rust/crates/ra_hir/src/ty/infer.rs

1435 lines
56 KiB
Rust
Raw Normal View History

//! Type inference, i.e. the process of walking through the code and determining
//! the type of each expression and pattern.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
//! which represent currently unknown types; as we walk through the expressions,
//! we might determine that certain variables need to be equal to each other, or
//! to certain types. To record this, we use the union-find implementation from
//! the `ena` crate, which is extracted from rustc.
use std::borrow::Cow;
use std::iter::repeat;
use std::ops::Index;
use std::sync::Arc;
use std::mem;
use ena::unify::{InPlaceUnificationTable, UnifyKey, UnifyValue, NoError};
use rustc_hash::FxHashMap;
use ra_arena::map::ArenaMap;
2019-05-21 08:24:53 -05:00
use ra_prof::profile;
use test_utils::tested_by;
use crate::{
2019-05-23 12:18:47 -05:00
Function, StructField, Path, Name, FnSignature, AdtDef, ConstSignature, HirDatabase,
DefWithBody, ImplItem,
type_ref::{TypeRef, Mutability},
2019-05-23 12:18:47 -05:00
expr::{
Body, Expr, BindingAnnotation, Literal, ExprId, Pat, PatId, UnaryOp, BinaryOp, Statement,
FieldPat, Array, self,
},
generics::{GenericParams, HasGenericParams},
path::{GenericArgs, GenericArg},
2019-04-16 20:26:01 -05:00
ModuleDef,
adt::VariantDef,
resolve::{Resolver, Resolution},
2019-03-21 14:13:11 -05:00
nameres::Namespace,
2019-04-16 20:26:01 -05:00
ty::infer::diagnostics::InferenceDiagnostic,
2019-03-23 12:41:59 -05:00
diagnostics::DiagnosticSink,
};
use super::{
Ty, TypableDef, Substs, primitive, op, ApplicationTy, TypeCtor, CallableDef, TraitRef,
traits::{Solution, Obligation, Guidance},
method_resolution,
};
mod unify;
/// The entry point of type inference.
2019-05-21 08:24:53 -05:00
pub fn infer_query(db: &impl HirDatabase, def: DefWithBody) -> Arc<InferenceResult> {
let _p = profile("infer_query");
db.check_canceled();
let body = def.body(db);
let resolver = def.resolver(db);
let mut ctx = InferenceContext::new(db, body, resolver);
match def {
DefWithBody::Const(ref c) => ctx.collect_const_signature(&c.signature(db)),
DefWithBody::Function(ref f) => ctx.collect_fn_signature(&f.signature(db)),
DefWithBody::Static(ref s) => ctx.collect_const_signature(&s.signature(db)),
}
ctx.infer_body();
Arc::new(ctx.resolve_all())
}
2019-03-02 13:05:37 -06:00
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
2019-03-04 08:49:18 -06:00
enum ExprOrPatId {
2019-03-04 08:52:48 -06:00
ExprId(ExprId),
PatId(PatId),
}
2019-03-04 08:52:48 -06:00
impl_froms!(ExprOrPatId: ExprId, PatId);
/// Binding modes inferred for patterns.
/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum BindingMode {
Move,
Ref(Mutability),
}
impl BindingMode {
pub fn convert(annotation: &BindingAnnotation) -> BindingMode {
match annotation {
BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
}
}
}
impl Default for BindingMode {
fn default() -> Self {
BindingMode::Move
}
}
/// The result of type inference: A mapping from expressions and patterns to types.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct InferenceResult {
/// For each method call expr, records the function it resolves to.
method_resolutions: FxHashMap<ExprId, Function>,
/// For each field access expr, records the field it resolves to.
field_resolutions: FxHashMap<ExprId, StructField>,
2019-03-02 13:05:37 -06:00
/// For each associated item record what it resolves to
assoc_resolutions: FxHashMap<ExprOrPatId, ImplItem>,
2019-03-23 08:28:47 -05:00
diagnostics: Vec<InferenceDiagnostic>,
pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
pub(super) type_of_pat: ArenaMap<PatId, Ty>,
}
impl InferenceResult {
pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
self.method_resolutions.get(&expr).map(|it| *it)
}
pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
self.field_resolutions.get(&expr).map(|it| *it)
}
2019-03-04 08:49:18 -06:00
pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<ImplItem> {
self.assoc_resolutions.get(&id.into()).map(|it| *it)
}
pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<ImplItem> {
self.assoc_resolutions.get(&id.into()).map(|it| *it)
}
2019-03-23 08:28:47 -05:00
pub(crate) fn add_diagnostics(
&self,
db: &impl HirDatabase,
owner: Function,
2019-03-23 12:41:59 -05:00
sink: &mut DiagnosticSink,
2019-03-23 08:28:47 -05:00
) {
2019-03-23 10:35:14 -05:00
self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
2019-03-21 14:13:11 -05:00
}
}
impl Index<ExprId> for InferenceResult {
type Output = Ty;
fn index(&self, expr: ExprId) -> &Ty {
self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
}
}
impl Index<PatId> for InferenceResult {
type Output = Ty;
fn index(&self, pat: PatId) -> &Ty {
self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
}
}
/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
struct InferenceContext<'a, D: HirDatabase> {
db: &'a D,
body: Arc<Body>,
resolver: Resolver,
var_unification_table: InPlaceUnificationTable<TypeVarId>,
obligations: Vec<Obligation>,
method_resolutions: FxHashMap<ExprId, Function>,
field_resolutions: FxHashMap<ExprId, StructField>,
2019-03-02 13:05:37 -06:00
assoc_resolutions: FxHashMap<ExprOrPatId, ImplItem>,
type_of_expr: ArenaMap<ExprId, Ty>,
type_of_pat: ArenaMap<PatId, Ty>,
2019-03-23 08:28:47 -05:00
diagnostics: Vec<InferenceDiagnostic>,
/// The return type of the function being inferred.
