rust/src/librustc/middle/stability.rs

440 lines
16 KiB
Rust
Raw Normal View History

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A pass that annotates every item and method with its stability level,
//! propagating default levels lexically from parent to children ast nodes.
use session::Session;
2015-01-16 12:25:16 -06:00
use lint;
use middle::ty;
use metadata::csearch;
use syntax::parse::token::InternedString;
use syntax::codemap::{Span, DUMMY_SP};
use syntax::{attr, visit};
use syntax::ast;
use syntax::ast::{Attribute, Block, Crate, DefId, FnDecl, NodeId, Variant};
use syntax::ast::{Item, RequiredMethod, ProvidedMethod, TraitItem};
use syntax::ast::{TypeMethod, Method, Generics, StructField, TypeTraitItem};
use syntax::ast_util::is_local;
use syntax::attr::{Stability, AttrMetaMethods};
use syntax::visit::{FnKind, FkMethod, Visitor};
use syntax::feature_gate::emit_feature_warn;
2015-01-16 12:25:16 -06:00
use util::nodemap::{NodeMap, DefIdMap, FnvHashSet, FnvHashMap};
use util::ppaux::Repr;
use std::mem::replace;
/// A stability index, giving the stability level for items and methods.
pub struct Index {
// Indicates whether this crate has #![feature(staged_api)]
staged_api: bool,
// stability for crate-local items; unmarked stability == no entry
local: NodeMap<Stability>,
// cache for extern-crate items; unmarked stability == entry with None
extern_cache: DefIdMap<Option<Stability>>
}
// A private tree-walker for producing an Index.
struct Annotator<'a> {
sess: &'a Session,
index: Index,
parent: Option<Stability>
}
impl<'a> Annotator<'a> {
// Determine the stability for a node based on its attributes and inherited
// stability. The stability is recorded in the index and used as the parent.
fn annotate<F>(&mut self, id: NodeId, use_parent: bool,
attrs: &Vec<Attribute>, item_sp: Span, f: F) where
2014-12-08 19:26:43 -06:00
F: FnOnce(&mut Annotator),
{
match attr::find_stability(self.sess.diagnostic(), attrs.as_slice(), item_sp) {
Some(stab) => {
self.index.local.insert(id, stab.clone());
// Don't inherit #[stable(feature = "grandfathered", since = "1.0.0")]
if stab.level != attr::Stable {
let parent = replace(&mut self.parent, Some(stab));
f(self);
self.parent = parent;
} else {
f(self);
}
}
None => {
if use_parent {
self.parent.clone().map(|stab| self.index.local.insert(id, stab));
}
f(self);
}
}
}
}
impl<'a, 'v> Visitor<'v> for Annotator<'a> {
fn visit_item(&mut self, i: &Item) {
// FIXME (#18969): the following is a hack around the fact
// that we cannot currently annotate the stability of
// `deriving`. Basically, we do *not* allow stability
// inheritance on trait implementations, so that derived
// implementations appear to be unannotated. This then allows
// derived implementations to be automatically tagged with the
// stability of the trait. This is WRONG, but expedient to get
// libstd stabilized for the 1.0 release.
let use_parent = match i.node {
ast::ItemImpl(_, _, _, Some(_), _, _) => false,
_ => true,
};
self.annotate(i.id, use_parent, &i.attrs, i.span, |v| visit::walk_item(v, i));
if let ast::ItemStruct(ref sd, _) = i.node {
sd.ctor_id.map(|id| {
self.annotate(id, true, &i.attrs, i.span, |_| {})
});
}
}
fn visit_fn(&mut self, fk: FnKind<'v>, _: &'v FnDecl,
_: &'v Block, sp: Span, _: NodeId) {
if let FkMethod(_, _, meth) = fk {
// Methods are not already annotated, so we annotate it
self.annotate(meth.id, true, &meth.attrs, sp, |_| {});
}
// Items defined in a function body have no reason to have
// a stability attribute, so we don't recurse.
