rust/src/lib/sort.rs

283 lines
8.7 KiB
Rust
Raw Normal View History

import vec::len;
import vec::slice;
import ilen = ivec::len;
import islice = ivec::slice;
export ivector;
export lteq;
export merge_sort;
export quick_sort;
export quick_sort3;
type lteq[T] = block(&T, &T) -> bool ;
2010-12-21 02:44:06 -06:00
fn merge_sort[@T](le: &lteq[T], v: vec[T]) -> vec[T] {
fn merge[@T](le: &lteq[T], a: vec[T], b: vec[T]) -> vec[T] {
2011-07-27 07:19:39 -05:00
let rs: vec[T] = [];
let a_len: uint = len[T](a);
let a_ix: uint = 0u;
let b_len: uint = len[T](b);
let b_ix: uint = 0u;
while a_ix < a_len && b_ix < b_len {
if le(a.(a_ix), b.(b_ix)) {
2011-06-24 10:55:02 -05:00
rs += [a.(a_ix)];
a_ix += 1u;
2011-06-24 10:55:02 -05:00
} else { rs += [b.(b_ix)]; b_ix += 1u; }
}
2011-06-24 10:55:02 -05:00
rs += slice[T](a, a_ix, a_len);
rs += slice[T](b, b_ix, b_len);
ret rs;
2010-12-21 02:44:06 -06:00
}
2011-07-27 07:19:39 -05:00
let v_len: uint = len[T](v);
if v_len <= 1u { ret v; }
let mid: uint = v_len / 2u;
let a: vec[T] = slice[T](v, 0u, mid);
let b: vec[T] = slice[T](v, mid, v_len);
ret merge[T](le, merge_sort[T](le, a), merge_sort[T](le, b));
2010-12-21 02:44:06 -06:00
}
fn swap[@T](arr: vec[mutable T], x: uint, y: uint) {
2011-07-27 07:19:39 -05:00
let a = arr.(x);
arr.(x) = arr.(y);
arr.(y) = a;
}
fn part[@T](compare_func: &lteq[T], arr: vec[mutable T], left: uint,
right: uint, pivot: uint) -> uint {
2011-07-27 07:19:39 -05:00
let pivot_value = arr.(pivot);
swap[T](arr, pivot, right);
2011-07-27 07:19:39 -05:00
let storage_index: uint = left;
let i: uint = left;
while i < right {
if compare_func({ arr.(i) }, pivot_value) {
swap[T](arr, i, storage_index);
storage_index += 1u;
}
i += 1u;
}
swap[T](arr, storage_index, right);
ret storage_index;
}
fn qsort[@T](compare_func: &lteq[T], arr: vec[mutable T], left: uint,
right: uint) {
2011-07-27 07:19:39 -05:00
if right > left {
let pivot = (left + right) / 2u;
let new_pivot = part[T](compare_func, arr, left, right, pivot);
if new_pivot != 0u {
// Need to do this check before recursing due to overflow
qsort[T](compare_func, arr, left, new_pivot - 1u);
}
qsort[T](compare_func, arr, new_pivot + 1u, right);
}
}
fn quick_sort[@T](compare_func: &lteq[T], arr: vec[mutable T]) {
2011-07-27 07:19:39 -05:00
if len[T](arr) == 0u { ret; }
qsort[T](compare_func, arr, 0u, len[T](arr) - 1u);
}
// Based on algorithm presented by Sedgewick and Bentley here:
// http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
// According to these slides this is the algorithm of choice for
// 'randomly ordered keys, abstract compare' & 'small number of key values'
fn qsort3[@T](compare_func_lt: &lteq[T], compare_func_eq: &lteq[T],
2011-07-27 07:19:39 -05:00
arr: vec[mutable T], left: int, right: int) {
if right <= left { ret; }
let v: T = arr.(right);
let i: int = left - 1;
let j: int = right;
let p: int = i;
let q: int = j;
while true {
i += 1;
2011-07-27 07:19:39 -05:00
while compare_func_lt({ arr.(i) }, v) { i += 1; }
j -= 1;
2011-07-27 07:19:39 -05:00
while compare_func_lt(v, { arr.(j) }) {
if j == left { break; }
j -= 1;
}
2011-07-27 07:19:39 -05:00
if i >= j { break; }
swap[T](arr, i as uint, j as uint);
2011-07-27 07:19:39 -05:00
if compare_func_eq({ arr.(i) }, v) {
p += 1;
swap[T](arr, p as uint, i as uint);
}
2011-07-27 07:19:39 -05:00
if compare_func_eq(v, { arr.(j) }) {
q -= 1;
swap[T](arr, j as uint, q as uint);
}
}
swap[T](arr, i as uint, right as uint);
j = i - 1;
i += 1;
2011-07-27 07:19:39 -05:00
let k: int = left;
while k < p {
swap[T](arr, k as uint, j as uint);
k += 1;
j -= 1;
2011-07-27 07:19:39 -05:00
if k == vec::len[T](arr) as int { break; }
}
k = right - 1;
2011-07-27 07:19:39 -05:00
while k > q {
swap[T](arr, i as uint, k as uint);
k -= 1;
i += 1;
2011-07-27 07:19:39 -05:00
if k == 0 { break; }
}
qsort3[T](compare_func_lt, compare_func_eq, arr, left, j);
qsort3[T](compare_func_lt, compare_func_eq, arr, i, right);
}
fn quick_sort3[@T](compare_func_lt: &lteq[T], compare_func_eq: &lteq[T],
2011-07-27 07:19:39 -05:00
arr: vec[mutable T]) {
if vec::len[T](arr) == 0u { ret; }
