rust/clippy_lints/src/use_self.rs

284 lines
9.9 KiB
Rust
Raw Normal View History

use if_chain::if_chain;
2020-01-09 01:13:22 -06:00
use rustc::hir::map::Map;
2020-01-12 00:08:41 -06:00
use rustc::lint::in_external_macro;
use rustc::ty;
use rustc::ty::{DefIdTree, Ty};
use rustc_errors::Applicability;
2020-01-06 10:39:50 -06:00
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
2020-01-09 01:13:22 -06:00
use rustc_hir::intravisit::{walk_item, walk_path, walk_ty, NestedVisitorMap, Visitor};
2020-01-06 10:39:50 -06:00
use rustc_hir::*;
2020-01-12 00:08:41 -06:00
use rustc_lint::{LateContext, LateLintPass, LintContext};
2020-01-11 05:37:08 -06:00
use rustc_session::{declare_lint_pass, declare_tool_lint};
2019-12-30 18:17:56 -06:00
use rustc_span::symbol::kw;
2019-10-15 08:11:29 -05:00
use crate::utils::{differing_macro_contexts, span_lint_and_sugg};
2019-01-30 19:15:29 -06:00
2018-03-28 08:24:26 -05:00
declare_clippy_lint! {
/// **What it does:** Checks for unnecessary repetition of structure name when a
/// replacement with `Self` is applicable.
///
/// **Why is this bad?** Unnecessary repetition. Mixed use of `Self` and struct
/// name
/// feels inconsistent.
///
/// **Known problems:**
/// - False positive when using associated types (#2843)
/// - False positives in some situations when using generics (#3410)
///
/// **Example:**
/// ```rust
/// struct Foo {}
/// impl Foo {
/// fn new() -> Foo {
/// Foo {}
/// }
/// }
/// ```
/// could be
/// ```rust
/// struct Foo {}
/// impl Foo {
/// fn new() -> Self {
/// Self {}
/// }
/// }
/// ```
pub USE_SELF,
nursery,
"Unnecessary structure name repetition whereas `Self` is applicable"
}
2019-04-08 15:43:55 -05:00
declare_lint_pass!(UseSelf => [USE_SELF]);
const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
2019-12-29 22:02:10 -06:00
fn span_use_self_lint(cx: &LateContext<'_, '_>, path: &Path<'_>, last_segment: Option<&PathSegment<'_>>) {
let last_segment = last_segment.unwrap_or_else(|| path.segments.last().expect(SEGMENTS_MSG));
2019-01-30 19:15:29 -06:00
// Path segments only include actual path, no methods or fields.
let last_path_span = last_segment.ident.span;
2019-10-15 08:11:29 -05:00
if differing_macro_contexts(path.span, last_path_span) {
return;
}
2019-01-30 19:15:29 -06:00
// Only take path up to the end of last_path_span.
let span = path.span.with_hi(last_path_span.hi());
2018-07-18 00:57:50 -05:00
span_lint_and_sugg(
cx,
USE_SELF,
span,
2018-07-18 00:57:50 -05:00
"unnecessary structure name repetition",
"use the applicable keyword",
"Self".to_owned(),
Applicability::MachineApplicable,
2018-07-18 00:57:50 -05:00
);
2018-07-14 05:18:50 -05:00
}
struct TraitImplTyVisitor<'a, 'tcx> {
item_type: Ty<'tcx>,
2018-07-14 05:18:50 -05:00
cx: &'a LateContext<'a, 'tcx>,
2018-07-17 01:20:49 -05:00
trait_type_walker: ty::walk::TypeWalker<'tcx>,
impl_type_walker: ty::walk::TypeWalker<'tcx>,
2018-07-14 05:18:50 -05:00
}
impl<'a, 'tcx> Visitor<'tcx> for TraitImplTyVisitor<'a, 'tcx> {
2020-01-09 01:13:22 -06:00
type Map = Map<'tcx>;
2019-12-29 22:02:10 -06:00
fn visit_ty(&mut self, t: &'tcx hir::Ty<'_>) {
2018-07-17 01:20:49 -05:00
let trait_ty = self.trait_type_walker.next();
let impl_ty = self.impl_type_walker.next();
