rust/src/librustc/middle/trans/build.rs

782 lines
23 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use lib::llvm::llvm;
2013-03-26 15:38:07 -05:00
use lib::llvm::{CallConv, AtomicBinOp, AtomicOrdering, AsmDialect};
use lib::llvm::{Opcode, IntPredicate, RealPredicate};
use lib::llvm::{ValueRef, BasicBlockRef};
use lib;
use middle::trans::common::*;
use syntax::codemap::Span;
use middle::trans::builder::Builder;
2013-06-16 05:52:44 -05:00
use middle::trans::type_::Type;
use std::cast;
use std::libc::{c_uint, c_ulonglong, c_char};
pub fn terminate(cx: &Block, _: &str) {
cx.terminated.set(true);
}
pub fn check_not_terminated(cx: &Block) {
if cx.terminated.get() {
fail!("already terminated!");
}
}
pub fn B(cx: &Block) -> Builder {
let b = cx.fcx.ccx.builder();
b.position_at_end(cx.llbb);
b
}
// The difference between a block being unreachable and being terminated is
// somewhat obscure, and has to do with error checking. When a block is
// terminated, we're saying that trying to add any further statements in the
// block is an error. On the other hand, if something is unreachable, that
// means that the block was terminated in some way that we don't want to check
2012-08-01 19:30:05 -05:00
// for (fail/break/return statements, call to diverging functions, etc), and
// further instructions to the block should simply be ignored.
pub fn RetVoid(cx: &Block) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "RetVoid");
B(cx).ret_void();
}
pub fn Ret(cx: @Block, V: ValueRef) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "Ret");
B(cx).ret(V);
}
pub fn AggregateRet(cx: @Block, RetVals: &[ValueRef]) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "AggregateRet");
B(cx).aggregate_ret(RetVals);
}
pub fn Br(cx: @Block, Dest: BasicBlockRef) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "Br");
B(cx).br(Dest);
}
pub fn CondBr(cx: @Block, If: ValueRef, Then: BasicBlockRef,
Else: BasicBlockRef) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "CondBr");
B(cx).cond_br(If, Then, Else);
}
pub fn Switch(cx: &Block, V: ValueRef, Else: BasicBlockRef, NumCases: uint)
-> ValueRef {
if cx.unreachable.get() { return _Undef(V); }
check_not_terminated(cx);
terminate(cx, "Switch");
B(cx).switch(V, Else, NumCases)
}
pub fn AddCase(S: ValueRef, OnVal: ValueRef, Dest: BasicBlockRef) {
unsafe {
if llvm::LLVMIsUndef(S) == lib::llvm::True { return; }
llvm::LLVMAddCase(S, OnVal, Dest);
}
}
pub fn IndirectBr(cx: &Block, Addr: ValueRef, NumDests: uint) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "IndirectBr");
B(cx).indirect_br(Addr, NumDests);
}
pub fn Invoke(cx: @Block,
Fn: ValueRef,
Args: &[ValueRef],
Then: BasicBlockRef,
Catch: BasicBlockRef,
attributes: &[(uint, lib::llvm::Attribute)])
-> ValueRef {
if cx.unreachable.get() {
2013-06-15 09:29:52 -05:00
return C_null(Type::i8());
}
check_not_terminated(cx);
terminate(cx, "Invoke");
debug!("Invoke({} with arguments ({}))",
cx.val_to_str(Fn),
Args.map(|a| cx.val_to_str(*a)).connect(", "));
B(cx).invoke(Fn, Args, Then, Catch, attributes)
}
pub fn Unreachable(cx: &Block) {
if cx.unreachable.get() {
return
}
cx.unreachable.set(true);
if !cx.terminated.get() {
B(cx).unreachable();
}
}
pub fn _Undef(val: ValueRef) -> ValueRef {
unsafe {
2013-06-16 05:52:44 -05:00
return llvm::LLVMGetUndef(val_ty(val).to_ref());
}
}
/* Arithmetic */
pub fn Add(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).add(LHS, RHS)