qsort3[T](compare_func_lt, compare_func_eq, arr, 0,
(vec::len[T](arr) as int) - 1);
}
mod ivector {
export merge_sort;
export quick_sort;
export quick_sort3;
2011-07-27 07:19:39 -05:00
type lteq[T] = fn(&T, &T) -> bool ;
fn merge_sort[@T](le: &lteq[T], v: &[T]) -> [T] {
fn merge[@T](le: &lteq[T], a: &[T], b: &[T]) -> [T] {
let rs: [T] = ~[];
2011-07-27 07:19:39 -05:00
let a_len: uint = ilen[T](a);
let a_ix: uint = 0u;
let b_len: uint = ilen[T](b);
let b_ix: uint = 0u;
while a_ix < a_len && b_ix < b_len {
if le(a.(a_ix), b.(b_ix)) {
rs += ~[a.(a_ix)];
a_ix += 1u;
} else { rs += ~[b.(b_ix)]; b_ix += 1u; }
}
rs += islice[T](a, a_ix, a_len);
rs += islice[T](b, b_ix, b_len);
ret rs;
}
2011-07-27 07:19:39 -05:00
let v_len: uint = ilen[T](v);
if v_len <= 1u { ret v; }
let mid: uint = v_len / 2u;
let a: [T] = islice[T](v, 0u, mid);
let b: [T] = islice[T](v, mid, v_len);
ret merge[T](le, merge_sort[T](le, a), merge_sort[T](le, b));
}
fn swap[@T](arr: &[mutable T], x: uint, y: uint) {
2011-07-27 07:19:39 -05:00
let a = arr.(x);
arr.(x) = arr.(y);
arr.(y) = a;
}
fn part[@T](compare_func: &lteq[T], arr: &[mutable T], left: uint,
right: uint, pivot: uint) -> uint {
2011-07-27 07:19:39 -05:00
let pivot_value = arr.(pivot);
swap[T](arr, pivot, right);
2011-07-27 07:19:39 -05:00
let storage_index: uint = left;
let i: uint = left;
while i < right {
if compare_func({ arr.(i) }, pivot_value) {
swap[T](arr, i, storage_index);
storage_index += 1u;
}
i += 1u;
}
swap[T](arr, storage_index, right);
ret storage_index;
}
fn qsort[@T](compare_func: &lteq[T], arr: &[mutable T], left: uint,
right: uint) {
2011-07-27 07:19:39 -05:00
if right > left {
let pivot = (left + right) / 2u;
let new_pivot = part[T](compare_func, arr, left, right, pivot);
if new_pivot != 0u {
// Need to do this check before recursing due to overflow
qsort[T](compare_func, arr, left, new_pivot - 1u);
}
qsort[T](compare_func, arr, new_pivot + 1u, right);
}
}
fn quick_sort[@T](compare_func: &lteq[T], arr: &[mutable T]) {
2011-07-27 07:19:39 -05:00
if ilen[T](arr) == 0u { ret; }
qsort[T](compare_func, arr, 0u, ilen[T](arr) - 1u);
}
// Based on algorithm presented by Sedgewick and Bentley here:
// http://www.cs.princeton.edu/~rs/talks/QuicksortIsOptimal.pdf
// According to these slides this is the algorithm of choice for
2011-07-01 00:21:30 -05:00
// 'randomly ordered keys, abstract compare' & 'small number of key
// values'
fn qsort3[@T](compare_func_lt: &lteq[T], compare_func_eq: &lteq[T],
arr: &[mutable T], left: int, right: int) {
2011-07-27 07:19:39 -05:00
if right <= left { ret; }
let v: T = arr.(right);
let i: int = left - 1;
let j: int = right;
let p: int = i;
let q: int = j;
while true {
i += 1;
2011-07-27 07:19:39 -05:00
while compare_func_lt({ arr.(i) }, v) { i += 1; }
j -= 1;
2011-07-27 07:19:39 -05:00
while compare_func_lt(v, { arr.(j) }) {
if j == left { break; }
j -= 1;
}
2011-07-27 07:19:39 -05:00
if i >= j { break; }
swap[T](arr, i as uint, j as uint);
2011-07-27 07:19:39 -05:00
if compare_func_eq({ arr.(i) }, v) {
p += 1;
swap[T](arr, p as uint, i as uint);
}
2011-07-27 07:19:39 -05:00
if compare_func_eq(v, { arr.(j) }) {
q -= 1;
swap[T](arr, j as uint, q as uint);
}
}
swap[T](arr, i as uint, right as uint);
j = i - 1;
i += 1;
2011-07-27 07:19:39 -05:00
let k: int = left;
while k < p {
swap[T](arr, k as uint, j as uint);
k += 1;
j -= 1;
2011-07-27 07:19:39 -05:00
if k == ilen[T](arr) as int { break; }
}
k = right - 1;
2011-07-27 07:19:39 -05:00
while k > q {
swap[T](arr, i as uint, k as uint);
k -= 1;
i += 1;
2011-07-27 07:19:39 -05:00
if k == 0 { break; }
}
qsort3[T](compare_func_lt, compare_func_eq, arr, left, j);
qsort3[T](compare_func_lt, compare_func_eq, arr, i, right);
}
fn quick_sort3[@T](compare_func_lt: &lteq[T], compare_func_eq: &lteq[T],
arr: &[mutable T]) {
2011-07-27 07:19:39 -05:00
if ilen[T](arr) == 0u { ret; }
qsort3[T](compare_func_lt, compare_func_eq, arr, 0,
(ilen[T](arr) as int) - 1);
}
}
2010-12-21 02:44:06 -06:00
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// compile-command: "make -k -C $RBUILD 2>&1 | sed -e 's/\\/x\\//x:\\//g'";
2010-12-21 02:44:06 -06:00
// End: