rust/src/librustc/metadata/csearch.rs

405 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
2011-07-07 23:29:09 -07:00
// Searching for information from the cstore
use metadata::common::*;
use metadata::cstore;
use metadata::decoder;
use middle::def;
rustc: Add official support for weak failure This commit is part of the ongoing libstd facade efforts (cc #13851). The compiler now recognizes some language items as "extern { fn foo(...); }" and will automatically perform the following actions: 1. The foreign function has a pre-defined name. 2. The crate and downstream crates can only be built as rlibs until a crate defines the lang item itself. 3. The actual lang item has a pre-defined name. This is essentially nicer compiler support for the hokey core-depends-on-std-failure scheme today, but it is implemented the same way. The details are a little more hidden under the covers. In addition to failure, this commit promotes the eh_personality and rust_stack_exhausted functions to official lang items. The compiler can generate calls to these functions, causing linkage errors if they are left undefined. The checking for these items is not as precise as it could be. Crates compiling with `-Z no-landing-pads` will not need the eh_personality lang item, and crates compiling with no split stacks won't need the stack exhausted lang item. For ease, however, these items are checked for presence in all final outputs of the compiler. It is quite easy to define dummy versions of the functions necessary: #[lang = "stack_exhausted"] extern fn stack_exhausted() { /* ... */ } #[lang = "eh_personality"] extern fn eh_personality() { /* ... */ } cc #11922, rust_stack_exhausted is now a lang item cc #13851, libcollections is blocked on eh_personality becoming weak
2014-05-19 09:30:09 -07:00
use middle::lang_items;
use middle::ty;
use rbml;
use rbml::reader;
2014-02-01 15:57:59 +11:00
use std::rc::Rc;
2012-09-04 11:54:36 -07:00
use syntax::ast;
use syntax::ast_map;
use syntax::attr;
Preliminary feature staging This partially implements the feature staging described in the [release channel RFC][rc]. It does not yet fully conform to the RFC as written, but does accomplish its goals sufficiently for the 1.0 alpha release. It has three primary user-visible effects: * On the nightly channel, use of unstable APIs generates a warning. * On the beta channel, use of unstable APIs generates a warning. * On the beta channel, use of feature gates generates a warning. Code that does not trigger these warnings is considered 'stable', modulo pre-1.0 bugs. Disabling the warnings for unstable APIs continues to be done in the existing (i.e. old) style, via `#[allow(...)]`, not that specified in the RFC. I deem this marginally acceptable since any code that must do this is not using the stable dialect of Rust. Use of feature gates is itself gated with the new 'unstable_features' lint, on nightly set to 'allow', and on beta 'warn'. The attribute scheme used here corresponds to an older version of the RFC, with the `#[staged_api]` crate attribute toggling the staging behavior of the stability attributes, but the user impact is only in-tree so I'm not concerned about having to make design changes later (and I may ultimately prefer the scheme here after all, with the `#[staged_api]` crate attribute). Since the Rust codebase itself makes use of unstable features the compiler and build system to a midly elaborate dance to allow it to bootstrap while disobeying these lints (which would otherwise be errors because Rust builds with `-D warnings`). This patch includes one significant hack that causes a regression. Because the `format_args!` macro emits calls to unstable APIs it would trigger the lint. I added a hack to the lint to make it not trigger, but this in turn causes arguments to `println!` not to be checked for feature gates. I don't presently understand macro expansion well enough to fix. This is bug #20661. Closes #16678 [rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
2015-01-06 06:26:08 -08:00
use syntax::attr::AttrMetaMethods;
2012-09-04 11:54:36 -07:00
use syntax::diagnostic::expect;
use syntax::parse::token;
use std::collections::hash_map::HashMap;
#[derive(Copy)]
2014-10-20 14:30:31 +13:00
pub struct MethodInfo {
pub name: ast::Name,
pub def_id: ast::DefId,
pub vis: ast::Visibility,
}
pub fn get_symbol(cstore: &cstore::CStore, def: ast::DefId) -> String {
2014-04-17 15:06:25 +03:00
let cdata = cstore.get_crate_data(def.krate);
decoder::get_symbol(cdata.data(), def.node)
}
/// Iterates over all the language items in the given crate.
2014-12-08 20:26:43 -05:00
pub fn each_lang_item<F>(cstore: &cstore::CStore,
cnum: ast::CrateNum,
f: F)
-> bool where
F: FnMut(ast::NodeId, uint) -> bool,
{
2013-12-25 13:08:04 -07:00
let crate_data = cstore.get_crate_data(cnum);
2014-04-17 15:06:25 +03:00
decoder::each_lang_item(&*crate_data, f)
2013-05-03 13:08:08 -04:00
}
/// Iterates over each child of the given item.
2014-12-08 20:26:43 -05:00
pub fn each_child_of_item<F>(cstore: &cstore::CStore,
def_id: ast::DefId,
callback: F) where
F: FnMut(decoder::DefLike, ast::Name, ast::Visibility),
{
let crate_data = cstore.get_crate_data(def_id.krate);
let get_crate_data = |&mut: cnum| {
2013-12-25 13:08:04 -07:00
cstore.get_crate_data(cnum)
};
2014-03-27 19:28:38 +02:00
decoder::each_child_of_item(cstore.intr.clone(),
2014-04-17 15:06:25 +03:00
&*crate_data,
def_id.node,
get_crate_data,
callback)
}
/// Iterates over each top-level crate item.
2014-12-08 20:26:43 -05:00
pub fn each_top_level_item_of_crate<F>(cstore: &cstore::CStore,
cnum: ast::CrateNum,
callback: F) where
F: FnMut(decoder::DefLike, ast::Name, ast::Visibility),
{
2013-12-25 13:08:04 -07:00
let crate_data = cstore.get_crate_data(cnum);
let get_crate_data = |&mut: cnum| {
2013-12-25 13:08:04 -07:00
cstore.get_crate_data(cnum)
2013-05-03 13:08:08 -04:00
};
2014-03-27 19:28:38 +02:00
decoder::each_top_level_item_of_crate(cstore.intr.clone(),
2014-04-17 15:06:25 +03:00
&*crate_data,
get_crate_data,
callback)
}
2014-03-06 05:07:47 +02:00
pub fn get_item_path(tcx: &ty::ctxt, def: ast::DefId) -> Vec<ast_map::PathElem> {
2014-03-09 15:20:44 +02:00
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
let path = decoder::get_item_path(&*cdata, def.node);
// FIXME #1920: This path is not always correct if the crate is not linked
// into the root namespace.
2015-01-07 11:58:31 -05:00
let mut r = vec![ast_map::PathMod(token::intern(&cdata.name[]))];
r.push_all(path.as_slice());
r
}
pub enum FoundAst<'ast> {
Found(&'ast ast::InlinedItem),
FoundParent(ast::DefId, &'ast ast::InlinedItem),
NotFound,
}
// Finds the AST for this item in the crate metadata, if any. If the item was
// not marked for inlining, then the AST will not be present and hence none
// will be returned.
2014-09-07 20:09:06 +03:00
pub fn maybe_get_item_ast<'tcx>(tcx: &ty::ctxt<'tcx>, def: ast::DefId,
decode_inlined_item: decoder::DecodeInlinedItem)
-> FoundAst<'tcx> {
2014-03-09 15:20:44 +02:00
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
decoder::maybe_get_item_ast(&*cdata, tcx, def.node, decode_inlined_item)
}
pub fn get_enum_variant_defs(cstore: &cstore::CStore, enum_id: ast::DefId)
-> Vec<(def::Def, ast::Name, ast::Visibility)> {
let cdata = cstore.get_crate_data(enum_id.krate);
decoder::get_enum_variant_defs(&*cstore.intr, &*cdata, enum_id.node)
}
pub fn get_enum_variants<'tcx>(tcx: &ty::ctxt<'tcx>, def: ast::DefId)
-> Vec<Rc<ty::VariantInfo<'tcx>>> {
2014-03-09 15:20:44 +02:00
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(def.krate);
2014-04-22 02:21:52 +03:00
decoder::get_enum_variants(cstore.intr.clone(), &*cdata, def.node, tcx)
}
/// Returns information about the given implementation.