}
pub fn NSWAdd(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).nswadd(LHS, RHS)
}
pub fn NUWAdd(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).nuwadd(LHS, RHS)
}
pub fn FAdd(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).fadd(LHS, RHS)
}
pub fn Sub(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).sub(LHS, RHS)
}
pub fn NSWSub(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).nswsub(LHS, RHS)
}
pub fn NUWSub(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).nuwsub(LHS, RHS)
}
pub fn FSub(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).fsub(LHS, RHS)
}
pub fn Mul(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).mul(LHS, RHS)
}
pub fn NSWMul(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).nswmul(LHS, RHS)
}
pub fn NUWMul(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).nuwmul(LHS, RHS)
}
pub fn FMul(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).fmul(LHS, RHS)
}
pub fn UDiv(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).udiv(LHS, RHS)
}
pub fn SDiv(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).sdiv(LHS, RHS)
}
pub fn ExactSDiv(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).exactsdiv(LHS, RHS)
}
pub fn FDiv(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).fdiv(LHS, RHS)
}
pub fn URem(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).urem(LHS, RHS)
}
pub fn SRem(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).srem(LHS, RHS)
}
pub fn FRem(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).frem(LHS, RHS)
}
pub fn Shl(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).shl(LHS, RHS)
}
pub fn LShr(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).lshr(LHS, RHS)
}
pub fn AShr(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).ashr(LHS, RHS)
}
pub fn And(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).and(LHS, RHS)
}
pub fn Or(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).or(LHS, RHS)
}
pub fn Xor(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).xor(LHS, RHS)
}
pub fn BinOp(cx: &Block, Op: Opcode, LHS: ValueRef, RHS: ValueRef)
-> ValueRef {
if cx.unreachable.get() { return _Undef(LHS); }
B(cx).binop(Op, LHS, RHS)
}
pub fn Neg(cx: &Block, V: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(V); }
B(cx).neg(V)
}
pub fn NSWNeg(cx: &Block, V: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(V); }
B(cx).nswneg(V)
}
pub fn NUWNeg(cx: &Block, V: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(V); }
B(cx).nuwneg(V)
}
pub fn FNeg(cx: &Block, V: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(V); }
B(cx).fneg(V)
}
pub fn Not(cx: &Block, V: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(V); }
B(cx).not(V)
}
/* Memory */
pub fn Malloc(cx: &Block, Ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i8p().to_ref()); }
B(cx).malloc(Ty)
}
}
pub fn ArrayMalloc(cx: &Block, Ty: Type, Val: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i8p().to_ref()); }
B(cx).array_malloc(Ty, Val)
}
}
pub fn Alloca(cx: &Block, Ty: Type, name: &str) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Ty.ptr_to().to_ref()); }
let b = cx.fcx.ccx.builder();
b.position_before(cx.fcx.alloca_insert_pt.get().unwrap());
b.alloca(Ty, name)
}
}
pub fn ArrayAlloca(cx: &Block, Ty: Type, Val: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Ty.ptr_to().to_ref()); }
