<Def> {
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).get_def(def.index)
}
fn def_span(&self, sess: &Session, def: DefId) -> Span {
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).get_span(def.index, sess)
}
fn stability(&self, def: DefId) -> Option<attr::Stability> {
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).get_stability(def.index)
}
fn deprecation(&self, def: DefId) -> Option<attr::Deprecation> {
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).get_deprecation(def.index)
}
fn visibility(&self, def: DefId) -> ty::Visibility {
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).get_visibility(def.index)
}
fn item_generics_cloned(&self, def: DefId) -> ty::Generics {
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).get_generics(def.index)
}
fn item_attrs(&self, def_id: DefId) -> Vec<ast::Attribute>
{
self.dep_graph.read(DepNode::MetaData(def_id));
self.get_crate_data(def_id.krate).get_item_attrs(def_id.index)
}
fn fn_arg_names(&self, did: DefId) -> Vec<ast::Name>
2015-11-22 13:02:04 -06:00
{
// FIXME(#38501) We've skipped a `read` on the `HirBody` of
// a `fn` when encoding, so the dep-tracking wouldn't work.
// This is only used by rustdoc anyway, which shouldn't have
// incremental recompilation ever enabled.
assert!(!self.dep_graph.is_fully_enabled());
self.get_crate_data(did.krate).get_fn_arg_names(did.index)
}
fn inherent_implementations_for_type(&self, def_id: DefId) -> Vec<DefId>
{
self.dep_graph.read(DepNode::MetaData(def_id));
self.get_crate_data(def_id.krate).get_inherent_implementations_for_type(def_id.index)
}
fn implementations_of_trait(&self, filter: Option<DefId>) -> Vec<DefId>
{
if let Some(def_id) = filter {
self.dep_graph.read(DepNode::MetaData(def_id));
}
let mut result = vec![];
self.iter_crate_data(|_, cdata| {
cdata.get_implementations_for_trait(filter, &mut result)
});
result
}
fn impl_polarity(&self, def: DefId) -> hir::ImplPolarity
{
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).get_impl_polarity(def.index)
}
fn impl_parent(&self, impl_def: DefId) -> Option<DefId> {
self.dep_graph.read(DepNode::MetaData(impl_def));
self.get_crate_data(impl_def.krate).get_parent_impl(impl_def.index)
}
fn trait_of_item(&self, def_id: DefId) -> Option<DefId> {
self.dep_graph.read(DepNode::MetaData(def_id));
self.get_crate_data(def_id.krate).get_trait_of_item(def_id.index)
}
fn associated_item_cloned(&self, def: DefId) -> ty::AssociatedItem
{
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).get_associated_item(def.index)
}
fn is_const_fn(&self, did: DefId) -> bool
{
self.dep_graph.read(DepNode::MetaData(did));
self.get_crate_data(did.krate).is_const_fn(did.index)
}
2015-11-20 17:08:09 -06:00
fn is_defaulted_trait(&self, trait_def_id: DefId) -> bool
{
self.dep_graph.read(DepNode::MetaData(trait_def_id));
self.get_crate_data(trait_def_id.krate).is_defaulted_trait(trait_def_id.index)
}
2015-11-22 13:02:04 -06:00
fn is_default_impl(&self, impl_did: DefId) -> bool {
self.dep_graph.read(DepNode::MetaData(impl_did));
self.get_crate_data(impl_did.krate).is_default_impl(impl_did.index)
2015-11-20 09:46:39 -06:00
}
fn is_foreign_item(&self, did: DefId) -> bool {
self.get_crate_data(did.krate).is_foreign_item(did.index)
}
fn is_statically_included_foreign_item(&self, def_id: DefId) -> bool
{
self.do_is_statically_included_foreign_item(def_id)
}
fn is_exported_symbol(&self, def_id: DefId) -> bool {
self.get_crate_data(def_id.krate).exported_symbols.contains(&def_id.index)
}
fn is_dllimport_foreign_item(&self, def_id: DefId) -> bool {
if def_id.krate == LOCAL_CRATE {
self.dllimport_foreign_items.borrow().contains(&def_id.index)
} else {
self.get_crate_data(def_id.krate).is_dllimport_foreign_item(def_id.index)
}
}
fn dylib_dependency_formats(&self, cnum: CrateNum)
-> Vec<(CrateNum, LinkagePreference)>
{
self.get_crate_data(cnum).get_dylib_dependency_formats()
}
fn dep_kind(&self, cnum: CrateNum) -> DepKind
{
self.get_crate_data(cnum).dep_kind.get()
}
fn export_macros(&self, cnum: CrateNum) {
if self.get_crate_data(cnum).dep_kind.get() == DepKind::UnexportedMacrosOnly {
self.get_crate_data(cnum).dep_kind.set(DepKind::MacrosOnly)
}
}
fn lang_items(&self, cnum: CrateNum) -> Vec<(DefIndex, usize)>
{
self.get_crate_data(cnum).get_lang_items()
}
fn missing_lang_items(&self, cnum: CrateNum)
-> Vec<lang_items::LangItem>
{
self.get_crate_data(cnum).get_missing_lang_items()
}
fn is_staged_api(&self, cnum: CrateNum) -> bool
{
self.get_crate_data(cnum).is_staged_api()
}
fn is_allocator(&self, cnum: CrateNum) -> bool
2015-11-20 17:08:09 -06:00
{
self.get_crate_data(cnum).is_allocator()
}
fn is_panic_runtime(&self, cnum: CrateNum) -> bool
rustc: Implement custom panic runtimes This commit is an implementation of [RFC 1513] which allows applications to alter the behavior of panics at compile time. A new compiler flag, `-C panic`, is added and accepts the values `unwind` or `panic`, with the default being `unwind`. This model affects how code is generated for the local crate, skipping generation of landing pads with `-C panic=abort`. [RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md Panic implementations are then provided by crates tagged with `#![panic_runtime]` and lazily required by crates with `#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic runtime must match the final product, and if the panic strategy is not `abort` then the entire DAG must have the same panic strategy. With the `-C panic=abort` strategy, users can expect a stable method to disable generation of landing pads, improving optimization in niche scenarios, decreasing compile time, and decreasing output binary size. With the `-C panic=unwind` strategy users can expect the existing ability to isolate failure in Rust code from the outside world. Organizationally, this commit dismantles the `sys_common::unwind` module in favor of some bits moving part of it to `libpanic_unwind` and the rest into the `panicking` module in libstd. The custom panic runtime support is pretty similar to the custom allocator support with the only major difference being how the panic runtime is injected (takes the `-C panic` flag into account).
2016-04-08 18:18:40 -05:00
{
self.get_crate_data(cnum).is_panic_runtime()
}
fn is_compiler_builtins(&self, cnum: CrateNum) -> bool {
self.get_crate_data(cnum).is_compiler_builtins()
}
2016-12-29 22:28:11 -06:00
fn is_sanitizer_runtime(&self, cnum: CrateNum) -> bool {
self.get_crate_data(cnum).is_sanitizer_runtime()
}
fn panic_strategy(&self, cnum: CrateNum) -> PanicStrategy {
rustc: Implement custom panic runtimes This commit is an implementation of [RFC 1513] which allows applications to alter the behavior of panics at compile time. A new compiler flag, `-C panic`, is added and accepts the values `unwind` or `panic`, with the default being `unwind`. This model affects how code is generated for the local crate, skipping generation of landing pads with `-C panic=abort`. [RFC 1513]: https://github.com/rust-lang/rfcs/blob/master/text/1513-less-unwinding.md Panic implementations are then provided by crates tagged with `#![panic_runtime]` and lazily required by crates with `#![needs_panic_runtime]`. The panic strategy (`-C panic` value) of the panic runtime must match the final product, and if the panic strategy is not `abort` then the entire DAG must have the same panic strategy. With the `-C panic=abort` strategy, users can expect a stable method to disable generation of landing pads, improving optimization in niche scenarios, decreasing compile time, and decreasing output binary size. With the `-C panic=unwind` strategy users can expect the existing ability to isolate failure in Rust code from the outside world. Organizationally, this commit dismantles the `sys_common::unwind` module in favor of some bits moving part of it to `libpanic_unwind` and the rest into the `panicking` module in libstd. The custom panic runtime support is pretty similar to the custom allocator support with the only major difference being how the panic runtime is injected (takes the `-C panic` flag into account).
