2015-08-31 08:51:53 -07:00
|
|
|
// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
|
|
|
|
// file at the top-level directory of this distribution and at
|
|
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
|
|
// option. This file may not be copied, modified, or distributed
|
|
|
|
// except according to those terms.
|
|
|
|
|
|
|
|
//! Panic support in the standard library
|
|
|
|
|
|
|
|
#![unstable(feature = "std_panic", reason = "awaiting feedback",
|
|
|
|
issue = "27719")]
|
|
|
|
|
2015-12-25 12:00:40 -07:00
|
|
|
use any::Any;
|
|
|
|
use boxed::Box;
|
2015-08-31 08:51:53 -07:00
|
|
|
use cell::UnsafeCell;
|
|
|
|
use ops::{Deref, DerefMut};
|
|
|
|
use ptr::{Unique, Shared};
|
|
|
|
use rc::Rc;
|
|
|
|
use sync::{Arc, Mutex, RwLock};
|
|
|
|
use sys_common::unwind;
|
|
|
|
use thread::Result;
|
|
|
|
|
2015-12-17 23:51:55 -08:00
|
|
|
pub use panicking::{take_handler, set_handler, PanicInfo, Location};
|
|
|
|
|
2015-08-31 08:51:53 -07:00
|
|
|
/// A marker trait which represents "panic safe" types in Rust.
|
|
|
|
///
|
|
|
|
/// This trait is implemented by default for many types and behaves similarly in
|
|
|
|
/// terms of inference of implementation to the `Send` and `Sync` traits. The
|
|
|
|
/// purpose of this trait is to encode what types are safe to cross a `recover`
|
|
|
|
/// boundary with no fear of panic safety.
|
|
|
|
///
|
|
|
|
/// ## What is panic safety?
|
|
|
|
///
|
|
|
|
/// In Rust a function can "return" early if it either panics or calls a
|
|
|
|
/// function which transitively panics. This sort of control flow is not always
|
|
|
|
/// anticipated, and has the possibility of causing subtle bugs through a
|
|
|
|
/// combination of two cricial components:
|
|
|
|
///
|
|
|
|
/// 1. A data structure is in a temporarily invalid state when the thread
|
|
|
|
/// panics.
|
|
|
|
/// 2. This broken invariant is then later observed.
|
|
|
|
///
|
2016-01-02 01:26:22 -06:00
|
|
|
/// Typically in Rust, it is difficult to perform step (2) because catching a
|
2015-08-31 08:51:53 -07:00
|
|
|
/// panic involves either spawning a thread (which in turns makes it difficult
|
|
|
|
/// to later witness broken invariants) or using the `recover` function in this
|
2016-01-02 01:26:22 -06:00
|
|
|
/// module. Additionally, even if an invariant is witnessed, it typically isn't a
|
2015-08-31 08:51:53 -07:00
|
|
|
/// problem in Rust because there's no uninitialized values (like in C or C++).
|
|
|
|
///
|
|
|
|
/// It is possible, however, for **logical** invariants to be broken in Rust,
|
|
|
|
/// which can end up causing behavioral bugs. Another key aspect of panic safety
|
2016-01-02 01:26:22 -06:00
|
|
|
/// in Rust is that, in the absence of `unsafe` code, a panic cannot lead to
|
2015-08-31 08:51:53 -07:00
|
|
|
/// memory unsafety.
|
|
|
|
///
|
|
|
|
/// That was a bit of a whirlwind tour of panic safety, but for more information
|
|
|
|
/// about panic safety and how it applies to Rust, see an [associated RFC][rfc].
|
|
|
|
///
|
|
|
|
/// [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/1236-stabilize-catch-panic.md
|
|
|
|
///
|
|
|
|
/// ## What is `RecoverSafe`?
|
|
|
|
///
|
|
|
|
/// Now that we've got an idea of what panic safety is in Rust, it's also
|
2016-01-02 01:26:22 -06:00
|
|
|
/// important to understand what this trait represents. As mentioned above, one
|
2015-08-31 08:51:53 -07:00
|
|
|
/// way to witness broken invariants is through the `recover` function in this
|
|
|
|
/// module as it allows catching a panic and then re-using the environment of
|
|
|
|
/// the closure.
