591 lines
22 KiB
Rust
Raw Normal View History

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use middle::freevars::freevar_entry;
use middle::freevars;
use middle::ty;
use middle::typeck;
use util::ppaux::{Repr, ty_to_str};
use util::ppaux::UserString;
use syntax::ast::*;
use syntax::attr::attrs_contains_name;
2013-03-26 16:38:07 -04:00
use syntax::codemap::span;
2012-09-04 11:54:36 -07:00
use syntax::print::pprust::expr_to_str;
use syntax::{visit, ast_util};
// Kind analysis pass.
//
// There are several kinds defined by various operations. The most restrictive
// kind is noncopyable. The noncopyable kind can be extended with any number
// of the following attributes.
//
// send: Things that can be sent on channels or included in spawned closures.
// copy: Things that can be copied.
// freeze: Things thare are deeply immutable. They are guaranteed never to
// change, and can be safely shared without copying between tasks.
// 'static: Things that do not contain borrowed pointers.
//
// Send includes scalar types as well as classes and unique types containing
// only sendable types.
//
// Copy includes boxes, closure and unique types containing copyable types.
//
// Freeze include scalar types, things without non-const fields, and pointers
// to freezable things.
//
// This pass ensures that type parameters are only instantiated with types
// whose kinds are equal or less general than the way the type parameter was
// annotated (with the `Send`, `Copy` or `Freeze` bound).
//
// It also verifies that noncopyable kinds are not copied. Sendability is not
// applied, since none of our language primitives send. Instead, the sending
// primitives in the stdlib are explicitly annotated to only take sendable
// types.
pub static try_adding: &'static str = "Try adding a move";
pub struct Context {
tcx: ty::ctxt,
method_map: typeck::method_map,
2013-03-15 15:24:24 -04:00
current_item: node_id
}
pub fn check_crate(tcx: ty::ctxt,
method_map: typeck::method_map,
crate: &crate) {
let ctx = Context {
tcx: tcx,
method_map: method_map,
2013-03-15 15:24:24 -04:00
current_item: -1
};
let visit = visit::mk_vt(@visit::Visitor {
visit_expr: check_expr,
visit_fn: check_fn,
visit_ty: check_ty,
visit_item: check_item,
visit_block: check_block,
2012-09-04 13:29:32 -07:00
.. *visit::default_visitor()
});
visit::visit_crate(crate, (ctx, visit));
tcx.sess.abort_if_errors();
}
fn check_struct_safe_for_destructor(cx: Context,
span: span,
struct_did: def_id) {
let struct_tpt = ty::lookup_item_type(cx.tcx, struct_did);
if !struct_tpt.generics.has_type_params() {
let struct_ty = ty::mk_struct(cx.tcx, struct_did, ty::substs {
self_r: None,
self_ty: None,
tps: ~[]
});
if !ty::type_is_sendable(cx.tcx, struct_ty) {
cx.tcx.sess.span_err(span,
"cannot implement a destructor on a \
structure that does not satisfy Send");
cx.tcx.sess.span_note(span,
2013-05-01 01:47:52 +09:00
"use \"#[unsafe_destructor]\" on the \
implementation to force the compiler to \
allow this");
}
} else {
cx.tcx.sess.span_err(span,
"cannot implement a destructor on a structure \
2013-05-01 01:47:52 +09:00
with type parameters");
cx.tcx.sess.span_note(span,
2013-05-01 01:47:52 +09:00
"use \"#[unsafe_destructor]\" on the \
implementation to force the compiler to \
allow this");
}
}
fn check_block(block: &blk, (cx, visitor): (Context, visit::vt<Context>)) {
visit::visit_block(block, (cx, visitor));
}
fn check_item(item: @item, (cx, visitor): (Context, visit::vt<Context>)) {
// If this is a destructor, check kinds.
if !attrs_contains_name(item.attrs, "unsafe_destructor") {
match item.node {
2013-07-06 16:57:11 +12:00
item_impl(_, Some(ref trait_ref), ref self_type, _) => {
match cx.tcx.def_map.find(&trait_ref.ref_id) {
None => cx.tcx.sess.bug("trait ref not in def map!"),
2013-03-22 22:26:41 -04:00
Some(&trait_def) => {
let trait_def_id = ast_util::def_id_of_def(trait_def);
if cx.tcx.lang_items.drop_trait() == Some(trait_def_id) {
// Yes, it's a destructor.