2016-04-08 18:18:40 -05:00
self.get_crate_data(cnum).panic_strategy()
}
fn crate_name(&self, cnum: CrateNum) -> Symbol
2015-11-20 17:08:09 -06:00
{
self.get_crate_data(cnum).name
2015-11-20 17:08:09 -06:00
}
fn original_crate_name(&self, cnum: CrateNum) -> Symbol
{
self.get_crate_data(cnum).name()
}
fn extern_crate(&self, cnum: CrateNum) -> Option<ExternCrate>
{
self.get_crate_data(cnum).extern_crate.get()
}
fn crate_hash(&self, cnum: CrateNum) -> Svh
{
self.get_crate_hash(cnum)
}
fn crate_disambiguator(&self, cnum: CrateNum) -> Symbol
{
self.get_crate_data(cnum).disambiguator()
2015-11-22 13:02:04 -06:00
}
fn plugin_registrar_fn(&self, cnum: CrateNum) -> Option<DefId>
2015-11-20 09:46:39 -06:00
{
self.get_crate_data(cnum).root.plugin_registrar_fn.map(|index| DefId {
2015-11-20 09:46:39 -06:00
krate: cnum,
index: index
})
}
fn derive_registrar_fn(&self, cnum: CrateNum) -> Option<DefId>
{
self.get_crate_data(cnum).root.macro_derive_registrar.map(|index| DefId {
krate: cnum,
index: index
})
}
rustc: Implement #[link(cfg(..))] and crt-static This commit is an implementation of [RFC 1721] which adds a new target feature to the compiler, `crt-static`, which can be used to select how the C runtime for a target is linked. Most targets dynamically linke the C runtime by default with the notable exception of some of the musl targets. [RFC 1721]: https://github.com/rust-lang/rfcs/blob/master/text/1721-crt-static.md This commit first adds the new target-feature, `crt-static`. If enabled, then the `cfg(target_feature = "crt-static")` will be available. Targets like musl will have this enabled by default. This feature can be controlled through the standard target-feature interface, `-C target-feature=+crt-static` or `-C target-feature=-crt-static`. Next this adds an gated and unstable `#[link(cfg(..))]` feature to enable the `crt-static` semantics we want with libc. The exact behavior of this attribute is a little squishy, but it's intended to be a forever-unstable implementation detail of the liblibc crate. Specifically the `#[link(cfg(..))]` annotation means that the `#[link]` directive is only active in a compilation unit if that `cfg` value is satisfied. For example when compiling an rlib, these directives are just encoded and ignored for dylibs, and all staticlibs are continued to be put into the rlib as usual. When placing that rlib into a staticlib, executable, or dylib, however, the `cfg` is evaluated *as if it were defined in the final artifact* and the library is decided to be linked or not. Essentially, what'll happen is: * On MSVC with `-C target-feature=-crt-static`, the `msvcrt.lib` library will be linked to. * On MSVC with `-C target-feature=+crt-static`, the `libcmt.lib` library will be linked to. * On musl with `-C target-feature=-crt-static`, the object files in liblibc.rlib are removed and `-lc` is passed instead. * On musl with `-C target-feature=+crt-static`, the object files in liblibc.rlib are used and `-lc` is not passed. This commit does **not** include an update to the liblibc module to implement these changes. I plan to do that just after the 1.14.0 beta release is cut to ensure we get ample time to test this feature. cc #37406
2016-10-31 18:40:13 -05:00
fn native_libraries(&self, cnum: CrateNum) -> Vec<NativeLibrary>
2015-11-20 17:08:09 -06:00
{
self.get_crate_data(cnum).get_native_libraries()
2015-11-20 17:08:09 -06:00
}
fn exported_symbols(&self, cnum: CrateNum) -> Vec<DefId>
2015-11-20 17:08:09 -06:00
{
self.get_crate_data(cnum).get_exported_symbols()
2015-11-20 17:08:09 -06:00
}
fn is_no_builtins(&self, cnum: CrateNum) -> bool {
self.get_crate_data(cnum).is_no_builtins()
2016-08-14 21:56:26 -05:00
}
fn retrace_path(&self,
cnum: CrateNum,
path: &[DisambiguatedDefPathData])
-> Option<DefId> {
let cdata = self.get_crate_data(cnum);
cdata.def_path_table
.retrace_path(&path)
.map(|index| DefId { krate: cnum, index: index })
}
/// Returns the `DefKey` for a given `DefId`. This indicates the
/// parent `DefId` as well as some idea of what kind of data the
/// `DefId` refers to.
fn def_key(&self, def: DefId) -> DefKey {
// Note: loading the def-key (or def-path) for a def-id is not
// a *read* of its metadata. This is because the def-id is
// really just an interned shorthand for a def-path, which is the
// canonical name for an item.