pub fn get_impl_items(cstore: &cstore::CStore, impl_def_id: ast::DefId)
-> Vec<ty::ImplOrTraitItemId> {
2014-04-21 12:04:35 +03:00
let cdata = cstore.get_crate_data(impl_def_id.krate);
decoder::get_impl_items(&*cdata, impl_def_id.node)
}
pub fn get_impl_or_trait_item<'tcx>(tcx: &ty::ctxt<'tcx>, def: ast::DefId)
-> ty::ImplOrTraitItem<'tcx> {
2014-03-09 15:20:44 +02:00
let cdata = tcx.sess.cstore.get_crate_data(def.krate);
decoder::get_impl_or_trait_item(tcx.sess.cstore.intr.clone(),
&*cdata,
def.node,
tcx)
}
pub fn get_trait_name(cstore: &cstore::CStore, def: ast::DefId) -> ast::Name {
let cdata = cstore.get_crate_data(def.krate);
decoder::get_trait_name(cstore.intr.clone(),
&*cdata,
def.node)
}
pub fn get_trait_item_name_and_kind(cstore: &cstore::CStore, def: ast::DefId)
-> (ast::Name, def::TraitItemKind) {
let cdata = cstore.get_crate_data(def.krate);
decoder::get_trait_item_name_and_kind(cstore.intr.clone(),
&*cdata,
def.node)
}
pub fn get_trait_item_def_ids(cstore: &cstore::CStore, def: ast::DefId)
-> Vec<ty::ImplOrTraitItemId> {
let cdata = cstore.get_crate_data(def.krate);
decoder::get_trait_item_def_ids(&*cdata, def.node)
}
2014-03-09 15:20:44 +02:00
pub fn get_item_variances(cstore: &cstore::CStore,
def: ast::DefId) -> ty::ItemVariances {
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
decoder::get_item_variances(&*cdata, def.node)
}
pub fn get_provided_trait_methods<'tcx>(tcx: &ty::ctxt<'tcx>,
def: ast::DefId)
-> Vec<Rc<ty::Method<'tcx>>> {
2014-03-09 15:20:44 +02:00
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
decoder::get_provided_trait_methods(cstore.intr.clone(), &*cdata, def.node, tcx)
}
pub fn get_supertraits<'tcx>(tcx: &ty::ctxt<'tcx>,
def: ast::DefId)
-> Vec<Rc<ty::TraitRef<'tcx>>> {
2014-03-09 15:20:44 +02:00
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
decoder::get_supertraits(&*cdata, def.node, tcx)
}
2014-03-09 15:20:44 +02:00
pub fn get_type_name_if_impl(cstore: &cstore::CStore, def: ast::DefId)
-> Option<ast::Name> {
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
decoder::get_type_name_if_impl(&*cdata, def.node)
}
2014-10-20 14:30:31 +13:00
pub fn get_methods_if_impl(cstore: &cstore::CStore,
def: ast::DefId)
2014-10-20 14:30:31 +13:00
-> Option<Vec<MethodInfo> > {
let cdata = cstore.get_crate_data(def.krate);
2014-10-20 14:30:31 +13:00
decoder::get_methods_if_impl(cstore.intr.clone(), &*cdata, def.node)
}
pub fn get_item_attrs(cstore: &cstore::CStore,
def_id: ast::DefId)
-> Vec<ast::Attribute> {
let cdata = cstore.get_crate_data(def_id.krate);
decoder::get_item_attrs(&*cdata, def_id.node)
}
2014-03-09 15:20:44 +02:00
pub fn get_struct_fields(cstore: &cstore::CStore,
def: ast::DefId)
-> Vec<ty::field_ty> {
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
decoder::get_struct_fields(cstore.intr.clone(), &*cdata, def.node)
}
pub fn get_struct_field_attrs(cstore: &cstore::CStore, def: ast::DefId) -> HashMap<ast::NodeId,
Vec<ast::Attribute>> {
let cdata = cstore.get_crate_data(def.krate);
decoder::get_struct_field_attrs(&*cdata)
}
pub fn get_type<'tcx>(tcx: &ty::ctxt<'tcx>,
def: ast::DefId)
-> ty::TypeScheme<'tcx> {
2014-03-09 15:20:44 +02:00
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
decoder::get_type(&*cdata, def.node, tcx)
}
pub fn get_trait_def<'tcx>(tcx: &ty::ctxt<'tcx>, def: ast::DefId) -> ty::TraitDef<'tcx> {
2014-03-09 15:20:44 +02:00
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
decoder::get_trait_def(&*cdata, def.node, tcx)
}
pub fn get_field_type<'tcx>(tcx: &ty::ctxt<'tcx>, class_id: ast::DefId,
def: ast::DefId) -> ty::TypeScheme<'tcx> {
2014-03-09 15:20:44 +02:00