return_ty: Ty,
}
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
fn new(db: &'a D, body: Arc<Body>, resolver: Resolver) -> Self {
InferenceContext {
method_resolutions: FxHashMap::default(),
field_resolutions: FxHashMap::default(),
2019-03-02 13:05:37 -06:00
assoc_resolutions: FxHashMap::default(),
type_of_expr: ArenaMap::default(),
type_of_pat: ArenaMap::default(),
2019-03-21 14:13:11 -05:00
diagnostics: Vec::default(),
var_unification_table: InPlaceUnificationTable::new(),
obligations: Vec::default(),
return_ty: Ty::Unknown, // set in collect_fn_signature
db,
body,
resolver,
}
}
fn resolve_all(mut self) -> InferenceResult {
// FIXME resolve obligations as well (use Guidance if necessary)
let mut tv_stack = Vec::new();
let mut expr_types = mem::replace(&mut self.type_of_expr, ArenaMap::default());
for ty in expr_types.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
let mut pat_types = mem::replace(&mut self.type_of_pat, ArenaMap::default());
for ty in pat_types.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
InferenceResult {
method_resolutions: self.method_resolutions,
field_resolutions: self.field_resolutions,
2019-03-02 13:05:37 -06:00
assoc_resolutions: self.assoc_resolutions,
type_of_expr: expr_types,
type_of_pat: pat_types,
2019-03-21 14:13:11 -05:00
diagnostics: self.diagnostics,
}
}
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
self.type_of_expr.insert(expr, ty);
}
fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
self.method_resolutions.insert(expr, func);
}
fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
self.field_resolutions.insert(expr, field);
}
2019-03-02 13:05:37 -06:00
fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: ImplItem) {
self.assoc_resolutions.insert(id, item);
}
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
self.type_of_pat.insert(pat, ty);
}
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
let ty = Ty::from_hir(
self.db,
2019-03-23 02:53:48 -05:00
// FIXME use right resolver for block
&self.resolver,
type_ref,
);
let ty = self.insert_type_vars(ty);
ty
}
fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
}
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
self.unify_inner(ty1, ty2, 0)
}
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
if depth > 1000 {
// prevent stackoverflows
panic!("infinite recursion in unification");
}
if ty1 == ty2 {
return true;
}
// try to resolve type vars first
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
match (&*ty1, &*ty2) {
(Ty::Unknown, ..) => true,
(.., Ty::Unknown) => true,
2019-03-21 16:29:12 -05:00
(Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
}
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) => {
// both type vars are unknown since we tried to resolve them
self.var_unification_table.union(*tv1, *tv2);
true
}
(Ty::Infer(InferTy::TypeVar(tv)), other)
| (other, Ty::Infer(InferTy::TypeVar(tv)))
| (Ty::Infer(InferTy::IntVar(tv)), other)
| (other, Ty::Infer(InferTy::IntVar(tv)))
| (Ty::Infer(InferTy::FloatVar(tv)), other)
| (other, Ty::Infer(InferTy::FloatVar(tv))) => {
// the type var is unknown since we tried to resolve it
self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
true
}
_ => false,
}
}
fn new_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_integer_var(&mut self) -> Ty {
Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_float_var(&mut self) -> Ty {
Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty {
Ty::Unknown => self.new_type_var(),
Ty::Apply(ApplicationTy {
2019-03-21 16:29:12 -05:00
ctor: TypeCtor::Int(primitive::UncertainIntTy::Unknown),
..
}) => self.new_integer_var(),
Ty::Apply(ApplicationTy {
2019-03-21 16:29:12 -05:00
ctor: TypeCtor::Float(primitive::UncertainFloatTy::Unknown),
..
}) => self.new_float_var(),
_ => ty,
}
}
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
}
fn resolve_obligations_as_possible(&mut self) {
let obligations = mem::replace(&mut self.obligations, Vec::new());
for obligation in obligations {
2019-05-04 08:42:00 -05:00
let (solution, canonicalized) = match &obligation {
Obligation::Trait(tr) => {
2019-05-04 08:42:00 -05:00
let canonicalized = self.canonicalizer().canonicalize_trait_ref(tr.clone());
(
2019-05-05 09:04:31 -05:00
self.db.implements(
2019-05-04 08:42:00 -05:00
self.resolver.krate().unwrap(),
canonicalized.value.clone(),
),
canonicalized,
)
}
};
match solution {
Some(Solution::Unique(substs)) => {
2019-05-04 08:42:00 -05:00
canonicalized.apply_solution(self, substs.0);
}
Some(Solution::Ambig(Guidance::Definite(substs))) => {
2019-05-04 08:42:00 -05:00
canonicalized.apply_solution(self, substs.0);
self.obligations.push(obligation);
}
Some(_) => {
// FIXME use this when trying to resolve everything at the end
self.obligations.push(obligation);
}
None => {
// FIXME obligation cannot be fulfilled => diagnostic
}
}
}
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
self.resolve_obligations_as_possible();
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_as_possible);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
ty
}
}
_ => ty,
})
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
let mut ty = Cow::Borrowed(ty);
// The type variable could resolve to a int/float variable. Hence try
// resolving up to three times; each type of variable shouldn't occur
// more than once
for i in 0..3 {
if i > 0 {
tested_by!(type_var_resolves_to_int_var);
}
match &*ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
match self.var_unification_table.probe_value(inner).known() {
Some(known_ty) => {
// The known_ty can't be a type var itself
ty = Cow::Owned(known_ty.clone());
}
_ => return ty,
}
}
_ => return ty,
}
}
log::error!("Inference variable still not resolved: {:?}", ty);
ty
}
/// Resolves the type completely; type variables without known type are
/// replaced by Ty::Unknown.
fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_completely);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
tv.fallback_value()
}
}
_ => ty,
})
}
fn infer_path_expr(&mut self, resolver: &Resolver, path: &Path, id: ExprOrPatId) -> Option<Ty> {
let resolved = resolver.resolve_path_segments(self.db, &path);
let (def, remaining_index) = resolved.into_inner();
log::debug!(
"path {:?} resolved to {:?} with remaining index {:?}",
path,
def,
remaining_index
);
// if the remaining_index is None, we expect the path
// to be fully resolved, in this case we continue with
// the default by attempting to `take_values´ from the resolution.
// Otherwise the path was partially resolved, which means
// we might have resolved into a type for which
// we may find some associated item starting at the
// path.segment pointed to by `remaining_index´
let mut resolved =
if remaining_index.is_none() { def.take_values()? } else { def.take_types()? };
2019-06-03 09:27:51 -05:00
let remaining_index = remaining_index.unwrap_or_else(|| path.segments.len());
2019-04-14 13:26:21 -05:00
let mut actual_def_ty: Option<Ty> = None;
let krate = resolver.krate()?;
// resolve intermediate segments
2019-04-16 20:26:01 -05:00
for (i, segment) in path.segments[remaining_index..].iter().enumerate() {
let ty = match resolved {
Resolution::Def(def) => {
2019-04-09 15:04:59 -05:00
// FIXME resolve associated items from traits as well
let typable: Option<TypableDef> = def.into();
let typable = typable?;
2019-04-16 20:26:01 -05:00
let ty = self.db.type_for_def(typable, Namespace::Types);
2019-04-14 13:26:21 -05:00
2019-04-16 20:26:01 -05:00
// For example, this substs will take `Gen::*<u32>*::make`
assert!(remaining_index > 0);
let substs = Ty::substs_from_path_segment(
self.db,
&self.resolver,
&path.segments[remaining_index + i - 1],
typable,
);
2019-04-14 18:43:35 -05:00
2019-04-16 20:26:01 -05:00
ty.subst(&substs)
}
Resolution::LocalBinding(_) => {
// can't have a local binding in an associated item path
return None;
}
Resolution::GenericParam(..) => {
2019-03-23 02:53:48 -05:00
// FIXME associated item of generic param
return None;
}
Resolution::SelfType(_) => {
2019-03-23 02:53:48 -05:00
// FIXME associated item of self type
return None;
}
};
// Attempt to find an impl_item for the type which has a name matching
// the current segment
log::debug!("looking for path segment: {:?}", segment);
2019-04-14 17:03:54 -05:00
2019-04-14 13:26:21 -05:00
actual_def_ty = Some(ty.clone());
let item: crate::ModuleDef = ty.iterate_impl_items(self.db, krate, |item| {
let matching_def: Option<crate::ModuleDef> = match item {
crate::ImplItem::Method(func) => {
let sig = func.signature(self.db);
if segment.name == *sig.name() {
Some(func.into())
} else {
None
2019-03-02 13:05:37 -06:00
}
}
2019-03-02 13:05:37 -06:00
crate::ImplItem::Const(konst) => {
let sig = konst.signature(self.db);
if segment.name == *sig.name() {
Some(konst.into())
} else {
None
2019-03-02 13:05:37 -06:00
}
}
// FIXME: Resolve associated types
crate::ImplItem::TypeAlias(_) => None,
};
match matching_def {
Some(_) => {
self.write_assoc_resolution(id, item);
return matching_def;
2019-02-25 01:27:47 -06:00
}
None => None,
}
})?;
2019-03-02 13:05:37 -06:00
2019-06-03 09:21:08 -05:00
resolved = Resolution::Def(item);
}
match resolved {
Resolution::Def(def) => {
2019-04-16 12:47:59 -05:00
let typable: Option<TypableDef> = def.into();
let typable = typable?;
let mut ty = self.db.type_for_def(typable, Namespace::Values);
2019-04-16 20:26:01 -05:00
if let Some(sts) = self.find_self_types(&def, actual_def_ty) {
2019-04-16 12:47:59 -05:00
ty = ty.subst(&sts);
}
2019-04-14 13:26:21 -05:00
2019-04-16 12:47:59 -05:00
let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable);
let ty = ty.subst(&substs);
let ty = self.insert_type_vars(ty);
Some(ty)
}
Resolution::LocalBinding(pat) => {
2019-04-08 08:47:28 -05:00
let ty = self.type_of_pat.get(pat)?.clone();
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
Some(ty)
}
Resolution::GenericParam(..) => {
// generic params can't refer to values... yet
None
}
Resolution::SelfType(_) => {
log::error!("path expr {:?} resolved to Self type in values ns", path);
None
}
}
}
2019-04-16 20:26:01 -05:00
fn find_self_types(&self, def: &ModuleDef, actual_def_ty: Option<Ty>) -> Option<Substs> {
let actual_def_ty = actual_def_ty?;
if let crate::ModuleDef::Function(func) = def {
// We only do the infer if parent has generic params
let gen = func.generic_params(self.db);
if gen.count_parent_params() == 0 {
return None;
}
let impl_block = func.impl_block(self.db)?.target_ty(self.db);
let impl_block_substs = impl_block.substs()?;
let actual_substs = actual_def_ty.substs()?;
let mut new_substs = vec![Ty::Unknown; gen.count_parent_params()];
// The following code *link up* the function actual parma type
// and impl_block type param index
impl_block_substs.iter().zip(actual_substs.iter()).for_each(|(param, pty)| {
if let Ty::Param { idx, .. } = param {
if let Some(s) = new_substs.get_mut(*idx as usize) {
*s = pty.clone();
}
}
});
Some(Substs(new_substs.into()))
} else {
None
}
}
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
let path = match path {
Some(path) => path,
None => return (Ty::Unknown, None),
};
let resolver = &self.resolver;
let typable: Option<TypableDef> = match resolver.resolve_path(self.db, &path).take_types() {
Some(Resolution::Def(def)) => def.into(),
Some(Resolution::LocalBinding(..)) => {
// this cannot happen
log::error!("path resolved to local binding in type ns");
return (Ty::Unknown, None);
}
Some(Resolution::GenericParam(..)) => {
// generic params can't be used in struct literals
return (Ty::Unknown, None);
}
Some(Resolution::SelfType(..)) => {
2019-03-23 02:53:48 -05:00
// FIXME this is allowed in an impl for a struct, handle this
return (Ty::Unknown, None);
}
None => return (Ty::Unknown, None),
};
let def = match typable {
None => return (Ty::Unknown, None),
Some(it) => it,
};
2019-03-23 02:53:48 -05:00
// FIXME remove the duplication between here and `Ty::from_path`?