//
// self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).def_key(def.index)
}
fn def_path(&self, def: DefId) -> DefPath {
// See `Note` above in `def_key()` for why this read is
// commented out:
//
// self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).def_path(def.index)
}
2015-11-20 09:46:39 -06:00
fn struct_field_names(&self, def: DefId) -> Vec<ast::Name>
{
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).get_struct_field_names(def.index)
2015-11-20 09:46:39 -06:00
}
fn item_children(&self, def_id: DefId) -> Vec<def::Export>
2015-11-20 09:46:39 -06:00
{
self.dep_graph.read(DepNode::MetaData(def_id));
2015-11-20 09:46:39 -06:00
let mut result = vec![];
self.get_crate_data(def_id.krate)
.each_child_of_item(def_id.index, |child| result.push(child));
2015-11-20 09:46:39 -06:00
result
}
fn load_macro(&self, id: DefId, sess: &Session) -> LoadedMacro {
let data = self.get_crate_data(id.krate);
if let Some(ref proc_macros) = data.proc_macros {
2016-11-16 00:10:34 -06:00
return LoadedMacro::ProcMacro(proc_macros[id.index.as_usize() - 1].1.clone());
}
let (name, def) = data.get_macro(id.index);
2016-10-28 01:52:45 -05:00
let source_name = format!("<{} macros>", name);
let filemap = sess.parse_sess.codemap().new_filemap(source_name, None, def.body);
let local_span = mk_sp(filemap.start_pos, filemap.end_pos);
let body = filemap_to_tts(&sess.parse_sess, filemap);
2016-10-28 01:52:45 -05:00
// Mark the attrs as used
let attrs = data.get_item_attrs(id.index);
for attr in &attrs {
2016-10-28 01:52:45 -05:00
attr::mark_used(attr);
}
let name = data.def_key(id.index).disambiguated_data.data
.get_opt_name().expect("no name in load_macro");
2016-10-28 01:52:45 -05:00
sess.imported_macro_spans.borrow_mut()
.insert(local_span, (name.to_string(), data.get_span(id.index, sess)));
2016-10-28 01:52:45 -05:00
LoadedMacro::MacroRules(ast::MacroDef {
ident: ast::Ident::with_empty_ctxt(name),
2016-10-28 01:52:45 -05:00
id: ast::DUMMY_NODE_ID,
span: local_span,
attrs: attrs,
2016-10-28 01:52:45 -05:00
body: body,
})
2016-10-28 01:52:45 -05:00
}
fn maybe_get_item_body<'a, 'tcx>(&self,
tcx: TyCtxt<'a, 'tcx, 'tcx>,
def_id: DefId)
-> Option<&'tcx hir::Body>
{
if let Some(cached) = tcx.hir.get_inlined_body(def_id) {
return Some(cached);
}
self.dep_graph.read(DepNode::MetaData(def_id));
debug!("maybe_get_item_body({}): inlining item", tcx.item_path_str(def_id));
self.get_crate_data(def_id.krate).maybe_get_item_body(tcx, def_id.index)
}
fn item_body_nested_bodies(&self, def: DefId) -> BTreeMap<hir::BodyId, hir::Body> {
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).item_body_nested_bodies(def.index)
}
fn const_is_rvalue_promotable_to_static(&self, def: DefId) -> bool {
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).const_is_rvalue_promotable_to_static(def.index)
}
2015-11-20 17:08:09 -06:00
fn is_item_mir_available(&self, def: DefId) -> bool {
self.dep_graph.read(DepNode::MetaData(def));
self.get_crate_data(def.krate).is_item_mir_available(def.index)
}
fn crates(&self) -> Vec<CrateNum>
{
let mut result = vec![];
self.iter_crate_data(|cnum, _| result.push(cnum));
result
}
rustc: Implement #[link(cfg(..))] and crt-static This commit is an implementation of [RFC 1721] which adds a new target feature to the compiler, `crt-static`, which can be used to select how the C runtime for a target is linked. Most targets dynamically linke the C runtime by default with the notable exception of some of the musl targets. [RFC 1721]: https://github.com/rust-lang/rfcs/blob/master/text/1721-crt-static.md This commit first adds the new target-feature, `crt-static`. If enabled, then the `cfg(target_feature = "crt-static")` will be available. Targets like musl will have this enabled by default. This feature can be controlled through the standard target-feature interface, `-C target-feature=+crt-static` or `-C target-feature=-crt-static`. Next this adds an gated and unstable `#[link(cfg(..))]` feature to enable the `crt-static` semantics we want with libc. The exact behavior of this attribute is a little squishy, but it's intended to be a forever-unstable implementation detail of the liblibc crate. Specifically the `#[link(cfg(..))]