match self_type.node {
2013-07-06 13:38:56 +12:00
ty_path(_, ref bounds, path_node_id) => {
assert!(bounds.is_none());
let struct_def = cx.tcx.def_map.get_copy(
&path_node_id);
let struct_did =
ast_util::def_id_of_def(struct_def);
check_struct_safe_for_destructor(
cx,
self_type.span,
struct_did);
}
_ => {
cx.tcx.sess.span_bug(self_type.span,
2013-05-01 01:47:52 +09:00
"the self type for \
the Drop trait \
impl is not a \
path");
}
}
}
}
}
}
_ => {}
}
}
let cx = Context { current_item: item.id, ..cx };
visit::visit_item(item, (cx, visitor));
}
2011-12-20 19:39:33 -08:00
// Yields the appropriate function to check the kind of closed over
// variables. `id` is the node_id for some expression that creates the
// closure.
fn with_appropriate_checker(cx: Context, id: node_id,
b: &fn(checker: &fn(Context, @freevar_entry))) {
fn check_for_uniq(cx: Context, fv: &freevar_entry, bounds: ty::BuiltinBounds) {
// all captured data must be owned, regardless of whether it is
// moved in or copied in.
let id = ast_util::def_id_of_def(fv.def).node;
let var_t = ty::node_id_to_type(cx.tcx, id);
// check that only immutable variables are implicitly copied in
check_imm_free_var(cx, fv.def, fv.span);
check_freevar_bounds(cx, fv.span, var_t, bounds, None);
}
fn check_for_box(cx: Context, fv: &freevar_entry, bounds: ty::BuiltinBounds) {
// all captured data must be owned
let id = ast_util::def_id_of_def(fv.def).node;
let var_t = ty::node_id_to_type(cx.tcx, id);
// check that only immutable variables are implicitly copied in
check_imm_free_var(cx, fv.def, fv.span);
check_freevar_bounds(cx, fv.span, var_t, bounds, None);
}
fn check_for_block(cx: Context, fv: &freevar_entry,
bounds: ty::BuiltinBounds, region: ty::Region) {
let id = ast_util::def_id_of_def(fv.def).node;
let var_t = ty::node_id_to_type(cx.tcx, id);
// FIXME(#3569): Figure out whether the implicit borrow is actually
// mutable. Currently we assume all upvars are referenced mutably.
let implicit_borrowed_type = ty::mk_mut_rptr(cx.tcx, region, var_t);
check_freevar_bounds(cx, fv.span, implicit_borrowed_type,
bounds, Some(var_t));
}
fn check_for_bare(cx: Context, fv: @freevar_entry) {
cx.tcx.sess.span_err(
fv.span,
"can't capture dynamic environment in a fn item; \
use the || { ... } closure form instead");
} // same check is done in resolve.rs, but shouldn't be done
let fty = ty::node_id_to_type(cx.tcx, id);
match ty::get(fty).sty {
ty::ty_closure(ty::ClosureTy {sigil: OwnedSigil, bounds: bounds, _}) => {
b(|cx, fv| check_for_uniq(cx, fv, bounds))
}
ty::ty_closure(ty::ClosureTy {sigil: ManagedSigil, bounds: bounds, _}) => {
b(|cx, fv| check_for_box(cx, fv, bounds))
}
ty::ty_closure(ty::ClosureTy {sigil: BorrowedSigil, bounds: bounds,
region: region, _}) => {
b(|cx, fv| check_for_block(cx, fv, bounds, region))
}
ty::ty_bare_fn(_) => {
b(check_for_bare)
}
ref s => {
cx.tcx.sess.bug(
fmt!("expect fn type in kind checker, not %?", s));
}
2011-12-20 19:39:33 -08:00
}
}
// Check that the free variables used in a shared/sendable closure conform
// to the copy/move kind bounds. Then recursively check the function body.
