296 lines
6.1 KiB
Rust
Raw Normal View History

2019-09-16 14:01:11 -07:00
#![allow(rustc::internal)]
2020-07-18 20:14:50 +01:00
use rustc_macros::{Decodable, Encodable};
use rustc_serialize::opaque::{MemDecoder, FileEncoder};
use rustc_serialize::{Decodable, Encodable};
use std::fmt::Debug;
use std::fs;
2020-07-18 20:14:50 +01:00
#[derive(PartialEq, Clone, Debug, Encodable, Decodable)]
struct Struct {
a: (),
b: u8,
c: u16,
d: u32,
e: u64,
f: usize,
g: i8,
h: i16,
i: i32,
j: i64,
k: isize,
l: char,
m: String,
p: bool,
q: Option<u32>,
}
fn check_round_trip<
T: Encodable<FileEncoder> + for<'a> Decodable<MemDecoder<'a>> + PartialEq + Debug,
>(
2020-07-18 20:14:50 +01:00
values: Vec<T>,
) {
let tmpfile = tempfile::NamedTempFile::new().unwrap();
let tmpfile = tmpfile.path();
let mut encoder = FileEncoder::new(&tmpfile).unwrap();
for value in &values {
Use delayed error handling for `Encodable` and `Encoder` infallible. There are two impls of the `Encoder` trait: `opaque::Encoder` and `opaque::FileEncoder`. The former encodes into memory and is infallible, the latter writes to file and is fallible. Currently, standard `Result`/`?`/`unwrap` error handling is used, but this is a bit verbose and has non-trivial cost, which is annoying given how rare failures are (especially in the infallible `opaque::Encoder` case). This commit changes how `Encoder` fallibility is handled. All the `emit_*` methods are now infallible. `opaque::Encoder` requires no great changes for this. `opaque::FileEncoder` now implements a delayed error handling strategy. If a failure occurs, it records this via the `res` field, and all subsequent encoding operations are skipped if `res` indicates an error has occurred. Once encoding is complete, the new `finish` method is called, which returns a `Result`. In other words, there is now a single `Result`-producing method instead of many of them. This has very little effect on how any file errors are reported if `opaque::FileEncoder` has any failures. Much of this commit is boring mechanical changes, removing `Result` return values and `?` or `unwrap` from expressions. The more interesting parts are as follows. - serialize.rs: The `Encoder` trait gains an `Ok` associated type. The `into_inner` method is changed into `finish`, which returns `Result<Vec<u8>, !>`. - opaque.rs: The `FileEncoder` adopts the delayed error handling strategy. Its `Ok` type is a `usize`, returning the number of bytes written, replacing previous uses of `FileEncoder::position`. - Various methods that take an encoder now consume it, rather than being passed a mutable reference, e.g. `serialize_query_result_cache`.
2022-06-07 13:30:45 +10:00
Encodable::encode(value, &mut encoder);
}
encoder.finish().unwrap();
let data = fs::read(&tmpfile).unwrap();
let mut decoder = MemDecoder::new(&data[..], 0);
for value in values {
2022-01-18 13:22:50 +11:00
let decoded = Decodable::decode(&mut decoder);
assert_eq!(value, decoded);
}
}
#[test]
fn test_unit() {
check_round_trip(vec![(), (), (), ()]);
}
#[test]
fn test_u8() {
let mut vec = vec![];
for i in u8::MIN..u8::MAX {
vec.push(i);
}
check_round_trip(vec);
}
#[test]
fn test_u16() {
for i in [u16::MIN, 111, 3333, 55555, u16::MAX] {
check_round_trip(vec![1, 2, 3, i, i, i]);
}
}
#[test]
fn test_u32() {
check_round_trip(vec![1, 2, 3, u32::MIN, 0, 1, u32::MAX, 2, 1]);
}
#[test]
fn test_u64() {
check_round_trip(vec![1, 2, 3, u64::MIN, 0, 1, u64::MAX, 2, 1]);
}
#[test]
fn test_usize() {
check_round_trip(vec![1, 2, 3, usize::MIN, 0, 1, usize::MAX, 2, 1]);
}
#[test]
fn test_i8() {
let mut vec = vec![];
for i in i8::MIN..i8::MAX {
vec.push(i);
}
check_round_trip(vec);
}
#[test]
fn test_i16() {
for i in [i16::MIN, -100, 0, 101, i16::MAX] {