let substs = Ty::substs_from_path(self.db, resolver, path, def);
match def {
TypableDef::Struct(s) => {
let ty = s.ty(self.db);
let ty = self.insert_type_vars(ty.apply_substs(substs));
(ty, Some(s.into()))
}
TypableDef::EnumVariant(var) => {
let ty = var.parent_enum(self.db).ty(self.db);
let ty = self.insert_type_vars(ty.apply_substs(substs));
(ty, Some(var.into()))
}
2019-05-23 12:18:47 -05:00
TypableDef::Union(_)
| TypableDef::TypeAlias(_)
2019-02-25 01:27:47 -06:00
| TypableDef::Function(_)
| TypableDef::Enum(_)
2019-02-25 02:21:01 -06:00
| TypableDef::Const(_)
2019-05-30 06:05:35 -05:00
| TypableDef::Static(_)
| TypableDef::BuiltinType(_) => (Ty::Unknown, None),
}
}
fn infer_tuple_struct_pat(
&mut self,
path: Option<&Path>,
subpats: &[PatId],
expected: &Ty,
default_bm: BindingMode,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for (i, &subpat) in subpats.iter().enumerate() {
let expected_ty = def
.and_then(|d| d.field(self.db, &Name::tuple_field_name(i)))
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
self.infer_pat(subpat, &expected_ty, default_bm);
}
ty
}
fn infer_struct_pat(
&mut self,
path: Option<&Path>,
subpats: &[FieldPat],
expected: &Ty,
default_bm: BindingMode,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for subpat in subpats {
let matching_field = def.and_then(|it| it.field(self.db, &subpat.name));
let expected_ty =
matching_field.map_or(Ty::Unknown, |field| field.ty(self.db)).subst(&substs);
self.infer_pat(subpat.pat, &expected_ty, default_bm);
}
ty
}
fn infer_pat(&mut self, pat: PatId, mut expected: &Ty, mut default_bm: BindingMode) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let is_non_ref_pat = match &body[pat] {
Pat::Tuple(..)
| Pat::TupleStruct { .. }
| Pat::Struct { .. }
| Pat::Range { .. }
| Pat::Slice { .. } => true,
2019-03-23 02:53:48 -05:00
// FIXME: Path/Lit might actually evaluate to ref, but inference is unimplemented.
Pat::Path(..) | Pat::Lit(..) => true,
Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Missing => false,
};
if is_non_ref_pat {
while let Some((inner, mutability)) = expected.as_reference() {
expected = inner;
default_bm = match default_bm {
BindingMode::Move => BindingMode::Ref(mutability),
BindingMode::Ref(Mutability::Shared) => BindingMode::Ref(Mutability::Shared),
BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability),
}
}
} else if let Pat::Ref { .. } = &body[pat] {
2019-03-17 14:05:10 -05:00
tested_by!(match_ergonomics_ref);
// When you encounter a `&pat` pattern, reset to Move.
// This is so that `w` is by value: `let (_, &w) = &(1, &2);`
default_bm = BindingMode::Move;
}
// Lose mutability.
let default_bm = default_bm;
let expected = expected;
let ty = match &body[pat] {
Pat::Tuple(ref args) => {
let expectations = match expected.as_tuple() {
Some(parameters) => &*parameters.0,
_ => &[],
};
let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
let inner_tys: Substs = args
.iter()
.zip(expectations_iter)
.map(|(&pat, ty)| self.infer_pat(pat, ty, default_bm))
.collect::<Vec<_>>()
.into();
Ty::apply(TypeCtor::Tuple { cardinality: inner_tys.len() as u16 }, inner_tys)
}
Pat::Ref { pat, mutability } => {
let expectation = match expected.as_reference() {
Some((inner_ty, exp_mut)) => {
if *mutability != exp_mut {
2019-03-23 02:53:48 -05:00
// FIXME: emit type error?