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(class_id.krate);
let all_items = reader::get_doc(rbml::Doc::new(cdata.data()), tag_items);
2014-03-16 20:56:24 +02:00
let class_doc = expect(tcx.sess.diagnostic(),
decoder::maybe_find_item(class_id.node, all_items),
|| {
(format!("get_field_type: class ID {:?} not found",
class_id)).to_string()
});
2014-03-16 20:56:24 +02:00
let the_field = expect(tcx.sess.diagnostic(),
decoder::maybe_find_item(def.node, class_doc),
|| {
(format!("get_field_type: in class {:?}, field ID {:?} not found",
class_id,
def)).to_string()
});
2014-04-17 15:06:25 +03:00
let ty = decoder::item_type(def, the_field, tcx, &*cdata);
ty::TypeScheme {
generics: ty::Generics::empty(),
ty: ty,
}
}
pub fn get_impl_polarity<'tcx>(tcx: &ty::ctxt<'tcx>,
def: ast::DefId)
-> Option<ast::ImplPolarity>
{
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(def.krate);
decoder::get_impl_polarity(&*cdata, def.node)
}
// Given a def_id for an impl, return the trait it implements,
// if there is one.
pub fn get_impl_trait<'tcx>(tcx: &ty::ctxt<'tcx>,
def: ast::DefId)
-> Option<Rc<ty::TraitRef<'tcx>>> {
2014-03-09 15:20:44 +02:00
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
decoder::get_impl_trait(&*cdata, def.node, tcx)
}
// Given a def_id for an impl, return information about its vtables
pub fn get_impl_vtables<'tcx>(tcx: &ty::ctxt<'tcx>,
def: ast::DefId)
-> ty::vtable_res<'tcx> {
2014-03-09 15:20:44 +02:00
let cstore = &tcx.sess.cstore;
let cdata = cstore.get_crate_data(def.krate);
2014-04-17 15:06:25 +03:00
decoder::get_impl_vtables(&*cdata, def.node, tcx)
}
pub fn get_native_libraries(cstore: &cstore::CStore, crate_num: ast::CrateNum)
-> Vec<(cstore::NativeLibraryKind, String)> {
2013-12-25 13:08:04 -07:00
let cdata = cstore.get_crate_data(crate_num);
2014-04-17 15:06:25 +03:00
decoder::get_native_libraries(&*cdata)
Add generation of static libraries to rustc This commit implements the support necessary for generating both intermediate and result static rust libraries. This is an implementation of my thoughts in https://mail.mozilla.org/pipermail/rust-dev/2013-November/006686.html. When compiling a library, we still retain the "lib" option, although now there are "rlib", "staticlib", and "dylib" as options for crate_type (and these are stackable). The idea of "lib" is to generate the "compiler default" instead of having too choose (although all are interchangeable). For now I have left the "complier default" to be a dynamic library for size reasons. Of the rust libraries, lib{std,extra,rustuv} will bootstrap with an rlib/dylib pair, but lib{rustc,syntax,rustdoc,rustpkg} will only be built as a dynamic object. I chose this for size reasons, but also because you're probably not going to be embedding the rustc compiler anywhere any time soon. Other than the options outlined above, there are a few defaults/preferences that are now opinionated in the compiler: * If both a .dylib and .rlib are found for a rust library, the compiler will prefer the .rlib variant. This is overridable via the -Z prefer-dynamic option * If generating a "lib", the compiler will generate a dynamic library. This is overridable by explicitly saying what flavor you'd like (rlib, staticlib, dylib). * If no options are passed to the command line, and no crate_type is found in the destination crate, then an executable is generated With this change, you can successfully build a rust program with 0 dynamic dependencies on rust libraries. There is still a dynamic dependency on librustrt, but I plan on removing that in a subsequent commit. This change includes no tests just yet. Our current testing infrastructure/harnesses aren't very amenable to doing flavorful things with linking, so I'm planning on adding a new mode of testing which I believe belongs as a separate commit. Closes #552