check_round_trip(vec![-1, 2, -3, i, i, i, 2]);
}
}
#[test]
fn test_i32() {
check_round_trip(vec![-1, 2, -3, i32::MIN, 0, 1, i32::MAX, 2, 1]);
}
#[test]
fn test_i64() {
check_round_trip(vec![-1, 2, -3, i64::MIN, 0, 1, i64::MAX, 2, 1]);
}
#[test]
fn test_isize() {
check_round_trip(vec![-1, 2, -3, isize::MIN, 0, 1, isize::MAX, 2, 1]);
}
#[test]
fn test_bool() {
check_round_trip(vec![false, true, true, false, false]);
}
#[test]
fn test_char() {
let vec = vec!['a', 'b', 'c', 'd', 'A', 'X', ' ', '#', 'Ö', 'Ä', 'µ', '€'];
check_round_trip(vec);
}
#[test]
fn test_string() {
2019-12-22 17:42:04 -05:00
let vec = vec![
"abcbuÖeiovÄnameÜavmpßvmea€µsbpnvapeapmaebn".to_string(),
"abcbuÖganeiovÄnameÜavmpßvmea€µsbpnvapeapmaebn".to_string(),
"abcbuÖganeiovÄnameÜavmpßvmea€µsbpapmaebn".to_string(),
"abcbuÖganeiovÄnameÜavmpßvmeabpnvapeapmaebn".to_string(),
"abcbuÖganeiÄnameÜavmpßvmea€µsbpnvapeapmaebn".to_string(),
"abcbuÖganeiovÄnameÜavmpßvmea€µsbpmaebn".to_string(),
"abcbuÖganeiovÄnameÜavmpßvmea€µnvapeapmaebn".to_string(),
];
check_round_trip(vec);
}
#[test]
fn test_option() {
check_round_trip(vec![Some(-1i8)]);
check_round_trip(vec![Some(-2i16)]);
check_round_trip(vec![Some(-3i32)]);
check_round_trip(vec![Some(-4i64)]);
check_round_trip(vec![Some(-5isize)]);
let none_i8: Option<i8> = None;
check_round_trip(vec![none_i8]);
let none_i16: Option<i16> = None;
check_round_trip(vec![none_i16]);
let none_i32: Option<i32> = None;
check_round_trip(vec![none_i32]);
let none_i64: Option<i64> = None;
check_round_trip(vec![none_i64]);
let none_isize: Option<isize> = None;
check_round_trip(vec![none_isize]);
}
#[test]
fn test_struct() {
check_round_trip(vec![Struct {
2019-12-22 17:42:04 -05:00
a: (),
b: 10,
c: 11,
d: 12,
e: 13,
f: 14,
g: 15,
h: 16,
i: 17,
j: 18,
k: 19,
l: 'x',
m: "abc".to_string(),
p: false,
q: None,
}]);
check_round_trip(vec![Struct {
2019-12-22 17:42:04 -05:00
a: (),
b: 101,
c: 111,
d: 121,
e: 131,
f: 141,
g: -15,
h: -16,
i: -17,
j: -18,
k: -19,
l: 'y',
m: "def".to_string(),
p: true,
q: Some(1234567),
}]);
}
2020-07-18 20:14:50 +01:00
#[derive(PartialEq, Clone, Debug, Encodable, Decodable)]
enum Enum {
Variant1,
Variant2(usize, u32),
2019-12-22 17:42:04 -05:00
Variant3 { a: i32, b: char, c: bool },
}
#[test]
fn test_enum() {
2019-12-22 17:42:04 -05:00
check_round_trip(vec![
Enum::Variant1,
Enum::Variant2(1, 25),
2019-12-22 17:42:04 -05:00
Enum::Variant3 { a: 3, b: 'b', c: false },
Enum::Variant3 { a: -4, b: 'f', c: true },
]);
}
#[test]
fn test_sequence() {
let mut vec = vec![];
for i in -100i64..100i64 {
vec.push(i * 100000);
}
check_round_trip(vec![vec]);
}
#[test]
fn test_hash_map() {
use std::collections::HashMap;
let mut map = HashMap::new();
for i in -100i64..100i64 {
map.insert(i * 100000, i * 10000);
}
check_round_trip(vec![map]);
}
#[test]
fn test_tuples() {
check_round_trip(vec![('x', (), false, 5u32)]);
check_round_trip(vec![(9i8, 10u16, 15i64)]);
check_round_trip(vec![(-12i16, 11u8, 12usize)]);
check_round_trip(vec![(1234567isize, 100000000000000u64, 99999999999999i64)]);
check_round_trip(vec![(String::new(), "some string".to_string())]);
}
#[test]
fn test_unit_like_struct() {
#[derive(Encodable, Decodable, PartialEq, Debug)]
struct UnitLikeStruct;
check_round_trip(vec![UnitLikeStruct]);
}
#[test]
fn test_box() {
#[derive(Encodable, Decodable, PartialEq, Debug)]
struct A {
foo: Box<[bool]>,
}
let obj = A { foo: Box::new([true, false]) };
check_round_trip(vec![obj]);
}
#[test]
fn test_cell() {
use std::cell::{Cell, RefCell};
#[derive(Encodable, Decodable, PartialEq, Debug)]
struct A {
baz: isize,
}
#[derive(Encodable, Decodable, PartialEq, Debug)]
struct B {
foo: Cell<bool>,
bar: RefCell<A>,
}
let obj = B { foo: Cell::new(true), bar: RefCell::new(A { baz: 2 }) };
check_round_trip(vec![obj]);
}