}
fn visit_trait_item(&mut self, t: &TraitItem) {
let (id, attrs, sp) = match *t {
RequiredMethod(TypeMethod {id, ref attrs, span, ..}) => (id, attrs, span),
// work around lack of pattern matching for @ types
ProvidedMethod(ref method) => {
match **method {
Method {ref attrs, id, span, ..} => (id, attrs, span),
}
}
TypeTraitItem(ref typedef) => (typedef.ty_param.id, &typedef.attrs,
typedef.ty_param.span),
};
self.annotate(id, true, attrs, sp, |v| visit::walk_trait_item(v, t));
}
fn visit_variant(&mut self, var: &Variant, g: &'v Generics) {
self.annotate(var.node.id, true, &var.node.attrs, var.span,
|v| visit::walk_variant(v, var, g))
}
fn visit_struct_field(&mut self, s: &StructField) {
self.annotate(s.node.id, true, &s.node.attrs, s.span,
|v| visit::walk_struct_field(v, s));
}
fn visit_foreign_item(&mut self, i: &ast::ForeignItem) {
self.annotate(i.id, true, &i.attrs, i.span, |_| {});
}
}
impl Index {
/// Construct the stability index for a crate being compiled.
pub fn build(sess: &Session, krate: &Crate) -> Index {
let mut staged_api = false;
for attr in krate.attrs.iter() {
if attr.name().get() == "staged_api" {
match attr.node.value.node {
ast::MetaWord(_) => {
attr::mark_used(attr);
staged_api = true;
}
_ => (/*pass*/)
}
}
}
let index = Index {
staged_api: staged_api,
local: NodeMap(),
extern_cache: DefIdMap()
};
if !staged_api {
return index;
}
let mut annotator = Annotator {
sess: sess,
index: index,
parent: None
};
annotator.annotate(ast::CRATE_NODE_ID, true, &krate.attrs, krate.span,
|v| visit::walk_crate(v, krate));
annotator.index
}
}
/// Cross-references the feature names of unstable APIs with enabled
/// features and possibly prints errors. Returns a list of all
/// features used.
pub fn check_unstable_api_usage(tcx: &ty::ctxt) -> FnvHashSet<InternedString> {
let ref active_lib_features = tcx.sess.features.borrow().lib_features;
// Put the active features into a map for quick lookup
let active_features = active_lib_features.iter().map(|&(ref s, _)| s.clone()).collect();
let mut checker = Checker {
tcx: tcx,
active_features: active_features,
used_features: FnvHashSet()
};
let krate = tcx.map.krate();
visit::walk_crate(&mut checker, krate);
let used_features = checker.used_features;
return used_features;
}
struct Checker<'a, 'tcx: 'a> {
tcx: &'a ty::ctxt<'tcx>,
active_features: FnvHashSet<InternedString>,
used_features: FnvHashSet<InternedString>
}
impl<'a, 'tcx> Checker<'a, 'tcx> {
fn check(&mut self, id: ast::DefId, span: Span, stab: &Option<Stability>) {
// Only the cross-crate scenario matters when checking unstable APIs
let cross_crate = !is_local(id);
if !cross_crate { return }
match *stab {
Some(Stability { level: attr::Unstable, ref feature, ref reason, .. }) => {
self.used_features.insert(feature.clone());
if !self.active_features.contains(feature) {
let msg = match *reason {
Some(ref r) => format!("use of unstable library feature '{}': {}",
feature.get(), r.get()),
None => format!("use of unstable library feature '{}'", feature.get())
};
emit_feature_warn(&self.tcx.sess.parse_sess.span_diagnostic,
feature.get(), span, &msg[]);
}
}
Some(..) => {
// Stable APIs are always ok to call and deprecated APIs are
// handled by a lint.
}
None => {
// This is an 'unmarked' API, which should not exist
// in the standard library.
2015-01-16 16:08:24 -06:00
self.tcx.sess.span_err(span, "use of unmarked library feature");
self.tcx.sess.span_note(span, "this is either a bug in the library you are \
using or a bug in the compiler - there is \
no way to use this feature");
}
}
}
}
impl<'a, 'v, 'tcx> Visitor<'v> for Checker<'a, 'tcx> {
fn visit_view_item(&mut self, item: &ast::ViewItem) {
check_view_item(self.tcx, item,
&mut |id, sp, stab| self.check(id, sp, stab));
visit::walk_view_item(self, item)
}
fn visit_item(&mut self, item: &ast::Item) {
check_item(self.tcx, item,
&mut |id, sp, stab| self.check(id, sp, stab));
visit::walk_item(self, item);
}
fn visit_expr(&mut self, ex: &ast::Expr) {
check_expr(self.tcx, ex,
&mut |id, sp, stab| self.check(id, sp, stab));
visit::walk_expr(self, ex);
}
}
/// Helper for discovering nodes to check for stability
pub fn check_view_item(tcx: &ty::ctxt, item: &ast::ViewItem,
cb: &mut FnMut(ast::DefId, Span, &Option<Stability>)) {
// compiler-generated `extern crate` statements have a dummy span.