2013-11-15 14:03:29 -08:00
}
2014-12-08 20:26:43 -05:00
pub fn each_impl<F>(cstore: &cstore::CStore,
crate_num: ast::CrateNum,
callback: F) where
F: FnMut(ast::DefId),
{
2013-12-25 13:08:04 -07:00
let cdata = cstore.get_crate_data(crate_num);
2014-04-17 15:06:25 +03:00
decoder::each_impl(&*cdata, callback)
}
2014-12-08 20:26:43 -05:00
pub fn each_implementation_for_type<F>(cstore: &cstore::CStore,
def_id: ast::DefId,
callback: F) where
F: FnMut(ast::DefId),
{
let cdata = cstore.get_crate_data(def_id.krate);
2014-04-17 15:06:25 +03:00
decoder::each_implementation_for_type(&*cdata, def_id.node, callback)
}
2014-12-08 20:26:43 -05:00
pub fn each_implementation_for_trait<F>(cstore: &cstore::CStore,
def_id: ast::DefId,
callback: F) where
F: FnMut(ast::DefId),
{
let cdata = cstore.get_crate_data(def_id.krate);
2014-04-17 15:06:25 +03:00
decoder::each_implementation_for_trait(&*cdata, def_id.node, callback)
}
/// If the given def ID describes an item belonging to a trait (either a
/// default method or an implementation of a trait method), returns the ID of
/// the trait that the method belongs to. Otherwise, returns `None`.
pub fn get_trait_of_item(cstore: &cstore::CStore,
def_id: ast::DefId,
tcx: &ty::ctxt)
-> Option<ast::DefId> {
let cdata = cstore.get_crate_data(def_id.krate);
decoder::get_trait_of_item(&*cdata, def_id.node, tcx)
}
pub fn get_tuple_struct_definition_if_ctor(cstore: &cstore::CStore,
def_id: ast::DefId)
-> Option<ast::DefId>
{
let cdata = cstore.get_crate_data(def_id.krate);
2014-04-17 15:06:25 +03:00
decoder::get_tuple_struct_definition_if_ctor(&*cdata, def_id.node)
}
pub fn get_dylib_dependency_formats(cstore: &cstore::CStore,
cnum: ast::CrateNum)
-> Vec<(ast::CrateNum, cstore::LinkagePreference)>
{
let cdata = cstore.get_crate_data(cnum);
decoder::get_dylib_dependency_formats(&*cdata)
}
rustc: Add official support for weak failure This commit is part of the ongoing libstd facade efforts (cc #13851). The compiler now recognizes some language items as "extern { fn foo(...); }" and will automatically perform the following actions: 1. The foreign function has a pre-defined name. 2. The crate and downstream crates can only be built as rlibs until a crate defines the lang item itself. 3. The actual lang item has a pre-defined name. This is essentially nicer compiler support for the hokey core-depends-on-std-failure scheme today, but it is implemented the same way. The details are a little more hidden under the covers. In addition to failure, this commit promotes the eh_personality and rust_stack_exhausted functions to official lang items. The compiler can generate calls to these functions, causing linkage errors if they are left undefined. The checking for these items is not as precise as it could be. Crates compiling with `-Z no-landing-pads` will not need the eh_personality lang item, and crates compiling with no split stacks won't need the stack exhausted lang item. For ease, however, these items are checked for presence in all final outputs of the compiler. It is quite easy to define dummy versions of the functions necessary: #[lang = "stack_exhausted"] extern fn stack_exhausted() { /* ... */ } #[lang = "eh_personality"] extern fn eh_personality() { /* ... */ } cc #11922, rust_stack_exhausted is now a lang item cc #13851, libcollections is blocked on eh_personality becoming weak
2014-05-19 09:30:09 -07:00