` annotation means that the `#[link]` directive is only active in a compilation unit if that `cfg` value is satisfied. For example when compiling an rlib, these directives are just encoded and ignored for dylibs, and all staticlibs are continued to be put into the rlib as usual. When placing that rlib into a staticlib, executable, or dylib, however, the `cfg` is evaluated *as if it were defined in the final artifact* and the library is decided to be linked or not. Essentially, what'll happen is: * On MSVC with `-C target-feature=-crt-static`, the `msvcrt.lib` library will be linked to. * On MSVC with `-C target-feature=+crt-static`, the `libcmt.lib` library will be linked to. * On musl with `-C target-feature=-crt-static`, the object files in liblibc.rlib are removed and `-lc` is passed instead. * On musl with `-C target-feature=+crt-static`, the object files in liblibc.rlib are used and `-lc` is not passed. This commit does **not** include an update to the liblibc module to implement these changes. I plan to do that just after the 1.14.0 beta release is cut to ensure we get ample time to test this feature. cc #37406
2016-10-31 18:40:13 -05:00
fn used_libraries(&self) -> Vec<NativeLibrary>
{
self.get_used_libraries().borrow().clone()
}
fn used_link_args(&self) -> Vec<String>
{
self.get_used_link_args().borrow().clone()
}
2015-11-20 17:08:09 -06:00
fn metadata_filename(&self) -> &str
{
2016-10-19 23:31:14 -05:00
locator::METADATA_FILENAME
2015-11-20 17:08:09 -06:00
}
fn metadata_section_name(&self, target: &Target) -> &str
{
2016-10-19 23:31:14 -05:00
locator::meta_section_name(target)
2015-11-20 17:08:09 -06:00
}
2016-11-09 20:57:30 -06:00
fn used_crates(&self, prefer: LinkagePreference) -> Vec<(CrateNum, LibSource)>
2015-11-20 17:08:09 -06:00
{
self.do_get_used_crates(prefer)
}
fn used_crate_source(&self, cnum: CrateNum) -> CrateSource
2015-11-20 17:08:09 -06:00
{
2016-10-27 00:03:11 -05:00
self.get_crate_data(cnum).source.clone()
2015-11-20 17:08:09 -06:00
}
fn extern_mod_stmt_cnum(&self, emod_id: ast::NodeId) -> Option<CrateNum>
{
2015-11-25 09:02:59 -06:00
self.do_extern_mod_stmt_cnum(emod_id)
}
fn encode_metadata<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
reexports: &def::ExportMap,
link_meta: &LinkMeta,
reachable: &NodeSet) -> Vec<u8>
{
2016-10-28 05:55:49 -05:00
encoder::encode_metadata(tcx, self, reexports, link_meta, reachable)
2015-11-20 17:08:09 -06:00
}
fn metadata_encoding_version(&self) -> &[u8]
{
schema::METADATA_HEADER
2015-11-20 17:08:09 -06:00
}
/// Returns a map from a sufficiently visible external item (i.e. an external item that is
/// visible from at least one local module) to a sufficiently visible parent (considering
/// modules that re-export the external item to be parents).
fn visible_parent_map<'a>(&'a self) -> ::std::cell::RefMut<'a, DefIdMap<DefId>> {
let mut visible_parent_map = self.visible_parent_map.borrow_mut();
if !visible_parent_map.is_empty() { return visible_parent_map; }
use std::collections::vec_deque::VecDeque;
use std::collections::hash_map::Entry;
for cnum in (1 .. self.next_crate_num().as_usize()).map(CrateNum::new) {
let cdata = self.get_crate_data(cnum);
match cdata.extern_crate.get() {
// Ignore crates without a corresponding local `extern crate` item.
Some(extern_crate) if !extern_crate.direct => continue,
_ => {},
}
let mut bfs_queue = &mut VecDeque::new();
let mut add_child = |bfs_queue: &mut VecDeque<_>, child: def::Export, parent: DefId| {
let child = child.def.def_id();
if self.visibility(child) != ty::Visibility::Public {
return;
}
match visible_parent_map.entry(child) {
Entry::Occupied(mut entry) => {
// If `child` is defined in crate `cnum`, ensure
// that it is mapped to a parent in `cnum`.
if child.krate == cnum && entry.get().krate != cnum {
entry.insert(parent);
}
}
Entry::Vacant(entry) => {
entry.insert(parent);
bfs_queue.push_back(child);
}
}
};
bfs_queue.push_back(DefId {
krate: cnum,
index: CRATE_DEF_INDEX
});
while let Some(def) = bfs_queue.pop_front() {
for child in self.item_children(def) {
add_child(bfs_queue, child, def);
}
}
}
visible_parent_map
}
}