}
inner_ty
}
_ => &Ty::Unknown,
};
let subty = self.infer_pat(*pat, expectation, default_bm);
2019-06-03 09:21:08 -05:00
Ty::apply_one(TypeCtor::Ref(*mutability), subty)
}
Pat::TupleStruct { path: ref p, args: ref subpats } => {
self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm)
}
Pat::Struct { path: ref p, args: ref fields } => {
self.infer_struct_pat(p.as_ref(), fields, expected, default_bm)
}
Pat::Path(path) => {
2019-03-23 02:53:48 -05:00
// FIXME use correct resolver for the surrounding expression
let resolver = self.resolver.clone();
self.infer_path_expr(&resolver, &path, pat.into()).unwrap_or(Ty::Unknown)
}
Pat::Bind { mode, name: _name, subpat } => {
let mode = if mode == &BindingAnnotation::Unannotated {
default_bm
} else {
BindingMode::convert(mode)
};
let inner_ty = if let Some(subpat) = subpat {
self.infer_pat(*subpat, expected, default_bm)
} else {
expected.clone()
};
let inner_ty = self.insert_type_vars_shallow(inner_ty);
let bound_ty = match mode {
BindingMode::Ref(mutability) => {
2019-06-03 09:21:08 -05:00
Ty::apply_one(TypeCtor::Ref(mutability), inner_ty.clone())
}
BindingMode::Move => inner_ty.clone(),
};
let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty);
self.write_pat_ty(pat, bound_ty);
return inner_ty;
}
_ => Ty::Unknown,
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
self.unify(&ty, expected);
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.write_pat_ty(pat, ty.clone());
ty
}
fn substs_for_method_call(
&mut self,
def_generics: Option<Arc<GenericParams>>,
2019-04-09 15:04:59 -05:00
generic_args: Option<&GenericArgs>,
receiver_ty: &Ty,
) -> Substs {
let (parent_param_count, param_count) =
def_generics.as_ref().map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
let mut substs = Vec::with_capacity(parent_param_count + param_count);
2019-04-09 15:04:59 -05:00
// Parent arguments are unknown, except for the receiver type
if let Some(parent_generics) = def_generics.and_then(|p| p.parent_params.clone()) {
for param in &parent_generics.params {
if param.name.as_known_name() == Some(crate::KnownName::SelfType) {
substs.push(receiver_ty.clone());
} else {
substs.push(Ty::Unknown);
}
}
}
// handle provided type arguments
if let Some(generic_args) = generic_args {
// if args are provided, it should be all of them, but we can't rely on that
for arg in generic_args.args.iter().take(param_count) {
match arg {
GenericArg::Type(type_ref) => {
let ty = self.make_ty(type_ref);
substs.push(ty);
}
}
}
};
let supplied_params = substs.len();
for _ in supplied_params..parent_param_count + param_count {
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), parent_param_count + param_count);
Substs(substs.into())
}
2019-04-09 15:04:59 -05:00
fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
2019-06-03 09:01:10 -05:00
if let Ty::Apply(a_ty) = callable_ty {
if let TypeCtor::FnDef(def) = a_ty.ctor {
// add obligation for trait implementation, if this is a trait method
// FIXME also register obligations from where clauses from the trait or impl and method
match def {
CallableDef::Function(f) => {
if let Some(trait_) = f.parent_trait(self.db) {
// construct a TraitDef
let substs = a_ty.parameters.prefix(
trait_.generic_params(self.db).count_params_including_parent(),
);
self.obligations.push(Obligation::Trait(TraitRef { trait_, substs }));
2019-04-09 15:04:59 -05:00
}
}
2019-06-03 09:01:10 -05:00
CallableDef::Struct(_) | CallableDef::EnumVariant(_) => {}
2019-04-09 15:04:59 -05:00
}
2019-06-03 09:01:10 -05:00
}
2019-04-09 15:04:59 -05:00
}
}
fn infer_method_call(
&mut self,
tgt_expr: ExprId,
receiver: ExprId,
args: &[ExprId],
method_name: &Name,
generic_args: Option<&GenericArgs>,
) -> Ty {
let receiver_ty = self.infer_expr(receiver, &Expectation::none());
2019-05-04 08:42:00 -05:00
let canonicalized_receiver = self.canonicalizer().canonicalize_ty(receiver_ty.clone());
let resolved = method_resolution::lookup_method(
2019-05-04 08:42:00 -05:00
&canonicalized_receiver.value,
self.db,
method_name,
2019-05-04 08:42:00 -05:00
&self.resolver,
);
2019-04-09 15:04:59 -05:00
let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
Some((ty, func)) => {
2019-05-04 08:42:00 -05:00
let ty = canonicalized_receiver.decanonicalize_ty(ty);
2019-04-09 15:04:59 -05:00
self.write_method_resolution(tgt_expr, func);
(
ty,
self.db.type_for_def(func.into(), Namespace::Values),
Some(func.generic_params(self.db)),
)
}
None => (receiver_ty, Ty::Unknown, None),
};
let substs =
self.substs_for_method_call(def_generics.clone(), generic_args, &derefed_receiver_ty);
let method_ty = method_ty.apply_substs(substs);
let method_ty = self.insert_type_vars(method_ty);
self.register_obligations_for_call(&method_ty);
let (expected_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
Some(sig) => {
if !sig.params().is_empty() {
(sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
} else {
(Ty::Unknown, Vec::new(), sig.ret().clone())
2019-04-09 15:04:59 -05:00
}
}
None => (Ty::Unknown, Vec::new(), Ty::Unknown),
2019-04-09 15:04:59 -05:00
};
// Apply autoref so the below unification works correctly
// FIXME: return correct autorefs from lookup_method
let actual_receiver_ty = match expected_receiver_ty.as_reference() {
Some((_, mutability)) => Ty::apply_one(TypeCtor::Ref(mutability), derefed_receiver_ty),
_ => derefed_receiver_ty,
};
self.unify(&expected_receiver_ty, &actual_receiver_ty);
let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown));