let b = cx.fcx.ccx.builder();
b.position_before(cx.fcx.alloca_insert_pt.get().unwrap());
b.array_alloca(Ty, Val)
}
}
pub fn Free(cx: &Block, PointerVal: ValueRef) {
if cx.unreachable.get() { return; }
B(cx).free(PointerVal)
}
pub fn Load(cx: &Block, PointerVal: ValueRef) -> ValueRef {
unsafe {
let ccx = cx.fcx.ccx;
if cx.unreachable.get() {
let ty = val_ty(PointerVal);
2013-06-16 05:52:44 -05:00
let eltty = if ty.kind() == lib::llvm::Array {
ty.element_type()
} else {
ccx.int_type
};
return llvm::LLVMGetUndef(eltty.to_ref());
}
B(cx).load(PointerVal)
}
}
pub fn VolatileLoad(cx: &Block, PointerVal: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().to_ref()); }
B(cx).volatile_load(PointerVal)
}
}
pub fn AtomicLoad(cx: &Block, PointerVal: ValueRef, order: AtomicOrdering) -> ValueRef {
unsafe {
let ccx = cx.fcx.ccx;
if cx.unreachable.get() {
2013-06-16 05:52:44 -05:00
return llvm::LLVMGetUndef(ccx.int_type.to_ref());
}
B(cx).atomic_load(PointerVal, order)
}
}
pub fn LoadRangeAssert(cx: &Block, PointerVal: ValueRef, lo: c_ulonglong,
hi: c_ulonglong, signed: lib::llvm::Bool) -> ValueRef {
if cx.unreachable.get() {
let ccx = cx.fcx.ccx;
let ty = val_ty(PointerVal);
let eltty = if ty.kind() == lib::llvm::Array {
ty.element_type()
} else {
ccx.int_type
};
unsafe {
llvm::LLVMGetUndef(eltty.to_ref())
}
} else {
B(cx).load_range_assert(PointerVal, lo, hi, signed)
}
}
pub fn Store(cx: &Block, Val: ValueRef, Ptr: ValueRef) {
if cx.unreachable.get() { return; }
B(cx).store(Val, Ptr)
}
pub fn VolatileStore(cx: &Block, Val: ValueRef, Ptr: ValueRef) {
if cx.unreachable.get() { return; }
B(cx).volatile_store(Val, Ptr)
}
pub fn AtomicStore(cx: &Block, Val: ValueRef, Ptr: ValueRef, order: AtomicOrdering) {
if cx.unreachable.get() { return; }
B(cx).atomic_store(Val, Ptr, order)
}
pub fn GEP(cx: &Block, Pointer: ValueRef, Indices: &[ValueRef]) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().ptr_to().to_ref()); }
B(cx).gep(Pointer, Indices)
}
}
2011-10-26 00:23:28 -05:00
// Simple wrapper around GEP that takes an array of ints and wraps them
// in C_i32()
#[inline]
pub fn GEPi(cx: &Block, base: ValueRef, ixs: &[uint]) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().ptr_to().to_ref()); }
B(cx).gepi(base, ixs)
}
2011-10-26 00:23:28 -05:00
}
pub fn InBoundsGEP(cx: &Block, Pointer: ValueRef, Indices: &[ValueRef]) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().ptr_to().to_ref()); }
B(cx).inbounds_gep(Pointer, Indices)
}
}
pub fn StructGEP(cx: &Block, Pointer: ValueRef, Idx: uint) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().ptr_to().to_ref()); }
B(cx).struct_gep(Pointer, Idx)
}
}
pub fn GlobalString(cx: &Block, _Str: *c_char) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i8p().to_ref()); }
B(cx).global_string(_Str)
}
}
pub fn GlobalStringPtr(cx: &Block, _Str: *c_char) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i8p().to_ref()); }
B(cx).global_string_ptr(_Str)
}
}
/* Casts */
pub fn Trunc(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).trunc(Val, DestTy)
}
}
pub fn ZExt(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).zext(Val, DestTy)
}
}
pub fn SExt(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).sext(Val, DestTy)
}
}
pub fn FPToUI(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).fptoui(Val, DestTy)
}
}
pub fn FPToSI(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).fptosi(Val, DestTy)