|
|
|
|
///
|
2016-01-02 01:26:22 -06:00
|
|
|
/// Simply put, a type `T` implements `RecoverSafe` if it cannot easily allow
|
2015-08-31 08:51:53 -07:00
|
|
|
/// witnessing a broken invariant through the use of `recover` (catching a
|
|
|
|
/// panic). This trait is a marker trait, so it is automatically implemented for
|
|
|
|
/// many types, and it is also structurally composed (e.g. a struct is recover
|
|
|
|
/// safe if all of its components are recover safe).
|
|
|
|
///
|
|
|
|
/// Note, however, that this is not an unsafe trait, so there is not a succinct
|
|
|
|
/// contract that this trait is providing. Instead it is intended as more of a
|
|
|
|
/// "speed bump" to alert users of `recover` that broken invariants may be
|
|
|
|
/// witnessed and may need to be accounted for.
|
|
|
|
///
|
|
|
|
/// ## Who implements `RecoverSafe`?
|
|
|
|
///
|
|
|
|
/// Types such as `&mut T` and `&RefCell<T>` are examples which are **not**
|
|
|
|
/// recover safe. The general idea is that any mutable state which can be shared
|
|
|
|
/// across `recover` is not recover safe by default. This is because it is very
|
|
|
|
/// easy to witness a broken invariant outside of `recover` as the data is
|
2016-02-09 11:52:39 -05:00
|
|
|
/// simply accessed as usual.
|
2015-08-31 08:51:53 -07:00
|
|
|
///
|
|
|
|
/// Types like `&Mutex<T>`, however, are recover safe because they implement
|
|
|
|
/// poisoning by default. They still allow witnessing a broken invariant, but
|
|
|
|
/// they already provide their own "speed bumps" to do so.
|
|
|
|
///
|
|
|
|
/// ## When should `RecoverSafe` be used?
|
|
|
|
///
|
|
|
|
/// Is not intended that most types or functions need to worry about this trait.
|
|
|
|
/// It is only used as a bound on the `recover` function and as mentioned above,
|
|
|
|
/// the lack of `unsafe` means it is mostly an advisory. The `AssertRecoverSafe`
|
|
|
|
/// wrapper struct in this module can be used to force this trait to be
|
|
|
|
/// implemented for any closed over variables passed to the `recover` function
|
|
|
|
/// (more on this below).
|
|
|
|
#[unstable(feature = "recover", reason = "awaiting feedback", issue = "27719")]
|
|
|
|
#[rustc_on_unimplemented = "the type {Self} may not be safely transferred \
|
|
|
|
across a recover boundary"]
|
|
|
|
pub trait RecoverSafe {}
|
|
|
|
|
2015-12-21 09:39:45 -08:00
|
|
|
/// A marker trait representing types where a shared reference is considered
|
|
|
|
/// recover safe.
|
|
|
|
///
|
|
|
|
/// This trait is namely not implemented by `UnsafeCell`, the root of all
|
|
|
|
/// interior mutability.
|
2015-08-31 08:51:53 -07:00
|
|
|
///
|
|
|
|
/// This is a "helper marker trait" used to provide impl blocks for the
|
|
|
|
/// `RecoverSafe` trait, for more information see that documentation.
|
|
|
|
#[unstable(feature = "recover", reason = "awaiting feedback", issue = "27719")]
|
|
|
|
#[rustc_on_unimplemented = "the type {Self} contains interior mutability \
|
|
|
|
and a reference may not be safely transferrable \
|
|
|
|
across a recover boundary"]
|
2015-12-21 09:39:45 -08:00
|
|
|
pub trait RefRecoverSafe {}
|
2015-08-31 08:51:53 -07:00
|
|
|
|
|
|
|
/// A simple wrapper around a type to assert that it is panic safe.
|
|
|
|
///
|
|
|
|
/// When using `recover` it may be the case that some of the closed over
|
|
|
|
/// variables are not panic safe. For example if `&mut T` is captured the
|
|
|
|
/// compiler will generate a warning indicating that it is not panic safe. It
|
|
|
|
/// may not be the case, however, that this is actually a problem due to the
|
|
|
|
/// specific usage of `recover` if panic safety is specifically taken into
|
|
|
|
/// account. This wrapper struct is useful for a quick and lightweight
|
|
|
|
/// annotation that a variable is indeed panic safe.