for (arg, param) in args.iter().zip(param_iter) {
self.infer_expr(*arg, &Expectation::has_type(param));
}
ret_ty
}
fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let ty = match &body[tgt_expr] {
Expr::Missing => Ty::Unknown,
Expr::If { condition, then_branch, else_branch } => {
// if let is desugared to match, so this is always simple if
2019-03-21 16:20:03 -05:00
self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
let then_ty = self.infer_expr(*then_branch, expected);
match else_branch {
Some(else_branch) => {
self.infer_expr(*else_branch, expected);
}
None => {
// no else branch -> unit
self.unify(&then_ty, &Ty::unit()); // actually coerce
}
};
then_ty
}
Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
Expr::Loop { body } => {
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
2019-03-23 02:53:48 -05:00
// FIXME handle break with value
2019-03-21 16:20:03 -05:00
Ty::simple(TypeCtor::Never)
}
Expr::While { condition, body } => {
// while let is desugared to a match loop, so this is always simple while
2019-03-21 16:20:03 -05:00
self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
Ty::unit()
}
Expr::For { iterable, body, pat } => {
let _iterable_ty = self.infer_expr(*iterable, &Expectation::none());
self.infer_pat(*pat, &Ty::Unknown, BindingMode::default());
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
Ty::unit()
}
Expr::Lambda { body, args, arg_types } => {
assert_eq!(args.len(), arg_types.len());
for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
let expected = if let Some(type_ref) = arg_type {
let ty = self.make_ty(type_ref);
ty
} else {
Ty::Unknown
};
self.infer_pat(*arg_pat, &expected, BindingMode::default());
}
2019-03-23 02:53:48 -05:00
// FIXME: infer lambda type etc.
let _body_ty = self.infer_expr(*body, &Expectation::none());
Ty::Unknown
}
Expr::Call { callee, args } => {
let callee_ty = self.infer_expr(*callee, &Expectation::none());
let (param_tys, ret_ty) = match callee_ty.callable_sig(self.db) {
Some(sig) => (sig.params().to_vec(), sig.ret().clone()),
None => {
// Not callable
// FIXME: report an error
(Vec::new(), Ty::Unknown)
}
};
// FIXME register obligations from where clauses from the function
let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown));
for (arg, param) in args.iter().zip(param_iter) {
self.infer_expr(*arg, &Expectation::has_type(param));
}
ret_ty
}
2019-04-09 15:04:59 -05:00
Expr::MethodCall { receiver, args, method_name, generic_args } => self
.infer_method_call(tgt_expr, *receiver, &args, &method_name, generic_args.as_ref()),
Expr::Match { expr, arms } => {
let expected = if expected.ty == Ty::Unknown {
Expectation::has_type(self.new_type_var())
} else {
expected.clone()
};
let input_ty = self.infer_expr(*expr, &Expectation::none());
for arm in arms {
for &pat in &arm.pats {
let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
}
if let Some(guard_expr) = arm.guard {
self.infer_expr(
guard_expr,
2019-03-21 16:20:03 -05:00
&Expectation::has_type(Ty::simple(TypeCtor::Bool)),
);
}
self.infer_expr(arm.expr, &expected);
}
expected.ty
}
Expr::Path(p) => {
2019-03-23 02:53:48 -05:00
// FIXME this could be more efficient...
let resolver = expr::resolver_for_expr(self.body.clone(), self.db, tgt_expr);
self.infer_path_expr(&resolver, p, tgt_expr.into()).unwrap_or(Ty::Unknown)
}
2019-03-21 16:20:03 -05:00
Expr::Continue => Ty::simple(TypeCtor::Never),
Expr::Break { expr } => {
if let Some(expr) = expr {
2019-03-23 02:53:48 -05:00
// FIXME handle break with value
self.infer_expr(*expr, &Expectation::none());
}
2019-03-21 16:20:03 -05:00
Ty::simple(TypeCtor::Never)
}
Expr::Return { expr } => {
if let Some(expr) = expr {
self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
}
2019-03-21 16:20:03 -05:00
Ty::simple(TypeCtor::Never)
}
Expr::StructLit { path, fields, spread } => {
let (ty, def_id) = self.resolve_variant(path.as_ref());
let substs = ty.substs().unwrap_or_else(Substs::empty);
2019-06-04 01:28:50 -05:00
for (field_idx, field) in fields.iter().enumerate() {
let field_ty = def_id
2019-03-21 14:13:11 -05:00
.and_then(|it| match it.field(self.db, &field.name) {
Some(field) => Some(field),
None => {
2019-03-23 08:28:47 -05:00
self.diagnostics.push(InferenceDiagnostic::NoSuchField {
2019-03-21 14:13:11 -05:00
expr: tgt_expr,
field: field_idx,
});
None
}
})
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
self.infer_expr(field.expr, &Expectation::has_type(field_ty));
}
if let Some(expr) = spread {
self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
}
ty
}
Expr::Field { expr, name } => {
let receiver_ty = self.infer_expr(*expr, &Expectation::none());
let ty = receiver_ty
.autoderef(self.db)
.find_map(|derefed_ty| match derefed_ty {
2019-03-21 16:29:12 -05:00
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Tuple { .. } => {
let i = name.to_string().parse::<usize>().ok();
i.and_then(|i| a_ty.parameters.0.get(i).cloned())
}
2019-03-21 16:20:03 -05:00
TypeCtor::Adt(AdtDef::Struct(s)) => {
s.field(self.db, name).map(|field| {
self.write_field_resolution(tgt_expr, field);
field.ty(self.db).subst(&a_ty.parameters)
})
}
_ => None,
},
_ => None,
})
.unwrap_or(Ty::Unknown);
self.insert_type_vars(ty)
}
Expr::Try { expr } => {
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
Ty::Unknown
}
Expr::Cast { expr, type_ref } => {
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
let cast_ty = self.make_ty(type_ref);
2019-03-23 02:53:48 -05:00
// FIXME check the cast...