if_chain! {
2019-09-27 10:16:06 -05:00
if let TyKind::Path(QPath::Resolved(_, path)) = &t.kind;
// The implementation and trait types don't match which means that
// the concrete type was specified by the implementation
if impl_ty != trait_ty;
if let Some(impl_ty) = impl_ty;
if self.item_type == impl_ty;
then {
match path.res {
def::Res::SelfTy(..) => {},
_ => span_use_self_lint(self.cx, path, None)
2018-07-14 05:18:50 -05:00
}
}
}
2018-07-14 05:18:50 -05:00
walk_ty(self, t)
}
2020-01-09 01:13:22 -06:00
fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
2018-07-14 05:18:50 -05:00
NestedVisitorMap::None
}
}
fn check_trait_method_impl_decl<'a, 'tcx>(
2018-07-14 05:18:50 -05:00
cx: &'a LateContext<'a, 'tcx>,
item_type: Ty<'tcx>,
2019-12-22 08:42:41 -06:00
impl_item: &ImplItem<'_>,
2019-12-29 22:02:10 -06:00
impl_decl: &'tcx FnDecl<'_>,
2018-07-24 23:34:29 -05:00
impl_trait_ref: &ty::TraitRef<'_>,
2018-07-14 05:18:50 -05:00
) {
let trait_method = cx
.tcx
.associated_items(impl_trait_ref.def_id)
.find(|assoc_item| {
assoc_item.kind == ty::AssocKind::Method
2018-07-14 05:18:50 -05:00
&& cx
.tcx
.hygienic_eq(impl_item.ident, assoc_item.ident, impl_trait_ref.def_id)
})
.expect("impl method matches a trait method");
let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id);
let trait_method_sig = cx.tcx.erase_late_bound_regions(&trait_method_sig);
let impl_method_def_id = cx.tcx.hir().local_def_id(impl_item.hir_id);
2018-07-17 01:20:49 -05:00
let impl_method_sig = cx.tcx.fn_sig(impl_method_def_id);
let impl_method_sig = cx.tcx.erase_late_bound_regions(&impl_method_sig);
2018-07-14 05:18:50 -05:00
let output_ty = if let FunctionRetTy::Return(ty) = &impl_decl.output {
Some(&**ty)
} else {
None
};
2018-07-28 03:42:21 -05:00
// `impl_decl_ty` (of type `hir::Ty`) represents the type declared in the signature.
// `impl_ty` (of type `ty:TyS`) is the concrete type that the compiler has determined for
2019-01-30 19:15:29 -06:00
// that declaration. We use `impl_decl_ty` to see if the type was declared as `Self`
2018-07-28 03:42:21 -05:00
// and use `impl_ty` to check its concrete type.
2018-07-17 01:20:49 -05:00
for (impl_decl_ty, (impl_ty, trait_ty)) in impl_decl.inputs.iter().chain(output_ty).zip(
impl_method_sig
.inputs_and_output
.iter()
.zip(trait_method_sig.inputs_and_output),
) {
2018-07-14 05:18:50 -05:00
let mut visitor = TraitImplTyVisitor {
cx,
item_type,
2018-07-17 01:20:49 -05:00
trait_type_walker: trait_ty.walk(),
impl_type_walker: impl_ty.walk(),
2018-07-14 05:18:50 -05:00
};
2018-07-17 01:20:49 -05:00
visitor.visit_ty(&impl_decl_ty);
2018-07-14 05:18:50 -05:00
}
}
impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UseSelf {
2019-12-22 08:42:41 -06:00
fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx Item<'_>) {
if in_external_macro(cx.sess(), item.span) {
return;
}
if_chain! {
2020-01-17 23:14:36 -06:00
if let ItemKind::Impl{ self_ty: ref item_type, items: refs, .. } = item.kind;
2019-09-27 10:16:06 -05:00
if let TyKind::Path(QPath::Resolved(_, ref item_path)) = item_type.kind;
then {
let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
let should_check = if let Some(ref params) = *parameters {
!params.parenthesized && !params.args.iter().any(|arg| match arg {