if item.span == DUMMY_SP { return }
let id = match item.node {
ast::ViewItemExternCrate(_, _, id) => id,
ast::ViewItemUse(..) => return,
};
let cnum = match tcx.sess.cstore.find_extern_mod_stmt_cnum(id) {
Some(cnum) => cnum,
None => return,
};
let id = ast::DefId { krate: cnum, node: ast::CRATE_NODE_ID };
maybe_do_stability_check(tcx, id, item.span, cb);
}
/// Helper for discovering nodes to check for stability
pub fn check_expr(tcx: &ty::ctxt, e: &ast::Expr,
cb: &mut FnMut(ast::DefId, Span, &Option<Stability>)) {
if is_internal(tcx, e.span) { return; }
let mut span = e.span;
let id = match e.node {
ast::ExprPath(..) | ast::ExprQPath(..) | ast::ExprStruct(..) => {
match tcx.def_map.borrow().get(&e.id) {
Some(&def) => def.def_id(),
None => return
}
}
ast::ExprMethodCall(i, _, _) => {
span = i.span;
let method_call = ty::MethodCall::expr(e.id);
match tcx.method_map.borrow().get(&method_call) {
Some(method) => {
match method.origin {
ty::MethodStatic(def_id) => {
def_id
}
ty::MethodStaticUnboxedClosure(def_id) => {
def_id
}
ty::MethodTypeParam(ty::MethodParam {
ref trait_ref,
method_num: index,
..
}) |
ty::MethodTraitObject(ty::MethodObject {
ref trait_ref,
method_num: index,
..
}) => {
ty::trait_item(tcx, trait_ref.def_id, index).def_id()
}
}
}
None => return
}
}
_ => return
};
maybe_do_stability_check(tcx, id, span, cb);
}
/// Helper for discovering nodes to check for stability
pub fn check_item(tcx: &ty::ctxt, item: &ast::Item,
cb: &mut FnMut(ast::DefId, Span, &Option<Stability>)) {
if is_internal(tcx, item.span) { return }
match item.node {
ast::ItemTrait(_, _, ref supertraits, _) => {
for t in supertraits.iter() {
if let ast::TraitTyParamBound(ref t, _) = *t {
let id = ty::trait_ref_to_def_id(tcx, &t.trait_ref);
maybe_do_stability_check(tcx, id, t.trait_ref.path.span, cb);
}
}
}
ast::ItemImpl(_, _, _, Some(ref t), _, _) => {
let id = ty::trait_ref_to_def_id(tcx, t);
maybe_do_stability_check(tcx, id, t.path.span, cb);
}
_ => (/* pass */)
}
}
fn maybe_do_stability_check(tcx: &ty::ctxt, id: ast::DefId, span: Span,
cb: &mut FnMut(ast::DefId, Span, &Option<Stability>)) {
if !is_staged_api(tcx, id) { return }
let ref stability = lookup(tcx, id);
cb(id, span, stability);
}
fn is_internal(tcx: &ty::ctxt, span: Span) -> bool {
tcx.sess.codemap().span_is_internal(span)
}
fn is_staged_api(tcx: &ty::ctxt, id: DefId) -> bool {
match ty::trait_item_of_item(tcx, id) {
Some(ty::MethodTraitItemId(trait_method_id))
if trait_method_id != id => {
is_staged_api(tcx, trait_method_id)
}
_ if is_local(id) => {
tcx.stability.borrow().staged_api
}
_ => {
csearch::is_staged_api(&tcx.sess.cstore, id)
}
}
}
/// Lookup the stability for a node, loading external crate
/// metadata as necessary.
pub fn lookup(tcx: &ty::ctxt, id: DefId) -> Option<Stability> {
debug!("lookup(id={})",
id.repr(tcx));
// is this definition the implementation of a trait method?
match ty::trait_item_of_item(tcx, id) {
Some(ty::MethodTraitItemId(trait_method_id)) if trait_method_id != id => {
debug!("lookup: trait_method_id={:?}", trait_method_id);
return lookup(tcx, trait_method_id)
}
_ => {}
}
let item_stab = if is_local(id) {
tcx.stability.borrow().local.get(&id.node).cloned()
} else {
let stab = csearch::get_stability(&tcx.sess.cstore, id);
let mut index = tcx.stability.borrow_mut();
(*index).extern_cache.insert(id, stab.clone());
stab
};
item_stab.or_else(|| {
if let Some(trait_id) = ty::trait_id_of_impl(tcx, id) {
// FIXME (#18969): for the time being, simply use the
// stability of the trait to determine the stability of any
// unmarked impls for it. See FIXME above for more details.