cast_ty
}
Expr::Ref { expr, mutability } => {
let expectation =
if let Some((exp_inner, exp_mutability)) = &expected.ty.as_reference() {
if *exp_mutability == Mutability::Mut && *mutability == Mutability::Shared {
2019-03-23 02:53:48 -05:00
// FIXME: throw type error - expected mut reference but found shared ref,
// which cannot be coerced
}
Expectation::has_type(Ty::clone(exp_inner))
} else {
Expectation::none()
};
2019-03-23 02:53:48 -05:00
// FIXME reference coercions etc.
let inner_ty = self.infer_expr(*expr, &expectation);
2019-03-21 16:20:03 -05:00
Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
}
Expr::UnaryOp { expr, op } => {
let inner_ty = self.infer_expr(*expr, &Expectation::none());
match op {
UnaryOp::Deref => {
if let Some(derefed_ty) = inner_ty.builtin_deref() {
derefed_ty
} else {
2019-03-23 02:53:48 -05:00
// FIXME Deref::deref
Ty::Unknown
}
}
UnaryOp::Neg => {
match &inner_ty {
2019-03-21 16:29:12 -05:00
Ty::Apply(a_ty) => match a_ty.ctor {
2019-03-21 16:20:03 -05:00
TypeCtor::Int(primitive::UncertainIntTy::Unknown)
| TypeCtor::Int(primitive::UncertainIntTy::Known(
primitive::IntTy {
signedness: primitive::Signedness::Signed,
..
},
))
2019-03-21 16:20:03 -05:00
| TypeCtor::Float(..) => inner_ty,
_ => Ty::Unknown,
},
Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => {
inner_ty
}
2019-03-23 02:53:48 -05:00
// FIXME: resolve ops::Neg trait
_ => Ty::Unknown,
}
}
UnaryOp::Not => {
match &inner_ty {
2019-03-21 16:29:12 -05:00
Ty::Apply(a_ty) => match a_ty.ctor {
2019-03-21 16:20:03 -05:00
TypeCtor::Bool | TypeCtor::Int(_) => inner_ty,
_ => Ty::Unknown,
},
Ty::Infer(InferTy::IntVar(..)) => inner_ty,
2019-03-23 02:53:48 -05:00
// FIXME: resolve ops::Not trait for inner_ty
_ => Ty::Unknown,
}
}
}
}
Expr::BinaryOp { lhs, rhs, op } => match op {
Some(op) => {
let lhs_expectation = match op {
BinaryOp::BooleanAnd | BinaryOp::BooleanOr => {
2019-03-21 16:20:03 -05:00
Expectation::has_type(Ty::simple(TypeCtor::Bool))
}
_ => Expectation::none(),
};
let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
2019-03-23 02:53:48 -05:00
// FIXME: find implementation of trait corresponding to operation
// symbol and resolve associated `Output` type
let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
2019-03-23 02:53:48 -05:00
// FIXME: similar as above, return ty is often associated trait type
op::binary_op_return_ty(*op, rhs_ty)
}
_ => Ty::Unknown,
},
Expr::Tuple { exprs } => {
let mut ty_vec = Vec::with_capacity(exprs.len());
for arg in exprs.iter() {
ty_vec.push(self.infer_expr(*arg, &Expectation::none()));
}
Ty::apply(
TypeCtor::Tuple { cardinality: ty_vec.len() as u16 },
Substs(ty_vec.into()),
)
}
Expr::Array(array) => {
let elem_ty = match &expected.ty {
2019-03-21 16:29:12 -05:00
Ty::Apply(a_ty) => match a_ty.ctor {
2019-03-21 16:20:03 -05:00
TypeCtor::Slice | TypeCtor::Array => {
Ty::clone(&a_ty.parameters.as_single())
}
_ => self.new_type_var(),
},
_ => self.new_type_var(),
};
match array {
Array::ElementList(items) => {
for expr in items.iter() {
self.infer_expr(*expr, &Expectation::has_type(elem_ty.clone()));
}
}
Array::Repeat { initializer, repeat } => {
self.infer_expr(*initializer, &Expectation::has_type(elem_ty.clone()));
self.infer_expr(
*repeat,
&Expectation::has_type(Ty::simple(TypeCtor::Int(
primitive::UncertainIntTy::Known(primitive::IntTy::usize()),
))),
);
}
2019-04-03 17:23:58 -05:00
}
2019-03-21 16:20:03 -05:00
Ty::apply_one(TypeCtor::Array, elem_ty)
}
Expr::Literal(lit) => match lit {
2019-03-21 16:20:03 -05:00
Literal::Bool(..) => Ty::simple(TypeCtor::Bool),
Literal::String(..) => {
2019-03-21 16:20:03 -05:00
Ty::apply_one(TypeCtor::Ref(Mutability::Shared), Ty::simple(TypeCtor::Str))
}
Literal::ByteString(..) => {
let byte_type = Ty::simple(TypeCtor::Int(primitive::UncertainIntTy::Known(
primitive::IntTy::u8(),
)));
2019-03-21 16:20:03 -05:00
let slice_type = Ty::apply_one(TypeCtor::Slice, byte_type);
Ty::apply_one(TypeCtor::Ref(Mutability::Shared), slice_type)
}
2019-03-21 16:20:03 -05:00
Literal::Char(..) => Ty::simple(TypeCtor::Char),
Literal::Int(_v, ty) => Ty::simple(TypeCtor::Int(*ty)),
Literal::Float(_v, ty) => Ty::simple(TypeCtor::Float(*ty)),
},
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
self.unify(&ty, &expected.ty);
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.write_expr_ty(tgt_expr, ty.clone());
ty
}
fn infer_block(
&mut self,
statements: &[Statement],
tail: Option<ExprId>,