}
}
pub fn UIToFP(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).uitofp(Val, DestTy)
}
}
pub fn SIToFP(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).sitofp(Val, DestTy)
}
}
pub fn FPTrunc(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).fptrunc(Val, DestTy)
}
}
pub fn FPExt(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).fpext(Val, DestTy)
}
}
pub fn PtrToInt(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).ptrtoint(Val, DestTy)
}
}
pub fn IntToPtr(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).inttoptr(Val, DestTy)
}
}
pub fn BitCast(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).bitcast(Val, DestTy)
}
}
pub fn ZExtOrBitCast(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).zext_or_bitcast(Val, DestTy)
}
}
pub fn SExtOrBitCast(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).sext_or_bitcast(Val, DestTy)
}
}
pub fn TruncOrBitCast(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).trunc_or_bitcast(Val, DestTy)
}
}
pub fn Cast(cx: &Block, Op: Opcode, Val: ValueRef, DestTy: Type, _: *u8)
-> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).cast(Op, Val, DestTy)
}
}
pub fn PointerCast(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).pointercast(Val, DestTy)
}
}
pub fn IntCast(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).intcast(Val, DestTy)
}
}
pub fn FPCast(cx: &Block, Val: ValueRef, DestTy: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(DestTy.to_ref()); }
B(cx).fpcast(Val, DestTy)
}
}
/* Comparisons */
pub fn ICmp(cx: &Block, Op: IntPredicate, LHS: ValueRef, RHS: ValueRef)
-> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i1().to_ref()); }
B(cx).icmp(Op, LHS, RHS)
}
}
pub fn FCmp(cx: &Block, Op: RealPredicate, LHS: ValueRef, RHS: ValueRef)
-> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i1().to_ref()); }
B(cx).fcmp(Op, LHS, RHS)
}
}
/* Miscellaneous instructions */
pub fn EmptyPhi(cx: &Block, Ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Ty.to_ref()); }
B(cx).empty_phi(Ty)
}
}
pub fn Phi(cx: &Block, Ty: Type, vals: &[ValueRef], bbs: &[BasicBlockRef]) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Ty.to_ref()); }
B(cx).phi(Ty, vals, bbs)
}
}
pub fn AddIncomingToPhi(phi: ValueRef, val: ValueRef, bb: BasicBlockRef) {
unsafe {
if llvm::LLVMIsUndef(phi) == lib::llvm::True { return; }
2013-04-22 16:27:30 -05:00
let valptr = cast::transmute(&val);
let bbptr = cast::transmute(&bb);
llvm::LLVMAddIncoming(phi, valptr, bbptr, 1 as c_uint);
}
}
pub fn _UndefReturn(cx: &Block, Fn: ValueRef) -> ValueRef {
unsafe {
let ccx = cx.fcx.ccx;
let ty = val_ty(Fn);
2013-06-16 05:52:44 -05:00
let retty = if ty.kind() == lib::llvm::Integer {
ty.return_type()
} else {
ccx.int_type
};
B(cx).count_insn("ret_undef");
llvm::LLVMGetUndef(retty.to_ref())
}
}
pub fn add_span_comment(cx: &Block, sp: Span, text: &str) {
B(cx).add_span_comment(sp, text)
2011-11-14 16:03:20 -06:00
}
pub fn add_comment(cx: &Block, text: &str) {
B(cx).add_comment(text)
2011-11-14 16:03:20 -06:00
}
pub fn InlineAsmCall(cx: &Block, asm: *c_char, cons: *c_char,
2013-06-15 09:29:52 -05:00
inputs: &[ValueRef], output: Type,
2013-03-12 03:02:58 -05:00
volatile: bool, alignstack: bool,
dia: AsmDialect) -> ValueRef {
B(cx).inline_asm_call(asm, cons, inputs, output, volatile, alignstack, dia)
2013-03-10 00:37:50 -06:00
}