debug!("lookup: trait_id={:?}", trait_id);
lookup(tcx, trait_id)
} else {
None
}
})
}
Preliminary feature staging This partially implements the feature staging described in the [release channel RFC][rc]. It does not yet fully conform to the RFC as written, but does accomplish its goals sufficiently for the 1.0 alpha release. It has three primary user-visible effects: * On the nightly channel, use of unstable APIs generates a warning. * On the beta channel, use of unstable APIs generates a warning. * On the beta channel, use of feature gates generates a warning. Code that does not trigger these warnings is considered 'stable', modulo pre-1.0 bugs. Disabling the warnings for unstable APIs continues to be done in the existing (i.e. old) style, via `#[allow(...)]`, not that specified in the RFC. I deem this marginally acceptable since any code that must do this is not using the stable dialect of Rust. Use of feature gates is itself gated with the new 'unstable_features' lint, on nightly set to 'allow', and on beta 'warn'. The attribute scheme used here corresponds to an older version of the RFC, with the `#[staged_api]` crate attribute toggling the staging behavior of the stability attributes, but the user impact is only in-tree so I'm not concerned about having to make design changes later (and I may ultimately prefer the scheme here after all, with the `#[staged_api]` crate attribute). Since the Rust codebase itself makes use of unstable features the compiler and build system to a midly elaborate dance to allow it to bootstrap while disobeying these lints (which would otherwise be errors because Rust builds with `-D warnings`). This patch includes one significant hack that causes a regression. Because the `format_args!` macro emits calls to unstable APIs it would trigger the lint. I added a hack to the lint to make it not trigger, but this in turn causes arguments to `println!` not to be checked for feature gates. I don't presently understand macro expansion well enough to fix. This is bug #20661. Closes #16678 [rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
2015-01-06 08:26:08 -06:00
/// Given the list of enabled features that were not language features (i.e. that
/// were expected to be library features), and the list of features used from
/// libraries, identify activated features that don't exist and error about them.
2015-01-16 12:25:16 -06:00
pub fn check_unused_features(sess: &Session,
used_lib_features: &FnvHashSet<InternedString>) {
let ref lib_features = sess.features.borrow().lib_features;
let mut active_lib_features: FnvHashMap<InternedString, Span>
= lib_features.clone().into_iter().collect();
for used_feature in used_lib_features.iter() {
active_lib_features.remove(used_feature);
}
for (_, &span) in active_lib_features.iter() {
sess.add_lint(lint::builtin::UNUSED_FEATURES,
ast::CRATE_NODE_ID,
span,
"unused or unknown feature".to_string());
}
Preliminary feature staging This partially implements the feature staging described in the [release channel RFC][rc]. It does not yet fully conform to the RFC as written, but does accomplish its goals sufficiently for the 1.0 alpha release. It has three primary user-visible effects: * On the nightly channel, use of unstable APIs generates a warning. * On the beta channel, use of unstable APIs generates a warning. * On the beta channel, use of feature gates generates a warning. Code that does not trigger these warnings is considered 'stable', modulo pre-1.0 bugs. Disabling the warnings for unstable APIs continues to be done in the existing (i.e. old) style, via `#[allow(...)]`, not that specified in the RFC. I deem this marginally acceptable since any code that must do this is not using the stable dialect of Rust. Use of feature gates is itself gated with the new 'unstable_features' lint, on nightly set to 'allow', and on beta 'warn'. The attribute scheme used here corresponds to an older version of the RFC, with the `#[staged_api]` crate attribute toggling the staging behavior of the stability attributes, but the user impact is only in-tree so I'm not concerned about having to make design changes later (and I may ultimately prefer the scheme here after all, with the `#[staged_api]` crate attribute). Since the Rust codebase itself makes use of unstable features the compiler and build system to a midly elaborate dance to allow it to bootstrap while disobeying these lints (which would otherwise be errors because Rust builds with `-D warnings`). This patch includes one significant hack that causes a regression. Because the `format_args!` macro emits calls to unstable APIs it would trigger the lint. I added a hack to the lint to make it not trigger, but this in turn causes arguments to `println!` not to be checked for feature gates. I don't presently understand macro expansion well enough to fix. This is bug #20661. Closes #16678 [rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
2015-01-06 08:26:08 -06:00
}