GenericArg::Lifetime(_) => true,
_ => false,
})
} else {
true
2017-08-25 02:30:21 -05:00
};
2018-07-14 05:18:50 -05:00
if should_check {
let visitor = &mut UseSelfVisitor {
item_path,
cx,
};
let impl_def_id = cx.tcx.hir().local_def_id(item.hir_id);
2018-07-14 05:18:50 -05:00
let impl_trait_ref = cx.tcx.impl_trait_ref(impl_def_id);
if let Some(impl_trait_ref) = impl_trait_ref {
for impl_item_ref in refs {
let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
2019-11-08 14:12:08 -06:00
if let ImplItemKind::Method(FnSig{ decl: impl_decl, .. }, impl_body_id)
2019-09-27 10:16:06 -05:00
= &impl_item.kind {
let item_type = cx.tcx.type_of(impl_def_id);
check_trait_method_impl_decl(cx, item_type, impl_item, impl_decl, &impl_trait_ref);
let body = cx.tcx.hir().body(*impl_body_id);
2018-07-14 05:18:50 -05:00
visitor.visit_body(body);
} else {
visitor.visit_impl_item(impl_item);
}
}
} else {
for impl_item_ref in refs {
let impl_item = cx.tcx.hir().impl_item(impl_item_ref.id);
2018-07-14 05:18:50 -05:00
visitor.visit_impl_item(impl_item);
}
}
2017-08-25 02:30:21 -05:00
}
}
}
}
}
struct UseSelfVisitor<'a, 'tcx> {
2019-12-29 22:02:10 -06:00
item_path: &'a Path<'a>,
cx: &'a LateContext<'a, 'tcx>,
}
impl<'a, 'tcx> Visitor<'tcx> for UseSelfVisitor<'a, 'tcx> {
2020-01-09 01:13:22 -06:00
type Map = Map<'tcx>;
2019-12-29 22:02:10 -06:00
fn visit_path(&mut self, path: &'tcx Path<'_>, _id: HirId) {
2019-11-06 21:59:13 -06:00
if !path.segments.iter().any(|p| p.ident.span.is_dummy()) {
if path.segments.len() >= 2 {
let last_but_one = &path.segments[path.segments.len() - 2];
if last_but_one.ident.name != kw::SelfUpper {
let enum_def_id = match path.res {
Res::Def(DefKind::Variant, variant_def_id) => self.cx.tcx.parent(variant_def_id),
Res::Def(DefKind::Ctor(def::CtorOf::Variant, _), ctor_def_id) => {
let variant_def_id = self.cx.tcx.parent(ctor_def_id);
variant_def_id.and_then(|def_id| self.cx.tcx.parent(def_id))
},
_ => None,
};
2019-11-06 21:59:13 -06:00
if self.item_path.res.opt_def_id() == enum_def_id {
span_use_self_lint(self.cx, path, Some(last_but_one));
}
}
}
2019-11-06 21:59:13 -06:00
if path.segments.last().expect(SEGMENTS_MSG).ident.name != kw::SelfUpper {
if self.item_path.res == path.res {
span_use_self_lint(self.cx, path, None);
2019-11-06 21:59:13 -06:00
} else if let Res::Def(DefKind::Ctor(def::CtorOf::Struct, _), ctor_def_id) = path.res {
if self.item_path.res.opt_def_id() == self.cx.tcx.parent(ctor_def_id) {
span_use_self_lint(self.cx, path, None);
}
2018-12-27 10:27:42 -06:00
}
}
}
walk_path(self, path);
}
2019-12-22 08:42:41 -06:00
fn visit_item(&mut self, item: &'tcx Item<'_>) {
2019-09-27 10:16:06 -05:00
match item.kind {
2019-01-06 08:05:04 -06:00
ItemKind::Use(..)
| ItemKind::Static(..)
| ItemKind::Enum(..)
| ItemKind::Struct(..)
2019-01-07 07:11:53 -06:00
| ItemKind::Union(..)
2020-01-17 23:14:36 -06:00
| ItemKind::Impl { .. }
| ItemKind::Fn(..) => {
2019-01-06 08:05:04 -06:00
// Don't check statements that shadow `Self` or where `Self` can't be used
},
_ => walk_item(self, item),
}
}
2020-01-09 01:13:22 -06:00
fn nested_visit_map(&mut self) -> NestedVisitorMap<'_, Self::Map> {
NestedVisitorMap::All(&self.cx.tcx.hir())
}
}