fn check_fn(
fk: &visit::fn_kind,
decl: &fn_decl,
body: &blk,
sp: span,
fn_id: node_id,
(cx, v): (Context,
visit::vt<Context>)) {
// Check kinds on free variables:
do with_appropriate_checker(cx, fn_id) |chk| {
let r = freevars::get_freevars(cx.tcx, fn_id);
for r.iter().advance |fv| {
chk(cx, *fv);
}
}
visit::visit_fn(fk, decl, body, sp, fn_id, (cx, v));
2011-12-20 19:39:33 -08:00
}
pub fn check_expr(e: @expr, (cx, v): (Context, visit::vt<Context>)) {
2012-08-22 17:24:52 -07:00
debug!("kind::check_expr(%s)", expr_to_str(e, cx.tcx.sess.intr()));
// Handle any kind bounds on type parameters
let type_parameter_id = match e.get_callee_id() {
Some(callee_id) => callee_id,
None => e.id,
};
{
let r = cx.tcx.node_type_substs.find(&type_parameter_id);
for r.iter().advance |ts| {
let type_param_defs = match e.node {
expr_path(_) => {
let did = ast_util::def_id_of_def(cx.tcx.def_map.get_copy(&e.id));
ty::lookup_item_type(cx.tcx, did).generics.type_param_defs
}
_ => {
// Type substitutions should only occur on paths and
// method calls, so this needs to be a method call.
// Even though the callee_id may have been the id with
// node_type_substs, e.id is correct here.
ty::method_call_type_param_defs(cx.tcx, cx.method_map, e.id).expect(
"non path/method call expr has type substs??")
}
};
if ts.len() != type_param_defs.len() {
// Fail earlier to make debugging easier
fail!("internal error: in kind::check_expr, length \
mismatch between actual and declared bounds: actual = \
%s, declared = %s",
ts.repr(cx.tcx),
type_param_defs.repr(cx.tcx));
}
for ts.iter().zip(type_param_defs.iter()).advance |(&ty, type_param_def)| {
check_typaram_bounds(cx, type_parameter_id, e.span, ty, type_param_def)
}
}
}
match e.node {
expr_cast(source, _) => {
check_cast_for_escaping_regions(cx, source, e);
match ty::get(ty::expr_ty(cx.tcx, e)).sty {
ty::ty_trait(_, _, _, _, bounds) => {
let source_ty = ty::expr_ty(cx.tcx, source);
check_trait_cast_bounds(cx, e.span, source_ty, bounds)
}
_ => { }
}
}
expr_copy(expr) => {
// Note: This is the only place where we must check whether the
// argument is copyable. This is not because this is the only
// kind of expression that may copy things, but rather because all
// other copies will have been converted to moves by by the
// `moves` pass if the value is not copyable.
check_copy(cx,
ty::expr_ty(cx.tcx, expr),
expr.span,
"explicit copy requires a copyable argument");
}
expr_repeat(element, count_expr, _) => {
let count = ty::eval_repeat_count(&cx.tcx, count_expr);
if count > 1 {
let element_ty = ty::expr_ty(cx.tcx, element);
check_copy(cx, element_ty, element.span,
"repeated element will be copied");
}
}
_ => {}
}
visit::visit_expr(e, (cx, v));
}
2013-07-06 16:57:11 +12:00
fn check_ty(aty: &Ty, (cx, v): (Context, visit::vt<Context>)) {
2012-08-06 12:34:08 -07:00
match aty.node {
ty_path(_, _, id) => {
let r = cx.tcx.node_type_substs.find(&id);
for r.iter().advance |ts| {
let did = ast_util::def_id_of_def(cx.tcx.def_map.get_copy(&id));
let type_param_defs =
ty::lookup_item_type(cx.tcx, did).generics.type_param_defs;
for ts.iter().zip(type_param_defs.iter()).advance |(&ty, type_param_def)| {
check_typaram_bounds(cx, aty.id, aty.span, ty, type_param_def)
}
}
}
2012-08-03 19:59:04 -07:00
_ => {}
}
visit::visit_ty(aty, (cx, v));
}
// Calls "any_missing" if any bounds were missing.