pub fn get_missing_lang_items(cstore: &cstore::CStore, cnum: ast::CrateNum)
-> Vec<lang_items::LangItem>
{
let cdata = cstore.get_crate_data(cnum);
decoder::get_missing_lang_items(&*cdata)
}
pub fn get_method_arg_names(cstore: &cstore::CStore, did: ast::DefId)
-> Vec<String>
{
let cdata = cstore.get_crate_data(did.krate);
decoder::get_method_arg_names(&*cdata, did.node)
}
pub fn get_reachable_extern_fns(cstore: &cstore::CStore, cnum: ast::CrateNum)
-> Vec<ast::DefId>
{
let cdata = cstore.get_crate_data(cnum);
decoder::get_reachable_extern_fns(&*cdata)
}
pub fn is_typedef(cstore: &cstore::CStore, did: ast::DefId) -> bool {
let cdata = cstore.get_crate_data(did.krate);
decoder::is_typedef(&*cdata, did.node)
}
pub fn get_stability(cstore: &cstore::CStore,
def: ast::DefId)
-> Option<attr::Stability> {
let cdata = cstore.get_crate_data(def.krate);
decoder::get_stability(&*cdata, def.node)
}
Preliminary feature staging This partially implements the feature staging described in the [release channel RFC][rc]. It does not yet fully conform to the RFC as written, but does accomplish its goals sufficiently for the 1.0 alpha release. It has three primary user-visible effects: * On the nightly channel, use of unstable APIs generates a warning. * On the beta channel, use of unstable APIs generates a warning. * On the beta channel, use of feature gates generates a warning. Code that does not trigger these warnings is considered 'stable', modulo pre-1.0 bugs. Disabling the warnings for unstable APIs continues to be done in the existing (i.e. old) style, via `#[allow(...)]`, not that specified in the RFC. I deem this marginally acceptable since any code that must do this is not using the stable dialect of Rust. Use of feature gates is itself gated with the new 'unstable_features' lint, on nightly set to 'allow', and on beta 'warn'. The attribute scheme used here corresponds to an older version of the RFC, with the `#[staged_api]` crate attribute toggling the staging behavior of the stability attributes, but the user impact is only in-tree so I'm not concerned about having to make design changes later (and I may ultimately prefer the scheme here after all, with the `#[staged_api]` crate attribute). Since the Rust codebase itself makes use of unstable features the compiler and build system to a midly elaborate dance to allow it to bootstrap while disobeying these lints (which would otherwise be errors because Rust builds with `-D warnings`). This patch includes one significant hack that causes a regression. Because the `format_args!` macro emits calls to unstable APIs it would trigger the lint. I added a hack to the lint to make it not trigger, but this in turn causes arguments to `println!` not to be checked for feature gates. I don't presently understand macro expansion well enough to fix. This is bug #20661. Closes #16678 [rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
2015-01-06 06:26:08 -08:00
pub fn is_staged_api(cstore: &cstore::CStore, def: ast::DefId) -> bool {
let cdata = cstore.get_crate_data(def.krate);
let attrs = decoder::get_crate_attributes(cdata.data());
for attr in attrs.iter() {
if attr.name().get() == "staged_api" {
match attr.node.value.node { ast::MetaWord(_) => return true, _ => (/*pass*/) }
}
}
return false;
}
pub fn get_repr_attrs(cstore: &cstore::CStore, def: ast::DefId)
-> Vec<attr::ReprAttr> {
let cdata = cstore.get_crate_data(def.krate);
decoder::get_repr_attrs(&*cdata, def.node)
}
pub fn is_associated_type(cstore: &cstore::CStore, def: ast::DefId) -> bool {
let cdata = cstore.get_crate_data(def.krate);
decoder::is_associated_type(&*cdata, def.node)
}