|
|
|
|
///
|
|
|
|
/// # Examples
|
|
|
|
///
|
2016-03-07 09:20:25 -08:00
|
|
|
/// One way to use `AssertRecoverSafe` is to assert that the entire closure
|
|
|
|
/// itself is recover safe, bypassing all checks for all variables:
|
|
|
|
///
|
2015-08-31 08:51:53 -07:00
|
|
|
/// ```
|
|
|
|
/// #![feature(recover, std_panic)]
|
|
|
|
///
|
|
|
|
/// use std::panic::{self, AssertRecoverSafe};
|
|
|
|
///
|
|
|
|
/// let mut variable = 4;
|
|
|
|
///
|
2016-01-16 16:34:51 +01:00
|
|
|
/// // This code will not compile because the closure captures `&mut variable`
|
2015-08-31 08:51:53 -07:00
|
|
|
/// // which is not considered panic safe by default.
|
|
|
|
///
|
|
|
|
/// // panic::recover(|| {
|
|
|
|
/// // variable += 3;
|
|
|
|
/// // });
|
|
|
|
///
|
|
|
|
/// // This, however, will compile due to the `AssertRecoverSafe` wrapper
|
2016-03-17 22:43:17 -07:00
|
|
|
/// let result = panic::recover(AssertRecoverSafe(|| {
|
2016-03-07 09:20:25 -08:00
|
|
|
/// variable += 3;
|
|
|
|
/// }));
|
|
|
|
/// // ...
|
|
|
|
/// ```
|
|
|
|
///
|
|
|
|
/// Wrapping the entire closure amounts to a blanket assertion that all captured
|
|
|
|
/// variables are recover safe. This has the downside that if new captures are
|
|
|
|
/// added in the future, they will also be considered recover safe. Therefore,
|
|
|
|
/// you may prefer to just wrap individual captures, as shown below. This is
|
|
|
|
/// more annotation, but it ensures that if a new capture is added which is not
|
|
|
|
/// recover safe, you will get a compilation error at that time, which will
|
|
|
|
/// allow you to consider whether that new capture in fact represent a bug or
|
|
|
|
/// not.
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// #![feature(recover, std_panic)]
|
|
|
|
///
|
|
|
|
/// use std::panic::{self, AssertRecoverSafe};
|
|
|
|
///
|
|
|
|
/// let mut variable = 4;
|
|
|
|
/// let other_capture = 3;
|
|
|
|
///
|
2015-08-31 08:51:53 -07:00
|
|
|
/// let result = {
|
2016-03-17 22:43:17 -07:00
|
|
|
/// let mut wrapper = AssertRecoverSafe(&mut variable);
|
2015-08-31 08:51:53 -07:00
|
|
|
/// panic::recover(move || {
|
2016-03-07 09:20:25 -08:00
|
|
|
/// **wrapper += other_capture;
|
2015-08-31 08:51:53 -07:00
|
|
|
/// })
|
|
|
|
/// };
|
|
|
|
/// // ...