pub fn check_builtin_bounds(cx: Context, ty: ty::t, bounds: ty::BuiltinBounds,
any_missing: &fn(ty::BuiltinBounds))
{
let kind = ty::type_contents(cx.tcx, ty);
let mut missing = ty::EmptyBuiltinBounds();
for bounds.each |bound| {
if !kind.meets_bound(cx.tcx, bound) {
missing.add(bound);
}
}
if !missing.is_empty() {
any_missing(missing);
}
}
pub fn check_typaram_bounds(cx: Context,
_type_parameter_id: node_id,
sp: span,
ty: ty::t,
type_param_def: &ty::TypeParameterDef)
{
do check_builtin_bounds(cx, ty, type_param_def.bounds.builtin_bounds) |missing| {
cx.tcx.sess.span_err(
sp,
fmt!("instantiating a type parameter with an incompatible type \
`%s`, which does not fulfill `%s`",
ty_to_str(cx.tcx, ty),
missing.user_string(cx.tcx)));
}
}
pub fn check_freevar_bounds(cx: Context, sp: span, ty: ty::t,
bounds: ty::BuiltinBounds, referenced_ty: Option<ty::t>)
{
do check_builtin_bounds(cx, ty, bounds) |missing| {
// Will be Some if the freevar is implicitly borrowed (stack closure).
// Emit a less mysterious error message in this case.
match referenced_ty {
Some(rty) => cx.tcx.sess.span_err(sp,
fmt!("cannot implicitly borrow variable of type `%s` in a bounded \
stack closure (implicit reference does not fulfill `%s`)",
ty_to_str(cx.tcx, rty), missing.user_string(cx.tcx))),
None => cx.tcx.sess.span_err(sp,
fmt!("cannot capture variable of type `%s`, which does \
not fulfill `%s`, in a bounded closure",
ty_to_str(cx.tcx, ty), missing.user_string(cx.tcx))),
}
cx.tcx.sess.span_note(
sp,
fmt!("this closure's environment must satisfy `%s`",
bounds.user_string(cx.tcx)));
}
}
pub fn check_trait_cast_bounds(cx: Context, sp: span, ty: ty::t,
bounds: ty::BuiltinBounds) {
do check_builtin_bounds(cx, ty, bounds) |missing| {
cx.tcx.sess.span_err(sp,
fmt!("cannot pack type `%s`, which does not fulfill \
`%s`, as a trait bounded by %s",
ty_to_str(cx.tcx, ty), missing.user_string(cx.tcx),
bounds.user_string(cx.tcx)));
}
}
fn is_nullary_variant(cx: Context, ex: @expr) -> bool {
2012-08-06 12:34:08 -07:00
match ex.node {
2012-08-03 19:59:04 -07:00
expr_path(_) => {
match cx.tcx.def_map.get_copy(&ex.id) {
2012-08-03 19:59:04 -07:00
def_variant(edid, vdid) => {
ty::enum_variant_with_id(cx.tcx, edid, vdid).args.is_empty()
}
2012-08-03 19:59:04 -07:00
_ => false
}
}
2012-08-03 19:59:04 -07:00
_ => false
}
}
fn check_imm_free_var(cx: Context, def: def, sp: span) {
match def {
def_local(_, is_mutbl) => {
if is_mutbl {
cx.tcx.sess.span_err(
sp,
2013-05-01 01:47:52 +09:00
"mutable variables cannot be implicitly captured");
}
}
def_arg(*) => { /* ok */ }
def_upvar(_, def1, _, _) => { check_imm_free_var(cx, *def1, sp); }
def_binding(*) | def_self(*) => { /*ok*/ }
_ => {
cx.tcx.sess.span_bug(
sp,
fmt!("unknown def for free variable: %?", def));
}
}
}
fn check_copy(cx: Context, ty: ty::t, sp: span, reason: &str) {
debug!("type_contents(%s)=%s",
ty_to_str(cx.tcx, ty),
ty::type_contents(cx.tcx, ty).to_str());
if !ty::type_is_copyable(cx.tcx, ty) {
cx.tcx.sess.span_err(
sp, fmt!("copying a value of non-copyable type `%s`",
ty_to_str(cx.tcx, ty)));
cx.tcx.sess.span_note(sp, fmt!("%s", reason));
}
}
pub fn check_send(cx: Context, ty: ty::t, sp: span) -> bool {
if !ty::type_is_sendable(cx.tcx, ty) {
cx.tcx.sess.span_err(
sp, fmt!("value has non-sendable type `%s`",
ty_to_str(cx.tcx, ty)));
false
} else {
true
}
}
// note: also used from middle::typeck::regionck!