expected: &Expectation,
) -> Ty {
for stmt in statements {
match stmt {
Statement::Let { pat, type_ref, initializer } => {
let decl_ty =
type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
let decl_ty = self.insert_type_vars(decl_ty);
let ty = if let Some(expr) = initializer {
let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty));
expr_ty
} else {
decl_ty
};
self.infer_pat(*pat, &ty, BindingMode::default());
}
Statement::Expr(expr) => {
self.infer_expr(*expr, &Expectation::none());
}
}
}
let ty = if let Some(expr) = tail { self.infer_expr(expr, expected) } else { Ty::unit() };
ty
}
fn collect_const_signature(&mut self, signature: &ConstSignature) {
self.return_ty = self.make_ty(signature.type_ref());
}
fn collect_fn_signature(&mut self, signature: &FnSignature) {
let body = Arc::clone(&self.body); // avoid borrow checker problem
for (type_ref, pat) in signature.params().iter().zip(body.params()) {
let ty = self.make_ty(type_ref);
self.infer_pat(*pat, &ty, BindingMode::default());
}
self.return_ty = self.make_ty(signature.ret_type());
}
fn infer_body(&mut self) {
self.infer_expr(self.body.body_expr(), &Expectation::has_type(self.return_ty.clone()));
}
}
/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct TypeVarId(pub(super) u32);
impl UnifyKey for TypeVarId {
type Value = TypeVarValue;
fn index(&self) -> u32 {
self.0
}
fn from_index(i: u32) -> Self {
TypeVarId(i)
}
fn tag() -> &'static str {
"TypeVarId"
}
}
/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TypeVarValue {
Known(Ty),
Unknown,
}
impl TypeVarValue {
fn known(&self) -> Option<&Ty> {
match self {
TypeVarValue::Known(ty) => Some(ty),
TypeVarValue::Unknown => None,
}
}
}
impl UnifyValue for TypeVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
match (value1, value2) {
// We should never equate two type variables, both of which have
// known types. Instead, we recursively equate those types.
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
"equating two type variables, both of which have known types: {:?} and {:?}",
t1, t2
),
// If one side is known, prefer that one.
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
}
}
}
/// The kinds of placeholders we need during type inference. There's separate
/// values for general types, and for integer and float variables. The latter
/// two are used for inference of literal values (e.g. `100` could be one of
/// several integer types).
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum InferTy {
TypeVar(TypeVarId),
IntVar(TypeVarId),
FloatVar(TypeVarId),
}
impl InferTy {
fn to_inner(self) -> TypeVarId {
match self {
InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) => ty,
}
}
fn fallback_value(self) -> Ty {
match self {
InferTy::TypeVar(..) => Ty::Unknown,
InferTy::IntVar(..) => {
Ty::simple(TypeCtor::Int(primitive::UncertainIntTy::Known(primitive::IntTy::i32())))
}
2019-03-21 16:20:03 -05:00
InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(
primitive::UncertainFloatTy::Known(primitive::FloatTy::f64()),
)),
}
}
}
/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
struct Expectation {
ty: Ty,
2019-03-23 02:53:48 -05:00
// FIXME: In some cases, we need to be aware whether the expectation is that
// the type match exactly what we passed, or whether it just needs to be
// coercible to the expected type. See Expectation::rvalue_hint in rustc.
}
impl Expectation {
/// The expectation that the type of the expression needs to equal the given
/// type.
fn has_type(ty: Ty) -> Self {
Expectation { ty }
}
/// This expresses no expectation on the type.
fn none() -> Self {
Expectation { ty: Ty::Unknown }
}
}
2019-03-23 08:28:47 -05:00
mod diagnostics {
2019-05-23 12:18:47 -05:00
use crate::{
expr::ExprId,
diagnostics::{DiagnosticSink, NoSuchField},
HirDatabase, Function,
};
2019-03-23 08:28:47 -05:00
#[derive(Debug, PartialEq, Eq, Clone)]
pub(super) enum InferenceDiagnostic {
NoSuchField { expr: ExprId, field: usize },
}
impl InferenceDiagnostic {
2019-03-23 10:35:14 -05:00
pub(super) fn add_to(
&self,
db: &impl HirDatabase,
owner: Function,
2019-03-23 12:41:59 -05:00
sink: &mut DiagnosticSink,
2019-03-23 10:35:14 -05:00
) {
2019-03-23 08:28:47 -05:00
match self {
InferenceDiagnostic::NoSuchField { expr, field } => {
let (file, _) = owner.source(db);
let field = owner.body_source_map(db).field_syntax(*expr, *field);
2019-03-23 10:35:14 -05:00
sink.push(NoSuchField { file, field })
2019-03-23 08:28:47 -05:00
}
}
}
}
}