|
|
|
|
/// ```
|
|
|
|
#[unstable(feature = "recover", reason = "awaiting feedback", issue = "27719")]
|
2016-03-17 22:43:17 -07:00
|
|
|
pub struct AssertRecoverSafe<T>(pub T);
|
2015-08-31 08:51:53 -07:00
|
|
|
|
|
|
|
// Implementations of the `RecoverSafe` trait:
|
|
|
|
//
|
|
|
|
// * By default everything is recover safe
|
|
|
|
// * pointers T contains mutability of some form are not recover safe
|
|
|
|
// * Unique, an owning pointer, lifts an implementation
|
|
|
|
// * Types like Mutex/RwLock which are explicilty poisoned are recover safe
|
|
|
|
// * Our custom AssertRecoverSafe wrapper is indeed recover safe
|
|
|
|
impl RecoverSafe for .. {}
|
|
|
|
impl<'a, T: ?Sized> !RecoverSafe for &'a mut T {}
|
2015-12-21 09:39:45 -08:00
|
|
|
impl<'a, T: RefRecoverSafe + ?Sized> RecoverSafe for &'a T {}
|
|
|
|
impl<T: RefRecoverSafe + ?Sized> RecoverSafe for *const T {}
|
|
|
|
impl<T: RefRecoverSafe + ?Sized> RecoverSafe for *mut T {}
|
2015-08-31 08:51:53 -07:00
|
|
|
impl<T: RecoverSafe> RecoverSafe for Unique<T> {}
|
2015-12-21 09:39:45 -08:00
|
|
|
impl<T: RefRecoverSafe + ?Sized> RecoverSafe for Shared<T> {}
|
2015-08-31 08:51:53 -07:00
|
|
|
impl<T: ?Sized> RecoverSafe for Mutex<T> {}
|
|
|
|
impl<T: ?Sized> RecoverSafe for RwLock<T> {}
|
|
|
|
impl<T> RecoverSafe for AssertRecoverSafe<T> {}
|
|
|
|
|
|
|
|
// not covered via the Shared impl above b/c the inner contents use
|
|
|
|
// Cell/AtomicUsize, but the usage here is recover safe so we can lift the
|
|
|
|
// impl up one level to Arc/Rc itself
|
2015-12-21 09:39:45 -08:00
|
|
|
impl<T: RefRecoverSafe + ?Sized> RecoverSafe for Rc<T> {}
|
|
|
|
impl<T: RefRecoverSafe + ?Sized> RecoverSafe for Arc<T> {}
|
2015-08-31 08:51:53 -07:00
|
|
|
|
2015-12-21 09:39:45 -08:00
|
|
|
// Pretty simple implementations for the `RefRecoverSafe` marker trait,
|
|
|
|
// basically just saying that this is a marker trait and `UnsafeCell` is the
|
|
|
|
// only thing which doesn't implement it (which then transitively applies to
|
2016-01-02 01:26:22 -06:00
|
|
|
// everything else).
|
2015-12-21 09:39:45 -08:00
|
|
|
impl RefRecoverSafe for .. {}
|
|
|
|
impl<T: ?Sized> !RefRecoverSafe for UnsafeCell<T> {}
|
|
|
|
impl<T> RefRecoverSafe for AssertRecoverSafe<T> {}
|
2015-08-31 08:51:53 -07:00
|
|
|
|
|
|
|
impl<T> AssertRecoverSafe<T> {
|
|
|
|
/// Creates a new `AssertRecoverSafe` wrapper around the provided type.
|
|
|
|
#[unstable(feature = "recover", reason = "awaiting feedback", issue = "27719")]
|
2016-03-18 09:13:55 -07:00
|
|
|
#[rustc_deprecated(reason = "the type's field is now public, construct it directly", since = "1.9.0")]
|
2015-08-31 08:51:53 -07:00
|
|
|
pub fn new(t: T) -> AssertRecoverSafe<T> {
|
|
|
|
AssertRecoverSafe(t)
|
|
|
|
}
|
2016-02-17 11:29:18 +00:00
|
|
|
|
|
|
|
/// Consumes the `AssertRecoverSafe`, returning the wrapped value.
|
|
|
|
#[unstable(feature = "recover", reason = "awaiting feedback", issue = "27719")]
|
2016-03-18 09:13:55 -07:00
|
|
|
#[rustc_deprecated(reason = "the type's field is now public, access it directly", since = "1.9.0)]
|
2016-02-17 11:29:18 +00:00
|
|
|
pub fn into_inner(self) -> T {
|
|
|
|
self.0
|
|
|
|
}
|
2015-08-31 08:51:53 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> Deref for AssertRecoverSafe<T> {
|
|
|
|
type Target = T;
|
|
|
|
|
|
|
|
fn deref(&self) -> &T {
|
|
|
|
&self.0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<T> DerefMut for AssertRecoverSafe<T> {
|
|
|
|
fn deref_mut(&mut self) -> &mut T {
|
|
|
|
&mut self.0
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-03-07 09:20:25 -08:00
|
|
|
impl<R, F: FnOnce() -> R> FnOnce<()> for AssertRecoverSafe<F> {
|
|
|
|
type Output = R;
|
|
|
|
|
|
|
|
extern "rust-call" fn call_once(self, _args: ()) -> R {
|
|
|
|
(self.0)()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2015-08-31 08:51:53 -07:00
|
|
|
/// Invokes a closure, capturing the cause of panic if one occurs.