pub fn Call(cx: &Block, Fn: ValueRef, Args: &[ValueRef],
attributes: &[(uint, lib::llvm::Attribute)]) -> ValueRef {
if cx.unreachable.get() { return _UndefReturn(cx, Fn); }
B(cx).call(Fn, Args, attributes)
}
pub fn CallWithConv(cx: &Block, Fn: ValueRef, Args: &[ValueRef], Conv: CallConv,
attributes: &[(uint, lib::llvm::Attribute)]) -> ValueRef {
if cx.unreachable.get() { return _UndefReturn(cx, Fn); }
B(cx).call_with_conv(Fn, Args, Conv, attributes)
}
pub fn AtomicFence(cx: &Block, order: AtomicOrdering) {
if cx.unreachable.get() { return; }
2013-07-28 02:48:16 -05:00
B(cx).atomic_fence(order)
}
pub fn Select(cx: &Block, If: ValueRef, Then: ValueRef, Else: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(Then); }
B(cx).select(If, Then, Else)
}
pub fn VAArg(cx: &Block, list: ValueRef, Ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Ty.to_ref()); }
B(cx).va_arg(list, Ty)
}
}
pub fn ExtractElement(cx: &Block, VecVal: ValueRef, Index: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().to_ref()); }
B(cx).extract_element(VecVal, Index)
}
}
pub fn InsertElement(cx: &Block, VecVal: ValueRef, EltVal: ValueRef,
2013-05-02 02:59:26 -05:00
Index: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().to_ref()); }
B(cx).insert_element(VecVal, EltVal, Index)
}
}
pub fn ShuffleVector(cx: &Block, V1: ValueRef, V2: ValueRef,
2013-05-02 02:59:26 -05:00
Mask: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().to_ref()); }
B(cx).shuffle_vector(V1, V2, Mask)
2013-05-02 02:59:26 -05:00
}
}
pub fn VectorSplat(cx: &Block, NumElts: uint, EltVal: ValueRef) -> ValueRef {
2013-05-02 02:59:26 -05:00
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().to_ref()); }
B(cx).vector_splat(NumElts, EltVal)
}
}
pub fn ExtractValue(cx: &Block, AggVal: ValueRef, Index: uint) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().to_ref()); }
B(cx).extract_value(AggVal, Index)
}
}
pub fn InsertValue(cx: &Block, AggVal: ValueRef, EltVal: ValueRef, Index: uint) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::nil().to_ref()); }
B(cx).insert_value(AggVal, EltVal, Index)
}
}
pub fn IsNull(cx: &Block, Val: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i1().to_ref()); }
B(cx).is_null(Val)
}
}
pub fn IsNotNull(cx: &Block, Val: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(Type::i1().to_ref()); }
B(cx).is_not_null(Val)
}
}
pub fn PtrDiff(cx: &Block, LHS: ValueRef, RHS: ValueRef) -> ValueRef {
unsafe {
let ccx = cx.fcx.ccx;
if cx.unreachable.get() { return llvm::LLVMGetUndef(ccx.int_type.to_ref()); }
B(cx).ptrdiff(LHS, RHS)
}
}
pub fn Trap(cx: &Block) {
if cx.unreachable.get() { return; }
B(cx).trap();
}
pub fn LandingPad(cx: &Block, Ty: Type, PersFn: ValueRef,
NumClauses: uint) -> ValueRef {
check_not_terminated(cx);
assert!(!cx.unreachable.get());
B(cx).landing_pad(Ty, PersFn, NumClauses)
}
pub fn SetCleanup(cx: &Block, LandingPad: ValueRef) {
B(cx).set_cleanup(LandingPad)
}
pub fn Resume(cx: @Block, Exn: ValueRef) -> ValueRef {
check_not_terminated(cx);
terminate(cx, "Resume");
B(cx).resume(Exn)
2011-09-07 16:28:02 -05:00
}
// Atomic Operations
pub fn AtomicCmpXchg(cx: &Block, dst: ValueRef,
cmp: ValueRef, src: ValueRef,
order: AtomicOrdering) -> ValueRef {
B(cx).atomic_cmpxchg(dst, cmp, src, order)
}
pub fn AtomicRMW(cx: &Block, op: AtomicBinOp,
dst: ValueRef, src: ValueRef,
order: AtomicOrdering) -> ValueRef {
B(cx).atomic_rmw(op, dst, src, order)
}