pub fn check_durable(tcx: ty::ctxt, ty: ty::t, sp: span) -> bool {
if !ty::type_is_static(tcx, ty) {
match ty::get(ty).sty {
2012-08-03 19:59:04 -07:00
ty::ty_param(*) => {
2013-05-01 01:47:52 +09:00
tcx.sess.span_err(sp, "value may contain borrowed \
pointers; add `'static` bound");
}
2012-08-03 19:59:04 -07:00
_ => {
2013-05-01 01:47:52 +09:00
tcx.sess.span_err(sp, "value may contain borrowed \
pointers");
}
}
false
} else {
true
}
}
/// This is rather subtle. When we are casting a value to a instantiated
/// trait like `a as trait<'r>`, regionck already ensures that any borrowed
/// pointers that appear in the type of `a` are bounded by `'r` (ed.: rem
/// FIXME(#5723)). However, it is possible that there are *type parameters*
/// in the type of `a`, and those *type parameters* may have borrowed pointers
/// within them. We have to guarantee that the regions which appear in those
/// type parameters are not obscured.
///
/// Therefore, we ensure that one of three conditions holds:
///
/// (1) The trait instance cannot escape the current fn. This is
/// guaranteed if the region bound `&r` is some scope within the fn
/// itself. This case is safe because whatever borrowed pointers are
/// found within the type parameter, they must enclose the fn body
/// itself.
///
/// (2) The type parameter appears in the type of the trait. For
/// example, if the type parameter is `T` and the trait type is
/// `deque<T>`, then whatever borrowed ptrs may appear in `T` also
/// appear in `deque<T>`.
///
/// (3) The type parameter is sendable (and therefore does not contain
/// borrowed ptrs).
///
/// FIXME(#5723)---This code should probably move into regionck.
pub fn check_cast_for_escaping_regions(
cx: Context,
source: &expr,
target: &expr)
{
// Determine what type we are casting to; if it is not an trait, then no
// worries.
let target_ty = ty::expr_ty(cx.tcx, target);
match ty::get(target_ty).sty {
ty::ty_trait(*) => {}
_ => { return; }
}
// Collect up the regions that appear in the target type. We want to
// ensure that these lifetimes are shorter than all lifetimes that are in
// the source type. See test `src/test/compile-fail/regions-trait-2.rs`
let mut target_regions = ~[];
ty::walk_regions_and_ty(
cx.tcx,
target_ty,
|r| {
if !r.is_bound() {
target_regions.push(r);
}
},
|_| true);
// Check, based on the region associated with the trait, whether it can
// possibly escape the enclosing fn item (note that all type parameters
// must have been declared on the enclosing fn item).
2013-07-04 22:13:26 -04:00
if target_regions.iter().any(|r| is_re_scope(*r)) {
return; /* case (1) */
}
// Assuming the trait instance can escape, then ensure that each parameter
// either appears in the trait type or is sendable.
let target_params = ty::param_tys_in_type(target_ty);
let source_ty = ty::expr_ty(cx.tcx, source);
ty::walk_regions_and_ty(
cx.tcx,
source_ty,
|_r| {
// FIXME(#5723) --- turn this check on once &Objects are usable
//
2013-07-04 22:13:26 -04:00
// if !target_regions.iter().any(|t_r| is_subregion_of(cx, *t_r, r)) {
// cx.tcx.sess.span_err(
// source.span,
// fmt!("source contains borrowed pointer with lifetime \
// not found in the target type `%s`",
// ty_to_str(cx.tcx, target_ty)));
// note_and_explain_region(
// cx.tcx, "source data is only valid for ", r, "");
// }
},
|ty| {
match ty::get(ty).sty {
ty::ty_param(source_param) => {
2013-07-04 22:13:26 -04:00
if target_params.iter().any(|x| x == &source_param) {
/* case (2) */
} else {
check_durable(cx.tcx, ty, source.span); /* case (3) */
}
}
_ => {}
}
true
});
fn is_re_scope(r: ty::Region) -> bool {
match r {
ty::re_scope(*) => true,
_ => false
}
}
fn is_subregion_of(cx: Context, r_sub: ty::Region, r_sup: ty::Region) -> bool {
cx.tcx.region_maps.is_subregion_of(r_sub, r_sup)
}
}