|
|
|
|
///
|
|
|
|
/// This function will return `Ok` with the closure's result if the closure
|
|
|
|
/// does not panic, and will return `Err(cause)` if the closure panics. The
|
|
|
|
/// `cause` returned is the object with which panic was originally invoked.
|
|
|
|
///
|
|
|
|
/// It is currently undefined behavior to unwind from Rust code into foreign
|
|
|
|
/// code, so this function is particularly useful when Rust is called from
|
|
|
|
/// another language (normally C). This can run arbitrary Rust code, capturing a
|
|
|
|
/// panic and allowing a graceful handling of the error.
|
|
|
|
///
|
|
|
|
/// It is **not** recommended to use this function for a general try/catch
|
|
|
|
/// mechanism. The `Result` type is more appropriate to use for functions that
|
|
|
|
/// can fail on a regular basis.
|
|
|
|
///
|
|
|
|
/// The closure provided is required to adhere to the `RecoverSafe` to ensure
|
|
|
|
/// that all captured variables are safe to cross this recover boundary. The
|
|
|
|
/// purpose of this bound is to encode the concept of [exception safety][rfc] in
|
|
|
|
/// the type system. Most usage of this function should not need to worry about
|
|
|
|
/// this bound as programs are naturally panic safe without `unsafe` code. If it
|
|
|
|
/// becomes a problem the associated `AssertRecoverSafe` wrapper type in this
|
|
|
|
/// module can be used to quickly assert that the usage here is indeed exception
|
|
|
|
/// safe.
|
|
|
|
///
|
|
|
|
/// [rfc]: https://github.com/rust-lang/rfcs/blob/master/text/1236-stabilize-catch-panic.md
|
|
|
|
///
|
|
|
|
/// # Examples
|
|
|
|
///
|
|
|
|
/// ```
|
|
|
|
/// #![feature(recover, std_panic)]
|
|
|
|
///
|
|
|
|
/// use std::panic;
|
|
|
|
///
|
|
|
|
/// let result = panic::recover(|| {
|
|
|
|
/// println!("hello!");
|
|
|
|
/// });
|
|
|
|
/// assert!(result.is_ok());
|
|
|
|
///
|
|
|
|
/// let result = panic::recover(|| {
|
|
|
|
/// panic!("oh no!");
|
|
|
|
/// });
|
|
|
|
/// assert!(result.is_err());
|
|
|
|
/// ```
|
|
|
|
#[unstable(feature = "recover", reason = "awaiting feedback", issue = "27719")]
|
|
|
|
pub fn recover<F: FnOnce() -> R + RecoverSafe, R>(f: F) -> Result<R> {
|
|
|
|
let mut result = None;
|
|
|
|
unsafe {
|
|
|
|
let result = &mut result;
|
|
|
|
try!(unwind::try(move || *result = Some(f())))
|
|
|
|
}
|
|
|
|
Ok(result.unwrap())
|
|
|
|
}
|
2015-12-25 12:00:40 -07:00
|
|
|
|
|
|
|
/// Triggers a panic without invoking the panic handler.
|
|
|
|
///
|
|
|
|
/// This is designed to be used in conjunction with `recover` to, for example,
|
|
|
|
/// carry a panic across a layer of C code.
|
|
|
|
///
|
|
|
|
/// # Examples
|
|
|
|
///
|
|
|
|
/// ```should_panic
|
|
|
|
/// #![feature(std_panic, recover, panic_propagate)]
|
|
|
|
///
|
|
|
|
/// use std::panic;
|
|
|
|
///
|
|
|
|
/// let result = panic::recover(|| {
|
|
|
|
/// panic!("oh no!");
|
|
|
|
/// });
|
|
|
|
///
|
|
|
|
/// if let Err(err) = result {
|
|
|
|
/// panic::propagate(err);
|
|
|
|
/// }
|
|
|
|
/// ```
|
|
|
|
#[unstable(feature = "panic_propagate", reason = "awaiting feedback", issue = "30752")]
|
|
|
|
pub fn propagate(payload: Box<Any + Send>) -> ! {
|
|
|
|
unwind::rust_panic(payload)
|
|
|
|
}
|